Séminaire (Organisé par l’Equipe de recherche DI)

Raphaël BAILLY

Post-doctorant Heudiasyc


Tensor factorization for multi-relational learning


Jeudi 27 novembre 2014 à 14h en salle A108


Résumé :

Learning relational data has been of a growing interest in fields as diverse as modeling social networks, semantic web, or bioinformatics. To some extent, a network can be seen as multi-relational data, where a particular relation represents a particular type of link between entities. It can be modeled as a three-way tensor.

Tensor factorization have shown to be a very efficient way to learn such data. It can be done either in a 3-way factorization style (trigram, e.g. RESCAL) or by sum of 2-way factorization (bigram, e.g TransE). Those methods usually achieve state-of-the-art accuracy on benchmarks. Though, all those learning methods suffer from regularization processes which are not always adequate.

We show that both 2-way and 3-way factorization of a relational tensor can be formulated as a simple matrix factorization problem. This class of problems can naturally be relaxed in a convex way. We show that this new method outperforms RESCAL on two benchmarks.

Seminars


Lundi 6 novembre 2017

Séminaire à 14 h 00 en GI042 (Bâtiment Blaise Pascal de l’UTC) présenté par Cheng-Lin LIU, Professeur et Directeur du laboratoire NLPR à Pékin.
« Research in CASIA, Beijing »


Mardi 20 juin 2017

Séminaire à 14h en GI042 (bâtiment Blaise Pascal), présenté par Patrice Perny, LIP6.
« Décision interactive sur domaine combinatoire par élicitation incrémentale de préférences ».


Jeudi 11 mai 2017

Séminaire à 14h en GI042 (bâtiment Blaise Pascal), présenté par Nicolas Maudet, LIP6 (Equipe SMA).
« Current issues in argumentation ».


Mardi 4 avril 2017

Séminaire à 14 h dans l’amphi du Centre d’Innovation de l’UTC, présenté par Xavier LAGORCE, PhD, Head of Computer Vision, Chronocam.
« Chronocam : Event-based cameras for machine vision »


Pages 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ...




Actualités
Vidéothèque
Téléchargements
Annuaire



FR SHIC 3272

Collegium UTC/CNRS