
UNIVERSITE DE TECHNOLOGIE DE COMPIÈGNE
Département de Génie Informatique

OMAS v8 - User Manual

Jean-Paul Barthès

BP 349 COMPIÈGNE
Tel +33 3 44 23 44 66
Fax +33 3 44 23 44 77

Email: barthes@utc.fr

N260
November 2010

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Warning

This document contains the documentation for using the OMAS platform. It applies to the OMAS
v8 release. However, some of the chapters were written with previous releases and may present some
slight differences with OMAS v8.

The OMAS platform was developed to simplify programming and facilitate building applications.
However, it has a large number of features and the learning curve is rather steep.

Keywords

Multi-Agent Systems, Cognitive Agents

Jean-Paul A. Barthès©UTC, 2010 N260/Page 2

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Revisions

Version Date Author Remarks
1.0 November 10 Barthès First Issue

Jean-Paul A. Barthès©UTC, 2010 N260/Page 3

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 4

Contents

1 OMAS Tutorials 11
1.1 Tutorial 1: Simple Introduction to the OMAS Platform 12

1.1.1 How to Get Started . 12
1.1.2 Creating an Agent . 13
1.1.3 Giving Skills to an Agent . 13
1.1.4 Sending a Message . 14
1.1.5 OMAS Control Panel . 15
1.1.6 The Factorial Example . 18
1.1.7 Setting Up Your Own Application . 27
1.1.8 Distributing Agents . 28

1.2 Tutorial 2: Building an Application . 29
1.2.1 OMAS Overview . 29
1.2.2 Developing an Application . 30
1.2.3 The ”Calendar” Example . 30
1.2.4 Creating the CALENDAR Service Agent . 31
1.2.5 Creating the OSCAR Personal Assistant Agent 34
1.2.6 Adding OSCAR to the Application . 34
1.2.7 Distributing Agents . 37

1.3 Tutorial 3: Advanced Features . 39
1.3.1 IDE Features . 39
1.3.2 Ignoring Requests . 39
1.3.3 Checking Arguments . 39
1.3.4 Specifying a Timeout . 40
1.3.5 Specifying a Time Limit . 41
1.3.6 Using Broadcast . 42
1.3.7 Request for Acknowledgment . 43
1.3.8 Using Contract-Net . 44
1.3.9 Specifying a Content Language . 44
1.3.10 Setting up Goals . 44
1.3.11 Defining Dialogs . 44
1.3.12 Using Ontologies . 44

2 The OMAS IDE 45
2.1 OMAS Control Panel . 45

2.1.1 Examining Agents . 46
2.1.2 Creating and Sending Messages . 47
2.1.3 Monitoring Messages . 49
2.1.4 Monitoring an Agent Execution . 50
2.1.5 Miscellaneous Control Buttons . 51

5

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

3 Architecture 55
3.1 Global Architecture . 55
3.2 Models of Agents . 56

3.2.1 Service Agents . 56
3.2.2 Personal Assistant and Staff Agents . 57
3.2.3 Transfer Agents (Postmen) . 57
3.2.4 Inferer Agents . 57

4 Service Agent 59
4.1 Structure . 60
4.2 Skills . 60

4.2.1 The defskill macro . 61
4.2.2 Acknowledge Option . 61
4.2.3 Bid Cost Option . 62
4.2.4 Bid Quality Option . 62
4.2.5 Bid Start Time Option . 62
4.2.6 Dynamic Option . 63
4.2.7 How-long Option . 63
4.2.8 How Long Left Option . 63
4.2.9 Preconditions Option . 63
4.2.10 Mechanism . 64
4.2.11 Time Limit Option . 64
4.2.12 Timeout Option . 65
4.2.13 Predefined Skills . 67

4.3 Goals . 67
4.3.1 Overview . 67
4.3.2 Detailed Goal Mechanism . 67
4.3.3 Implementation . 69
4.3.4 Activating Goals . 70
4.3.5 Simple Tests . 70
4.3.6 Creating Goals Dynamically . 76

4.4 Memory . 76
4.4.1 Memory Attached to a Task . 76
4.4.2 Memory Attached to an Agent . 76

4.5 Initial State . 77
4.5.1 Initializing data . 77
4.5.2 Predefining Messages . 77

4.6 Ontology . 77
4.7 Persistency . 77
4.8 Appendix A - Service Agent Structure . 78
4.9 Appendix B - Agent Skill Structure . 79

5 Personal Assistant Agent 81
5.1 Creating a Personal Assistant Agent (PA) . 82
5.2 PA Interaction Window . 82

5.2.1 Basic Mechanism . 82
5.2.2 Answers/Info . 83
5.2.3 Tasks to Do . 83
5.2.4 Pending Requests . 84
5.2.5 Discarded Messages . 85

Jean-Paul A. Barthès©UTC, 2010 N260/Page 6

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

5.3 Principle of the Dialog . 86
5.4 Tasks . 86

5.4.1 The Library of Tasks . 86
5.5 Dialogs . 87

5.5.1 The dialog Mechanism . 87
5.5.2 Top-Level Conversation . 87

5.6 Task Subdialog . 99
5.6.1 The Print Help Sub-Dialog . 100
5.6.2 The Get Address Sub-Dialog . 101

5.7 System Internals . 104
5.7.1 Viewing the defstate Code . 104
5.7.2 The MOSS vformat Macro . 105
5.7.3 Tracing the Dialog . 105

5.8 More on the defstate Macro . 105
5.8.1 A Simple Use . 105
5.8.2 Using Staff Agents . 107
5.8.3 Executing Some Piece of Code . 108
5.8.4 Complex Answer Analysis . 108

5.9 Some Problems . 109
5.9.1 Input Text Segmentation . 109
5.9.2 Overall State of the ALBERT-DIALOG.lisp File 109

5.10 Syntax of the defstate Macro . 109
5.10.1 Global Syntax . 109
5.10.2 Global Options . 110
5.10.3 Options for the =execute method . 110
5.10.4 Options for the =resume Method . 112

5.11 PA Communications . 113
5.12 Creating a Foreign Personal Assistant . 113

6 Transfer Agent or Postman 115
6.1 Introduction . 115

6.1.1 Definitions . 115
6.1.2 Principle . 116
6.1.3 Protocol . 116
6.1.4 Functioning . 116
6.1.5 Possible Problems . 117

6.2 Implementation . 117
6.2.1 Data Structures . 117
6.2.2 Creating a Postman . 118
6.2.3 Connecting a New Remote or Local Coterie . 118
6.2.4 Sending a Message . 118
6.2.5 Receiving a Message . 119
6.2.6 Disconnecting a Coterie . 119
6.2.7 Resetting Connections . 119
6.2.8 Getting the Connection Status . 119

6.3 Example of Minimal Postman . 119
6.3.1 Postman File . 119
6.3.2 User Point of View . 121

Jean-Paul A. Barthès©UTC, 2010 N260/Page 7

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

7 Inferer Agent 123
7.1 Example . 123

7.1.1 Problem . 123
7.1.2 Implementation . 124
7.1.3 Messages . 125
7.1.4 Tests . 125

7.2 Improvements . 125
7.2.1 Better Rule Format . 125
7.2.2 Other types of Inferences . 125
7.2.3 Order of the Rule System . 126
7.2.4 External Inference engines . 126
7.2.5 Model Based Reasoning . 126

7.3 Appendix A - Content of the Test File . 126

8 Communications 129
8.1 Agent Communication Language . 129

8.1.1 Message Structure . 129
8.1.2 Message Description . 131
8.1.3 Type of Communicative Act . 131
8.1.4 Participant in Communication . 131
8.1.5 Content of Message . 132
8.1.6 Description of Content . 133
8.1.7 Control of Conversation . 133
8.1.8 System Information . 135
8.1.9 OMAS Conditional Addressing . 136

8.2 OMAS Content Language . 136
8.2.1 Overall Approach . 136
8.2.2 Structure of the Content of a Message . 137

8.3 Network Interface . 137
8.3.1 Introduction . 137
8.3.2 Overview . 137
8.3.3 Exchange Process . 138
8.3.4 Message Format . 139
8.3.5 OMAS Net Interface . 141

9 API 143
9.1 Convention . 144

9.1.1 Elementary function names . 144
9.1.2 Package . 144
9.1.3 Agent names . 144
9.1.4 MOSS . 144

9.2 Global Variables . 144
9.2.1 Global Parameters . 144
9.2.2 Agents . 145
9.2.3 Messages . 145
9.2.4 Graphics . 146
9.2.5 Programming Control . 146
9.2.6 Timings . 147
9.2.7 Tracing . 147
9.2.8 Network Interface . 148

Jean-Paul A. Barthès©UTC, 2010 N260/Page 8

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

9.3 Functions . 148
9.3.1 Agents . 148
9.3.2 Agent Memory . 150
9.3.3 Agent Transient Memory . 151
9.3.4 Skills . 152
9.3.5 Tracing . 153
9.3.6 Tasks . 154
9.3.7 Messages . 157
9.3.8 Miscellaneous . 159

9.4 Functions by Alphabetical Order . 160

10 Persistency 171
10.1 Introduction . 171
10.2 Overall Approach . 172

10.2.1 Agent Features . 172
10.2.2 Programmer’s View Point . 173

10.3 Implementation Version 0 . 173
10.3.1 Overall Approach . 173
10.3.2 Agent Specifics and Relation to Persistent MOSS Ontologies 174
10.3.3 Non-Persistent Agents . 175
10.3.4 Persistent Agents . 176
10.3.5 Creating or Modifying Ontology or KB Objects 176
10.3.6 Saving Objects . 177
10.3.7 Objects Not to Be Saved . 177
10.3.8 First Time Saving . 177
10.3.9 Implementation for Next Versions . 177

10.4 Changes to the OMAS Code . 177
10.4.1 Creating an Agent . 177
10.4.2 Loading an Agent . 178
10.4.3 Creating or Modifying Ontology Concepts or Individuals 181
10.4.4 Accessing the Ontology and KB objects . 181

10.5 Changes to the MOSS Code . 181
10.5.1 Creating a MOSS object . 181

10.6 Loading a Persistent Agent . 182
10.6.1 First Time . 182
10.6.2 After the First Time . 183

11 Representation Language 185

12 OMAS vs JADE 187
12.1 Introduction . 188

12.1.1 Main Purpose of the Comparison . 188
12.1.2 Problem 0 . 188
12.1.3 Global Remarks . 188
12.1.4 Content of the Chapter . 188

12.2 Simple Approach to Problem 0 . 189
12.2.1 Overall Approach . 189
12.2.2 Programming the Multiply Agent . 189
12.2.3 Programming the Factorial Agent . 193
12.2.4 Launching the Platform . 198

Jean-Paul A. Barthès©UTC, 2010 N260/Page 9

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.2.5 Loading New Agents . 200
12.2.6 Executing Agents . 201
12.2.7 Debugging Agents . 202

12.3 Handling Messages . 202
12.3.1 Receiving Messages . 203
12.3.2 Recovering the Message Content (simple case) 204

12.4 Discovering Services . 204
12.4.1 Service Registration . 205
12.4.2 Broadcast . 206

12.5 Content Language . 206
12.6 Goals and Skills vs. Behaviours . 208

12.6.1 Comparing JADE and OMAS . 210
12.7 Contract-Net . 210

12.7.1 JADE Contract-Net . 210
12.7.2 OMAS Contract-Net . 211
12.7.3 Comparison JADE/OMAS . 212

12.8 Handling Time . 212
12.8.1 JADE Delays . 212
12.8.2 OMAS Delays . 212
12.8.3 JADE Timeouts . 213
12.8.4 OMAS Timeouts . 213
12.8.5 JADE Time Limits . 214
12.8.6 OMAS Time Limits . 214
12.8.7 JADE/OMAS Comparison . 214

12.9 Executing Several Tasks Concurrently . 214
12.9.1 JADE Concurrency . 214
12.9.2 OMAS Concurrency . 215

12.10Ontologies . 216
12.10.1 JADE Ontologies . 216
12.10.2OMAS Ontologies . 216

Jean-Paul A. Barthès©UTC, 2010 N260/Page 10

Chapter 1

OMAS Tutorials

Contents

1.1 Tutorial 1: Simple Introduction to the OMAS Platform 12

1.1.1 How to Get Started . 12

1.1.2 Creating an Agent . 13

1.1.3 Giving Skills to an Agent . 13

1.1.4 Sending a Message . 14

1.1.5 OMAS Control Panel . 15

1.1.6 The Factorial Example . 18

1.1.7 Setting Up Your Own Application . 27

1.1.8 Distributing Agents . 28

1.2 Tutorial 2: Building an Application . 29

1.2.1 OMAS Overview . 29

1.2.2 Developing an Application . 30

1.2.3 The ”Calendar” Example . 30

1.2.4 Creating the CALENDAR Service Agent . 31

1.2.5 Creating the OSCAR Personal Assistant Agent 34

1.2.6 Adding OSCAR to the Application . 34

1.2.7 Distributing Agents . 37

1.3 Tutorial 3: Advanced Features . 39

1.3.1 IDE Features . 39

1.3.2 Ignoring Requests . 39

1.3.3 Checking Arguments . 39

1.3.4 Specifying a Timeout . 40

1.3.5 Specifying a Time Limit . 41

1.3.6 Using Broadcast . 42

1.3.7 Request for Acknowledgment . 43

1.3.8 Using Contract-Net . 44

1.3.9 Specifying a Content Language . 44

1.3.10 Setting up Goals . 44

1.3.11 Defining Dialogs . 44

1.3.12 Using Ontologies . 44

11

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

This chapter contains three tutorials to help users get some feeling for the OMAS platform. The
first tutorial is very simple and shows how to create an agent in the ACL debug window and how to
use simple commands of the OMAS IDE. The second tutorial shows how to create a simple application
in the application folder, using the default files. The third tutorial shows how to use more advanced
features.

1.1 Tutorial 1: Simple Introduction to the OMAS Platform

Tutorial 1 shows how to launch the platform, how to create an agent, give it skills and use the IDE
interface.

1.1.1 How to Get Started

First, one has to load the platform.
To load the OMAS, simply launch the LISP environment (Allegro CL with IDE), then using the

”Load ” entry of the ”File” menu load the file named ”load-omas-moss.fasl” or ”load-omas-moss.lisp”
located in your OMAS-MOSS folder.

Figure 1.1: Initial OMAS menu

After the file is loaded (ignore the various warning messages displayed while loading), a menu
appears as shown Fig.1.1. Clicking the LOAD button produces the OMAS Control Panel (Fig.1.2)
on the top left part of the screen. The control panel allows controlling and tracing what is happening
with the agents.

Figure 1.2: OMAS Control Panel

Jean-Paul A. Barthès©UTC, 2010 N260/Page 12

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.3: The Lisp Listener (ACL Debug Window) after OMAS is loaded (may not look exactly as
this one)

1.1.2 Creating an Agent

Creating an agent is simple. Just type the following line into the listener window (Debug Window)1:

CG-USER(1): (defagent :TEST)
#<AGENT TEST>

The agent named TEST 2 has been created and is running. Its name appears in the control panel as
SA AGENT3. Note that we use a keyword 4 for the name of the agent.

One problem is that our agent TEST cannot do anything useful yet. To enable it to do something
interesting, one must define skills.

1.1.3 Giving Skills to an Agent

A skill is implemented as a LISP function. To give a skill to an agent, one first must declare the skill
and then write the function to handle it. For example let us give our agent the possibility to greet us
when receiving a greeting message. This is done as follows:

CG-USER(2): (defskill :GREETINGS :TEST :static-fcn static-greetings)
(:GREETINGS :TEST)

The agent has been given the skill :greetings; now me must write the function implementing the
corresponding behavior.

CG-USER(3): (defun static-greetings (agent message arg)
"function that returns a string to the sender"
(static-exit agent "Greetings..."))

STATIC-GREETINGS
1To be able to type something into the Debug Window, one must click the top left button within this window,

containing the symbol ”> ” This triggers a prompt like CG-USER(1): meaning that you are in the Common Graphics
User package (a name space called CG-USER), and this is interaction 1.

2Remember that LISP does not make any difference between cases, thus TEST, Test, test or TeSt represent the same
object.

3The SA prefix means Service Agent.
4A Lisp keyword is a symbol prefixed with a column (:).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 13

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

The two first arguments (agent and message) are required, the last one (arg) is the first argument of
the message received by the agent; agent is the current agent TEST, message refers to the request
message that was just received when the function is executed.

More details: Note the use of the static-exit function that takes two arguments, the first one,
agent, is required, the second one is what will be returned to the sender of a request message. A
simple skill is said to be static. An agent can perform the corresponding task locally without relying
on other agents.

Skills vs. methods: Since skills are implemented as functions, one could claim that there is no
difference between a skill and a method. However, in the case of agents, when the agent possesses a
skill and receives a message requiring to use the skill, it may choose not to answer (because it is busy,
angry with the sender, overworked, tired, etc.). Within OMAS however, agents are benevolent and
try to help, hence they usually answer.

1.1.4 Sending a Message

We can now exercise our agent by sending it a message. First we must create a message. To do so,
we click the ”new msg” button in the control panel. A message window appears as shown Fig.1.4.

Figure 1.4: Message editing window

We fill some of the fields of the editing window, namely:

Type :request

Jean-Paul A. Barthès©UTC, 2010 N260/Page 14

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

To :test
Action :greetings
Args ("Hello!")

We do not need to fill anything else.

Figure 1.5: Filling the message window for the agent TEST

We then click the ”send” button at the bottom of the message window. Nothing seems to happen.
In fact TEST has received the message and answered it. Since the answer is to the system, the answer
message is displayed in the small horizontal window of the control panel (Fig.1.6). It says:

21:12:39 ANS -2 R: "Greetings..." :TEST-> :GREETINGS:"Hello!" :BP/:FA

meaning that the message was returned at 21:12:39, was an ANSwer to task number -2, whose content
is ”Greetings?” and came from :TEST that used the skill :GREETINGS on the argument ”Hello!”

Although this is informative, it does not allow us to follow exactly what was going on. To do so,
we must use some of the features of the environment handled from the control panel.

Figure 1.6: Panel showing returned message

1.1.5 OMAS Control Panel

The panel has a number of features, associated with the various buttons.

Showing Agents or Messages

The ”agents/msg” buttons commands the content of the pane where agents are displayed (i.e. where
TEST appears). If we click it, then the MM-0 message appears replacing the TEST agent (Fig.1.7).
If we click it again the TEST agent reappears.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 15

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.7: Displaying messages (MM-0) in the scrolling list pane

Figure 1.8: Message edit window

If we double-click on MM-0, then the edit window appears (Fig.1.8).
Note that some of the fields have been filled automatically with default values (date, from, time-

limit, protocol, strategy).
Now if we double-click the agent TEST, a special agent window appears right underneath the

control panel as shown Fig.1.9. The content of this window will be detailed later.

Showing the Exchange of Messages

To display the exchange of messages in the environment, one must click on the ”reset-graphics” button.
OMAS then displays a window where messages are traced, as shown Fig.1.10.

Now we can send the message MM-0 again by selecting the message in the message list and clicking

Jean-Paul A. Barthès©UTC, 2010 N260/Page 16

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.9: Agent window for TEST

Figure 1.10: Graphics trace window

the ”send msg” button, and watch the result in the Message Diagram window, where two messages
appear:

One sent to the TEST agent (blue request) and one returned by the agent (green answer).
Note that the messages come and return to the left hand side of the window. This is where the

user lives!?

Figure 1.11: Message trace

Clicking the ”reset graphics” button resets the ”Message Diagram” window.

Sending a Message Again

To send a message again, one can either double-click on the message, and click on the ”send” button
of the message edit window, or select the message in the scrolling list and click the ”send msg” button
of the control panel.

New messages can be defined. They will appear in the scrolling list of the control panel. The
system will give a new name, MM-xx, to each new message

Miscellaneous Control Buttons

Several control buttons appear on the control panel.

On the right-hand side:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 17

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Trace: Allows printing a trace to follow what an agent is doing in a special ”Text Trace” window
(the verbose option should be checked). The agent is selected from the scrolling list.

Untrace: Cancel the trace for an agent.

Reset: Resets the system by reinitializing the various processes. Currently disabled.

Quit: Quits the application after confirmation.

Buttons on the left hand-side:

Trace messages: Toggles the text on and off on the Message Diagram.

Draw bids: Draws (or not) the bids when the Contract Net protocol is used.

Draw timers: Draws the life-line for the timers, when checked.

Verbose: Prints a detailed trace of what is happening when checked.

Exercising the TEST agent is quite limited. A better example is given by the Factorial example,
taken from the list of test problems set up by the ASA group of the SMA College of AFIA (2003).

1.1.6 The Factorial Example

The factorial example is a well known example for testing multi-agent basic capabilities. The version
described in this section was produced on the OMAS v 7.11 platform.

The factorial example normally contains only 4 agents:

• an agent called FACTORIAL that knows how to compute a factorial but does not know how to
multiply two numbers;

• three multiplying agents (MUL-1, MUL-2, MUL-3) that know how to multiply two numbers,
but do not how to compute a factorial.

In this section we show how the various scenarios can be exercised.
To load the factorial demo, load the factorial.lisp file from the application folder of the OMAS-Vxx

folder. This loads the demo file and starts the four agents FAC, MUL-1, MUL-2 and MUL-3 agents.
At the same time several messages are predefined and loaded: DF, DFWTL, GF, CNF. Clicking on
the ”agents/msg” button displays the agents (Fig.2.1), then the messages (Fig.2.8).

Dumb Strategy

The dumb strategy consists in subcontracting multiplies always to the same agent. It is implemented
by the DF message and yields the result shown Fig.1.14.

The result, 24, can be seen in the text of the last message and appears in the answer line of the
control panel.

In order to implement this strategy, the FAC agent has a more complex skill than the TEST agent.
Indeed, it starts by subcontracting some multiplies but must react when the answer comes back. Thus,

Jean-Paul A. Barthès©UTC, 2010 N260/Page 18

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.12: Agents from the factorial application

Figure 1.13: Messages for the factorial application

Figure 1.14: Computing 4! using the dumb strategy

its skill is divided into a static and a dynamic part. The static part launches the computation and
the dynamic part is called whenever a result comes back from the multiply agents.

The code is the following:

;;;=== DUMB STRATEGY
;;; using always MUL-1 to multiply

(omas::defskill :dumb-fac :FAC
:static-fcn static-dumb-fac
:dynamic-fcn dynamic-dumb-fac
)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 19

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defun static-dumb-fac (agent message nn)
"Sends first multiply and set up ennvironment to keep track of where we are."
(declare (ignore message))
;; if nn is less than or equal to 1, then return 1 immediately
(if (< nn 2) (static-exit agent 1)

;; otherwise, create a subtask for computing the product of the first
;; two top values
(progn

;; ship subtask to agent MUL-1 to compute
(send-subtask agent :to :MUL-1 :action :multiply

:args (list nn (1- nn)))
;; define a tag (:n) in the environment to record the value of the next
;; products to compute. e.g., nn-2 -> (nn - 2)!
;; use the special environment area of the agent (associated with the task)
(env-set agent (- nn 2) :n)
;; quit
(static-exit agent :done))))

(defun dynamic-dumb-fac (agent message answer)
"this function is called whenever we get a result from a subtask. This ~

approach is not particularly clever, since the computation is linear ~
and uses the same multiplying agent, i.e., MUL-1."

(declare (ignore message))
(let ((nn (env-get agent :n)))

;; if the recorded value is 1 or less, then we are through
(if (< nn 2)

;; thus we do a final exit (in fact we should never go there ??
(dynamic-exit agent answer)
;; otherwise we multiply the answer with the next high number
;; creating a subtask
(progn

(send-subtask agent :to :MUL-1 :action :multiply
:args (list answer nn))

;; update environment
(env-set agent (1- nn) :n)
;; then the function returns a value to nobody in particular
answer
))))

The static function sends a subtask (send-subtask) to MUL-1.

The dynamic part of the factorial receives an answer and must decide whether the computation is
finished or not. When it is not finished, it sends another multiply to MUL-1. When the computation
is finished it calls the dynamic-exit function.

Intermediate results are saved into the environment of the task. It is structured as a property/value
list. Here, the property is specified by the :n keyword.

send-subtask, static-exit, dynamic-exit, update-environment are functions from the OMAS
API.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 20

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Dumb Strategy with Time Limit

Here we set a time limit value on the computation of factorial. Since MUL-1 takes its time to answer,
if we set the time limit to 5 seconds, then we’ll observe an error (Fig.1.15). The time limit is set as a
parameter of the message sent to the agent FAC.

Figure 1.15: Computing 9! with a time limit of 5 seconds

In that specific case a time-limit handler is declared for the FACT agent as follows:

(omas::defskill :dumb-fac-with-time-limit :FAC
:static-fcn static-dumb-fac
:dynamic-fcn dynamic-dumb-fac
:time-limit-fcn time-limit-dumb-fac
)

with the corresponding code:

(defun time-limit-dumb-fac (agent dummy message)
"when reaching a time-limit for computing the function we simply abort all ~

subtasks and quit."
(declare (ignore dummy message))
;; cancel current subtasks
(cancel-all-subtasks agent)
;; and return with :error flag
(dynamic-exit agent :error))

The triggering message, DFWTL, is defined as::

(defmessage :DFWTL :to :FAC :type :request
:action :dumb-fac-with-time-limit :args (9) :time-limit 5)

Greedy Strategy

The greedy strategy distributes the computations among the various agents in turn as soon as an
answer is returned. The result is shown Fig.1.16 for the computation of fac(9).

The code for the skills is the following:

(defskill greedy-factorial :FAC

Jean-Paul A. Barthès©UTC, 2010 N260/Page 21

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.16: Computing 9! using the Greedy strategy

:static-fcn static-greedy-factorial
:dynamic-fcn dynamic-greedy-factorial)

(defParameter *multiply-timeout* 20 "should be no problem with 20 seconds")

(defun static-greedy-fac (agent message nn)
"Here we assume that we have 3 acquaintances that know how to multiply and ~

we try to use them as best as we can. I.e., we distribute the first three ~
multiplications, then each time an answer comes back we send a new multiplication ~
to the agent that perfomed the subtask."

(declare (ignore message)(special *multiply-timeout*))
;; if nn is less than or equal to 1, then return 1 immediately
(if (< nn 2) (static-exit agent 1)

;; otherwise, create a series of subtasks for computing the product of the
;; first top values
(let ()

;; we initialize a :res value to 1 in the environment (used by dynamic function)
(env-set agent 1 :res)
;; ship subtask to agent MUL-1 to compute
(send-subtask agent :to :MUL-1 :action :multiply

:args (list nn (1- nn)) :timeout *multiply-timeout*)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 22

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;; decrease nn
(decf nn 2)
;; when nn is greater or equal than 2 continue
(when (> nn 3)

(send-subtask agent :to :MUL-2 :action :multiply
:args (list nn (1- nn)) :timeout *multiply-timeout*)

;; decrease nn
(decf nn 2))

;; when nn is greater or equal than 2 continue
(when (> nn 3)

(send-subtask agent :to :MUL-3 :action :multiply
:args (list nn (1- nn)) :timeout *multiply-timeout*)

(decf nn 2))
;; define a tag (:n) in the environment to record the value of the next
;; products to compute
(env-set agent nn :n)
;; quit
(static-exit agent :done))))

(defun dynamic-greedy-fac (agent message answer)
"this function is called whenever we get a result from a subtask. "
(declare (special *multiply-timeout*))
(let ((nn (env-get agent :n))

(res (env-get agent :res))
(list-of-subtasks (pending-subtasks? agent)))

;(format t "~&Dynamic: nn=~s - (pending-subtasks? agent) ~S"
; (cadr (member :res environment)) (pending-subtasks? agent))
;; we are finished when this was the last substasks and we do not have
;; partial result waiting (res=1)
(cond
((and (< nn 2) (null (cdr list-of-subtasks))(eql res 1))
;; thus we do a final exit, we just received the final answer
(dynamic-exit agent answer))
;; if the recorded value is greater than 1, then we send a new subtask to the
;; agent that sent the answer
((> nn 1)
(send-subtask agent :to (sending-agent message) :action :multiply

:args (list answer nn) :timeout *multiply-timeout*)
;; update environment
(env-set agent (1- nn) :n)
;; then return an answer (actually to nobody in particular)
answer)
;; otherwise we exhausted primary values, we must gather results of MUL
;; agents and multiply them together
((eql 1 res)
;; if 1 then we store partial result for next time around
(env-set agent answer :res)
;; then return an answer (actually to nobody in particular)
answer)
;; otherwise we have a partial result in the environment

Jean-Paul A. Barthès©UTC, 2010 N260/Page 23

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

((not (eql 1 res))
;; use it to send a new multiply job
(send-subtask agent :to (sending-agent message) :action :multiply

:args (list answer (env-get agent :res))
:timeout *multiply-timeout*)

;; reset environment
(env-set agent 1 :res)
;; then return an answer (actually to nobody in particular)
answer)
;; otherwise we are in trouble (something wrong with the algorithm)
(t (error "bad greedy fac algorithm")))))

The trace on Fig.1.16 shows a reallocation to the MUL-2 agent after a deadline on the MUL-3
agent that cannot multiply big numbers.

Note that the send-subtask arguments include a :timeout argument *multiply-timeout* mean-
ing that the FAC agent will wait only a limited time for an answer from a multiply agent. The value
is set to 20 seconds, but can be decreased to say 3 seconds by typing:

? (setq *multiply-timeout* 3)

Contract Net Strategy

This strategy uses a different approach. Indeed, it sends call for bids using the Contract Net protocol.
The FAC agent sends a call-for-bids (light blue messages, Fig.1.17) and MULTIPLY agents answer
the bids offering services (brown messages). The FAC agent here takes the first bid that comes back
and grants the job to the agent. The process is repeated until all multiplies are done.

Fig.1.18 shows the same process but bids have been removed from the Message diagrams. Obtained
by un-checking the ”draw bids” box from the control panel.

The code for the skills is the following:

(defskill :contract-net-fac :fac
:static-fcn static-contract-net-fac
:dynamic-fcn dynamic-contract-net-fac
)

(defun static-contract-net-fac (agent message nn)
"this skill works by first creating n/2 tasks for distribution to the ~

multiplying agents, i.e., (* n n-1) (* n-2 n-3) ...
if n is even we end up with (* 2 1)
if n is odd we end up with (° 3 2)

It then broadcasts those tasks, record the left over number (1 or 2) and quits."
(declare (ignore message))
;; we want to control the call for bid delay for the contract net to prevent early
;; aborts
(if (< nn 2) (static-exit agent 1)

;; this line should be replaced with (if (< nn 3) (return (max nn 1))
;; to avoid subcontracting (* 2 1)
(let ((delay 0))

;; try to produce as many initial subtasks as possible
(loop

;; create n/2 tasks for distribution to the multiplying agents

Jean-Paul A. Barthès©UTC, 2010 N260/Page 24

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.17: Computing 5! using a Contract-Net strategy

;; create a subtask for computing the product of the next two values
;; broadcast
(send-subtask agent :to :ALL :action :multiply

:args (list nn (decf nn)) :delay delay
:protocol :contract-net)

(decf nn) ; adjust nn for next round
;(incf omas::*default-call-for-bids-timeout-delay* 3) ; increase waiting time
;;... to let agents make their bids
;(incf delay) ; we assume 1 as cost of setting up subtask
;; if nn becomes less than 3 don’t multiply 2 by 1! get out of the loop
(if (< nn 3)(return nil)))

;; define the :n tag in the environment to record the value of the next
;; products to compute. When exiting the loop it can be 2, 1, or 0. We set
;; it to 2 or 1
(env-set agent (if (< nn 2) 1 nn) :res)
;; quit
(static-exit agent :done))))

(defun dynamic-contract-net-fac (agent message answer)
"this function is called whenever we get a result from a subtask.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 25

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 1.18: Computing 5! with a Contract-Net strategy hiding bids

We structured the environment as follow:
:res contains a partial result (nil or 2 at the beginning)

We use :res as follows:
if 1 we save the result into it
otherwise, we broadcast the multiplication of :res with the result."

(declare (ignore message))
(let (res)

;; we are finished when there are no more active substasks.
(cond
((not (pending-subtasks? agent))
;; thus we do a final exit
(dynamic-exit agent answer))
((eql 1 (setq res (env-get agent :res)))
;; we have still subtasks in progress and res is nil
;; store the answer
(env-set agent answer :res)
;; check if this was the last subtask in the list
(if (null (cdr (pending-subtasks? agent)))

(return-from dynamic-contract-net-fac (dynamic-exit agent answer)))
;; otherwise return answer
answer)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 26

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(t
;; res is not 1, i.e., it contains a partial result
;; we multiply the answer with res creating a subtask
;; ... broadcasting it
(send-subtask agent :to :ALL :action :multiply

:args (list answer res) :protocol :contract-net)
;; update environment
(env-set agent 1 :res)
answer))))

Notice that the main difference in the way of sending subtasks is to broadcast them (:to ALL) and to
declare a Contract Net protocol (:protocol :contract-net). The actual mechanism is taken care
of by the OMAS platform.

1.1.7 Setting Up Your Own Application

Applications are constructed by specifying three things: (i) the agents, (ii) the skills, and (iii) the
messages. We examine those in turn taking as examples the contents of the factorial.lisp file
containing the FAC demo.

Defining Agents

Agents are defined simply, using the defagent macro. E.g.,

(defagent :fac)
(defagent :mul-1)

Defining Skills

Defining skills is done with the defskill macro. E.g.,

(defskill :MULTIPLY :MUL-1
:static-fcn static-multiply)

(defskill :DUMB-FACTORIAL :FAC
:static-fcn static-dumb-factorial
:dynamic-fcn dynamic-dumb-factorial)

where static-multiply, static-dumb-factorial, dynamic-dumb-factorial represent Lisp func-
tions implementing the skill as shown previously.

Defining Messages

Messages can be defined as follows:

(defmessage :DF :to :FAC :type :request :action :dumb-fac :args (4))

Alternatively, they can be constructed interactively using the message edit window.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 27

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Running the Application

Actually, agents become active as soon as the defagent macros are executed. Then one can send
them messages, using the control panel. One of the differences between OMAS and other multi-agent
platforms like JADE is that agents when created stay alive and wait for something to happen. They
have skills, i.e. capabilities of doing some tasks, different from goals (OMAS agents can also have
goals). Thus, unless an agent is removed manually, or the machine on which it runs crashes, it stays
alive ready to take part in the action.

File Organization

In this document applications are built in the shared cg-user space. In practice agents may be devel-
oped in the same Lisp environment or dispatched on different machines. Therefore, each agent will
have its own set of files and be developed in its own name space to avoid unintended interactions.

How to develop complex applications is presented in Section 1.2.

1.1.8 Distributing Agents

Distributing agents is more complex since one has to define a set of files for each agent to be able to
install them on each different machine. See Section 1.2.7.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 28

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

1.2 Tutorial 2: Building an Application

This tutorial shows how to create OMAS agents and how to make them execute tasks and communicate
with one another. OMAS is completely written in Lisp and OMAS programmers work in Lisp when
developing their agents. Therefore, the reader is assumed to be familiar with the Lisp programming
language.

1.2.1 OMAS Overview

OMAS is an environment that facilitates the development of cognitive multi-agent systems. It includes

• a runtime environment where OMAS agents can ”live” and that must be active on a given
host before one or more agents can be executed on that host;

• a set of prototyped agents that programmers can select to develop their applications;

• a suite of graphical tools that allow debugging and monitoring the activities of running agents.

Coteries and Platform

Each running instance of the OMAS runtime environment is called a local coterie and may contain
several agents. The set of local coteries is called a coterie. One or more coteries is called a platform.
There is no hierarchy among the coteries. A coterie is physically local, i.e. it must reside on the same
loop of a LAN. All agents are connected on the same port.

Coteries not located on the same LAN loop may be connected by a special agent called a transfer
agent or postman that acts as a gateway. Inside a platform agents must have unique names.

Fig1.19 shows an example of coterie. Agents in the oval section are located in the same Lisp
environment on the user’s machine (although this is not required), other agents are distributed on
the network and may be on the same machine or on different machines, the XA agent connects this
coterie with possibly other coteries or external legacy systems.

Figure 1.19: Example of OMAS coterie

An OMAS environment is started by loading the OMAS application inside a Lisp environment
(ACL on Windows or MCL on Macs).

Agents Organization

Because agents of the OMAS platform communicate using broadcast messages, registries like white
pages or yellow pages are not necessary.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 29

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

1.2.2 Developing an Application

Developing a multi-agent application is a difficult endeavor. One must first define the global architec-
ture of the targeted system, determine how many agents will be needed, and which skills such agents
must possess. Analysis and design methods are available to do that. A popular method is Gaia as
proposed by Wooldridge. Another one is SAAS as developed by De Azevedo.

Once the global architecture of the MAS is determined, one needs to actually program the agents,
then test the results. To this effect a platform will provide the necessary tools and usually impose the
programming language. OMAS uses Lisp, although Java can be used through Lisp to Java links.

MAS applications can be ranked according to their level of difficulty. One can distinguish:

• level 0: involving only service agents, e.g. for building an automatic application on a LAN loop;

• level 1: involving several local distance coteries and requiring transfer agents or postmen;

• level 2: involving agents and outside applications (e.g. legacy software);

• level 3: involving interaction with a user to drive the application;

• level 4: involving several persons with their own personal assistants possibly using different
natural languages.

Sections 1.2.3 to 1.2.5 develop a small example illustrating the use of a service agent and of a
personal assistant agent.

1.2.3 The ”Calendar” Example

This section introduces a simple example consisting of a single service agent named CALENDAR and
a French speaking Personal Assistant agent named OSCAR. We want the CALENDAR to give us the
current date and will later develop OSCAR as the interface with the system.

In order to do so we first open the OMAS/Applications folder and create a copy of the application-
templates folder that we rename UTC-TEST to host our TEST application, leaving it in the OMAS/Applications
folder.

Our UTC-TEST folder contains several files (copied from the application-templates folder):

• agents.lisp

• SAAA.lisp

• SAAA-ONTOLOGY.lisp

• PBBB.lisp

• PBBB-ONTOLOGY.lisp

• PBBB-TASKS.lisp

• PBBB-DIALOG.lisp

• XCCC.lisp

• XCCC-ONTOLOGY.lisp

• IA-DDD.lisp

• Z-MESSAGES.lisp

Jean-Paul A. Barthès©UTC, 2010 N260/Page 30

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Each file is a template for developing necessary files for the application:

• SAAA and optionally SAAA-ONTOLOGY are used to build a Service agent

• PBBB, PBBB-DIALOG, PBBB-ONTOLOGY, and PBBB-TASKS are used to build a personal
assistant agent

• XCCC and optionally XCCC-ONTOLOGY are used to build a transfer agent of postman

• IA-DDD is used to build an Inferer agent (set of rules)

• Z-MESSAGES is used to predefine test messages

• agents is used to load the local coterie, namely all files that have been defined

1.2.4 Creating the CALENDAR Service Agent

Our CALENDAR agent is simple, we want it to return the date when we send it the message :get-date,
as a string containing the day, month and year and eventually the current time. It will thus have a
single skill :GET-TIME and return a string. We do not need an ontology to do that.

The CALENDAR File

To create the CALENDAR file:

1. Rename the file SAAA.lisp CALENDAR.lisp

2. Open the file with an editor supporting UTF-85, e.g. Notepad++ or Emacs. We found that the
ACL editor introduces spurious characters in UTF-8 encoded files. The MCL editor however
can be used directly.

3. Replace SAAA by CALENDAR throughout the file.

4. Go to the Skill section.

Note that the file contains three lines of Lisp code for creating a specific package for hosting the
agent, setting this package to be the current package for the file, and for definiting the agent.

...
;;;===
;;;
;;; defining agent package
;;;
;;;===

(defpackage :CALENDAR (:use :moss :omas :cl #+MCL :ccl))
(in-package :CALENDAR)

;;;===
;;;
;;; defining the agent
;;;
;;;===

5All standard agent files use a UTF-8 encoding for supporting different languages.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 31

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; :CALENDAR is a keyword that will refer to the agent and be used in the messages.
;;; The actual name of the agent is built automatically and is the symbol
;;; CALENDAR::SA_CALENDAR, i.e. the symbol SA_CALENDAR defined in the "CALENDAR" package.
;;; It points to the lisp structure containing the agent data

(omas::defagent :CALENDAR :redefine t)
...

The GET-DATA Skill

The skill section is included in comments as follows:

;;; ==
;;; Skill XXX
;;; ==
#|
(defskill :XXX :CALENDAR

:static-fcn static-XXX
:dynamic-fcn dynamic-XXX
:time-limit-fcn time-limit-XXX
:timeout-handler timeout-handler-XXX
:preconditions preconditions-XXX
:select-best-answer-fcn select-best-answer-XXX
:acknowledge-fcn acknowledge-XXX
)

;;; Keep only those functions that are useful for your application
;;; agent and message are variables set by OMAS
;;; agent is the current agent
;;; message is the message that trigerred the function

(defun static-xxx (agent message <args>)
"documentation"
(static-exit agent <result>))

(defun dynamic-xxx (agent message <args>)
"documentation"
(dynamic-exit agent <result>))

(defun time-limit-xxx (agent message message)
"documentation"

)

(defun timeout-handler-xxx (agent message)
"documentation"

)

(defun preconditions-xxx (agent message <args>)
"documentation"

)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 32

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defun select-best-answer-xxx (agent answer-message-list)
"documentation"

)

(defun acknnowledge-xxx (agent message <args>)
"documentation"

)
|#

This part of the file contains all possible options for a particular skill. Since we want a simple skill
with no subtask transferred to other agents, we only need the static part of the skill.

The date is obtained from the standard get-decoded-time and get-universal-time Lisp primitives,
which leads to the following code for the skill:

;;; ==
;;; Skill GET-DATE
;;; ==

(defskill :GET-DATE :CALENDAR
:static-fcn static-GET-DATE
)

;;; Keep only those functions that are useful for your application
;;; agent and message are variables set by OMAS
;;; agent is the current agent
;;; message is the message that trigerred the function

(defUn static-get-date (agent message)
"documentation"
(let (hour minute second)

(multiple-value-setq (second minute hour day month year)
(decode-universal-time (get-universal-time)))

(static-exit agent
(format nil "~S/~S/~S ~S:~S:~S"

day month year hour minute second))))

Loading the Application

In order for the CALENDAR file to be loaded as an application, we need to declare the agent name
in the agents.lisp file replacing the default values as follows:

...
;;; replace the keywords :SAAA-1, :SAAA-2, :PBBB, :XCCC with the keywords specifying
;;; your agents. They will name the agent files. Remove the three dots ...

(setq *local-coterie-agents*
’(:CALENDAR))

:EOF

Note that the agent is declared as a keyword :CALENDAR in the list of agents.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 33

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Now after loading the OMAS platform one will specify the application in the OMAS menu
(Fig.1.20). The name of our folder, UTC-TEST, has two parts, the first one, UTC, is a reference
to the local coterie, the second part, TEST, is the name of the application.

Figure 1.20: OMAS Initial Menu

We can save the reference by clicking the SAVE button and start OMAS by clicking LOAD. Once
the application is launched we can send a new request message to CALENDAR with a :get-date action
as shown in the first tutorial of this chapter. The result will appear in the top line of the control panel.

Note on Fig.1.20 that the IP ADDRESS field is left blank, meaning that we do not send messages
on the network for the time being (thus, port 50000 is unused).

1.2.5 Creating the OSCAR Personal Assistant Agent

Creating OSCAR is done by using the PBBB files. As a first step we’ll use the PBBB file and the
PBBB-DIALOG file that provides a minimal dialog.

Creating the OSCAR Files

To create the OSCAR files do the following:

1. Rename the PBBB.lisp file to OSCAR.lisp

2. Open the file and replace PBBB by OSCAR everywhere

3. Rename the PBBB-DIALOG.lisp file to OASCAR-DIALOG.lisp

4. Open the file and replace PBBB by OSCAR everywhere

5. Close and save the files

1.2.6 Adding OSCAR to the Application

To do so:

1. Open the agent.lisp file

2. Add OSCAR to the list of agents

(setq *local-coterie-agents*
’(:CALENDAR :OSCAR))

Jean-Paul A. Barthès©UTC, 2010 N260/Page 34

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

3. Close the file, reinitialize the Lisp environment, reload OMAS and reload the application without
changing the OMAS initial menu.

A personal assistant default window should appear (Fig.1.21).

Figure 1.21: OMAS Initial Menu

Now, OSCAR cannot do much although it has some initial dialog. OSCAR can answer ”Bonjour.”
or ”Bonjour OSCAR.” but otherwise cannot perform any task.

Letting OSCAR Do Some Tasks

In order for OSCAR to be able to do some tasks, we must define some tasks and provide the cor-
responding dialogs for activating such tasks. To do so, one must provide a specific file obtained by
renaming the PBBB-TASKS.lisp to OSCAR-TASKS.lisp. Like in the previous steps, open the file and
replace PBBB by OSCAR everywhere and reload everything.

Now the agent has four predefined tasks:

• HELP that lists the possible tasks

• SET FONTS that changes the size of the font

• TRACE that traces dialog when debugging

• WHAT IS that tries to answer the question

However, this is not very helpful. You can try ”Lettres plus gros.” and see what happens. The WHAT
IS task may not answer if no agent knows anything about the question.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 35

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Creating a New Task and Dialog

Now we would like to create a new dialog for asking OSCAR the current date. If we ask that, OSCAR
will have to get the current date from the CALENDAR agent.

First we have to gather the possible expressions that people could use to ask for the current date.
They may include phrases like:

• ”Aujourd’hui c’est quel jour?”

• ”Quel jour sommes-nous aujourd’hui ?”

• ”Date de ce jour ?”

• ”Aujourd’hui c’est quelle date ?”

• ”Date ?”

• etc.

From such expressions we can extract cues that will trigger the GET-DATE task that will send a
:get-date request to the CALENDAR agent. With such cues, we build a task that could be:

(deftask "get date"
:doc (:en "Task to get the current date."

:fr "Tâche permettant d’obtenir la date du jour.")
:performative :request
:dialog _get-date-conversation
:indexes ("aujourd hui" .4 "jour" .3 "date" .6 "de ce jour" .4)
)

The weights following the indexes are set manually and reflect the importance of a particular
phrase in the input sentence with respect to this task.

Now the task refers to a get-date-conversation that will be triggered if OSCAR determines that we
are interested in a date. The conversation has to be added to the content of the OSCAR-DIALOG
file, and could resemble the following code:

;;;==
;;;
;;; GET DATE CONVERSATION
;;;
;;;==

;;; this conversation is intended to obtain the date from the CALENDAR agent

;;;-- (GD) GET-DATE-CONVERSATION

(defsubdialog
_get-date-conversation
(:label "Get Date conversation")
(:explanation
"We ask our PA the date of the day.")
(:states _get-date-entry-state)

)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 36

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;;==
;;; GET DATE CONVERSATION STATES
;;;==

;;;-- (GD) GET-DATE-ENTRY-STATE

(defstate
_get-date-entry-state
(:entry-state _get-date-conversation)
(:label "Get date dialog entry")
(:explanation "Assistant is sending a message to the CALENDAR agent.")
(:send-message :to :CALENDAR :self *current-agent* :action :get-date)
(:transitions
(:always
:exec (omas::assistant-display-text *current-agent*

(omas::answer *current-agent*))
:success))

)

In this example the dialog has a single state (get-date-entry-state) in which one sends a message to the
CALENDAR agent and prints the answer, then exiting with a success.

Thus, add the code to the content of the OASCAR-DIALOG.lisp file, reload the application and
try some things like: ”Quel jour sommes-nous aujourd’hui?” or simply ”Date?” and see what happens.

1.2.7 Distributing Agents

MAS applications are interesting when agents are distributed on different machines. In the case of the
OMAS platform, agents cannot currently migrate from a machine to a different machine by program.
However, they can be easily installed on different machines. We distinguish two cases: (i) local coteries;
and (ii) coteries with distant local coteries.

Local Coteries

A local coterie is a set of agents residing on the same physical LAN loop. This is an interesting
configuration because one can use a single UDP message to implement broadcasts. In our example
we can migrate the Calendar agent to a different machine, say UTC@SKOPELOS by creating a new
OMAS environment on this machine and installing the CALENDAR files in the applications folder of
this new environment. We need to remove the CALENDAR agent from the list of local agents in the
first machine (by editing the agents.lisp file), and set the local agent list on SKOPELOS to contain
OSCAR.

Finally one must decide which port to use on the local network and provide the broadcast address
to the applications by filling the IP ADDRESS of the initial menu. For example, if we are on a 172.18
loop, we can set the IP ADDRESS to 172.18.255.255 and use the default PORT NUMBER of 50000.

There is nothing more to do.

Coteries Composed of Distant Local Coteries

When distributing agents among distinct local coteries, the situation is different because we must
provide a communication channel between the two local coteries. This is done by using a transfer
agent or postman. If we have OSCAR on local coterie LCA and CALENDAR on local coterie LCB,
we must install a postman to LCB in LCA and a postman to LC in LCB. LCA and LCB may be

Jean-Paul A. Barthès©UTC, 2010 N260/Page 37

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

physically located anywhere in the world as long as firewalls do not block access to the communication
port (more on that later).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 38

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

1.3 Tutorial 3: Advanced Features

This third tutorial introduces some of the features and options that can be used for creating more
complex applications. They are introduced on examples. Details of the different features will be
described in the following chapters (in particular in Chapter 4). Features are introduced roughly in
order of increasing complexity.

1.3.1 IDE Features

How to use the IDE is described in Chapter 2.

1.3.2 Ignoring Requests

OMAS agents are not required to answer messages, meaning that they can ignore messages even if
they have the skills to process them.

For example if a MULTIPLY agent does not like to multiply even numbers, then it can simply
ignore messages containing even numbers. This is done by returning the keyword :abort at the skill
level.

(defagent :mul-4)

(defskill :multiply :mul-4
:static-fcn static-multiply-4)

(defun static-multiply-4 (agent message n1 2)
(declare (ignore message))
(static-exit agent (if (and (evenp n1)(evenp n2)) :abort (* n1 n2))))

One can check using the IDE that the agent indeed does not answer when the two numbers are
even.

1.3.3 Checking Arguments

Sometimes it is necessary to dynamically check the arguments of a message before deciding to consider
it or not. This can be done with the :preconditions option of the defskill macro.

Definition Preconditions implement a test on the arguments associated with a skill.

Mechanism When a preconditions function has been defined, it is executed prior to taking into
account the corresponding subtask. If it returns nil, then the subtask is disregarded.

Specifying a Preconditions Function

(defskill :MULTIPLY MUL-1
:static-fcn multiply
:preconditions-fcn preconditions-multiply
)

(defun preconditions-multiply (agent environment n1 n2)
"called before triggering the skill?
(declare (ignore agent environment))
(and (integerp n1) (integerp n2)))

Jean-Paul A. Barthès©UTC, 2010 N260/Page 39

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Preconditions are not restricted to checking the type of the arguments. One could imagine that the
multiplying agent does not know how to multiply large numbers for example.Thus, the precondition
will fail if one of the numbers is too large.

1.3.4 Specifying a Timeout

In OMAS we adopt the approach that if agents are allowed not to answer, then one must be able to
specify timeouts easily. There may be different reasons for a request not to be answered: either agents
are dead, or no agent wants to answer. In both cases something must be done at the application level.

Specifying a timeout can be done in two different ways:

1. by filling the timeout slot in the message edit window before sending the message;

2. by adding a :timeout argument in the send-subtask call within a skill.

(send-subtask agent :to (answering-agent agent) :action :multiply
:args (list answer (cadr (member :res environment)))
:timeout 2.5)

Timeouts are given in seconds, e.g. 2.5 means two and a half seconds.

Default behavior The subtask will be aborted after 2.5 seconds if no timeout handler has been
defined (default behavior). Then, by default the task itself will be aborted.

Providing a Timeout Handler Specifying a user-defined timeout handler can be done by using
the :timeout-handler option of the defskill macro. E.g.

(defskill :fast-fac-with-timeout fac
:static-fcn static-fast-fac-with-timeout
:dynamic-fcn dynamic-fast-fac-with-timeout
:timeout-handler timeout-fast-fac-with-timeout)

(defun timeout-fast-fac-with-timeout (agent message)
"function for handling timeout errors"
(case (omas::action message)

(:multiply
;; if a multiply subtask is timed out, then reallocate to another agent
;; by simply doing another broadcast
(send-subtask agent :to :ALL :action :multiply

:args (omas::args message)
:timeout *multiply-timeout*)

;; exit
:done
)
(otherwise
;; for any other skill we let the system process the timeout condition
:unprocessed))

)

On timeout, the handler is called and run.
The handler arguments are the agent structure and the message that was sent (containing the

:timeout option). Parts of the message can be accessed by using (yet undocumented) internal OMAS

Jean-Paul A. Barthès©UTC, 2010 N260/Page 40

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

functions. In the example omas::action retrieves the action specification of the message, and if the
action is :multiply executes a new broadcast.

Note An important point is that there exists a single timeout-handler within a given task, which
means that it could be used for different types of subtasks.

In practice, a timeout constraint is implemented through a timer set up in the agent sending the
message.

1.3.5 Specifying a Time Limit

A time limit is the maximum time allowed to an agent for executing a task.
A time-limit can be specified in a message by using the :time-limit option, e.g. specifying a

time-limit of 20 seconds for a subtask.

(send-subtask agent :to (answering-agent agent) :action :multiply
:args (list answer (cadr (member :res environment)))
:time-limit 20)

Default Behavior By default when a time limit is reached OMAS gives two more possibilities
(extending the time-limit twice). On the third retry, the task is aborted.

Specifying a Time Limit Handler This is done by using the :time-limit-fcn option of the
defskill macro.

(defskill :fast-fac fac
:static-fcn static-fast-fac
:dynamic-fcn dynamic-fast-fac
:time-limit-fcn time-limit-fast-fac)

(defun time-limit-fast-fac (agent environment message)
"function for handling time-limit errors"
(declare (ignore environment)
(format t "~&Warning; we went over time to process subtask ~S"

(omas::task-id message))
(abort-current-task agent))

Normally, the user aborts the task in the handler. However, when this is not the case, the default
behavior takes over, i.e., two retries are allowed.

Usage Of course a time limit option can be used to tell an agent that its time to execute a specific
skill is limited. Thus, if the agent knows that it cannot execute the subtask within the specified time,
it can avoid undertaking it. In practice this is difficult to evaluate. Hence the time limit mechanism
is rather used by the system internally to avoid orphaned tasks. OMAS associates a time limit of 1
hour to each task. Thus, after 1 hour, the task is aborted, cleaning the agent environment.

Another possible use is one involving human intervention. When a subtask must be solved by a
human, then the 1 hour deadline may be too short and it is possible to specify a longer time-limit for
executing the subtask.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 41

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

1.3.6 Using Broadcast

We use broacast when we want to send the same message to all reachable agents. Three strategies
are possible and it is possible to specify the type of broadcast that we want to have within each
message, by using the :strategy option. The allowed values are :take-first-answer (default),
:collect-answers or :collect-first-n-answers.

The :take-first-answer Strategy

The :take-first-answer strategy is self explanatory. As soon as the sender gets an answer, it accepts
it and calls the dynamic part of the skill.

The :collect-answers Strategy

The :collect-answers strategy is more complex, since in this case the sender waits some time (before
a timeout occurs) collecting answers (actually answer messages). On timeout, a function is called to
select the ”best” answer from the collection of answers. If no function is given, then by default a
message is picked randomly. A better approach consists in providing a selection function using the
:select-best-answer-function of the defskill macro.

The following example, taken from the EDT application, illustrates how the function can be used
to keep all the returned values and pass them to the dynamic part of the skill.

(defskill :GET-TIME-SLOT-CONSTRAINTS :RC
;; Before anything can be done, must obtain all constraints from the groups and
;; teachers, then set the status to :ready (the info is needed to draw the time
;; table). it is kept in RC’s memory.
;; The collection is done by means of a broadcast, associated with a timeout
;; handler. All agents that have not answered prior to the timeout are considered
;; not to have constraints.
:static-fcn static-get-time-slot-constraints
:dynamic-fcn dynamic-get-time-slot-constraints
:select-best-answer-fcn best-answer-get-time-slot-constraints
)

(defun best-answer-get-time-slot-constraints (agent message info)
"called to select among the answer received from the broadcast.

Arguments:
agent: RC
environment: ignored
info: list of answer messages

Return:
list of contents of the answer messages."

(declare (ignore agent message))
;; transmit the list of all answers to the dynamic skill fcn
(mapcar #’omas::contents info))

The user handler accepts three arguments: the agent structure, the message just received, and the list
of answer messages. In the example, the omas contents accessor extracts the content of the answer
from each answer message. The list of returned values is then passed to the dynamic part of the skill.

Note 1: The handler function is executed in the context of the timeout process, the passed value
will be used in the context of the task process (executing the skill).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 42

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Note 2: The second argument (environment) of the collect user handler is not used and will be soon
removed to let only two arguments: agent and list of messages.

The :collect-first-n-answers Strategy

Starting with OMAS version 7.10 a new strategy has been introduced. The rationale is the following:
in some cases we send a broadcast that goes to all agents, although we know how many agents can
answer. Thus, if all expected answers have been received, it is useless to wait until the broadcast
timeout to process the answers. The :collect-first-n-answers has been designed to start processing as
soon as all expected answers have been received. It is called by inserting a list into the send-subtask
function:

:strategy ’(:collect-first-n-answers 3)

1.3.7 Request for Acknowledgment

Sometimes it is useful to know if a message has reached some agent, in particlar when the answer
might take a long time, or if one is not sure that the agent is still alive. For such cases, we can use
the :ack option in a message.

Definition When an agent receives a message containing the :ack option, it then returns an ac-
knowledge message before trying to process the received message. Sending an acknowledge message
doen not imply that the agent will process or answer the received message. It simply indicates that
the message was received.

Example

(send-subtask :to :joe :action :confirm-appointment :args ("tuesday 10 am") :ack t)

When the acknowledge message returns we may want to process it independently from the task
dynamic part. To do so we may define an acknowledge handler.

Specifying an Acknowledge Handler This is done using the :acknowledge-fcn option of the
defskill macro.

(defskill :CONFIRM-APPOINTMENT TOM.
:static-fcn static-confirm-appointment
:dynamic-fcn dynamic-confirm-appointment
:acknowledge-fcn acknowledge-confirm-appointment
)

(defun acknowledge-confirm-appointment (agent message info)
"called when receiving an acknowledge message?
(declare (ignore message))
;; memorize whatever info was returned
(remember agent info :appointment-request-acknowledgement))

The arguments to an acknowledge handler are the agent, the task message and the arguments of the
subtask message.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 43

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

1.3.8 Using Contract-Net

Contract-Net is a rather complex protocol in which an agent, the manager, outputs a call for bids
(contract) and waits for answers in order to assign the job to one or more agents. Thus it is a 2-phase
protocol.

Specifying a contract-net protocol is done on a per message basis as follows:

(send-subtask agent :to :ALL :action :multiply :args (list answer res)
:protocol :contract-net)

By default the message will be transformed into a :call-for-bids and the manager will wait for
answers until a timeout or until all answers have come back in a multicast.

Each bid is returned with a list of 5 elements: (start-time delay quality cost rigidity). Default start-
time is 0 (meaning that the job can start right away), default duration is 3600 (1 hour, which is the
default time limit for a task), default quality is 100 (maximum), default cost is 0, default rigidity is
100 (maximum).

Bids are then analyzed and ranked by cost first, completion time second (start-time + delay), and
quality third. All best equal bids are selected. The task is then granted to all agents corresponding
to best bids and the first answer coming back is accepted.

Several functions can be specified at the skill level to compute various parameters:

• bid-cost-fcn computes the cost (number)

• bid-quality-fcn returns an integer (0, 100)

• bid-start-time-fcn returns an integer (seconds)

• bid-how-long-fcn returns an estimate of the duration of the task (seconds)

If the comparison between two bids requires more sophisticated approaches, then the protocol must
be programmed manually.

1.3.9 Specifying a Content Language

Normally, applications can decide on the content language for exchanging information within messages.
Content languages range from logical languages to natural languages. OMAS does not impose any
specific content language. However, when dealing with ontologies a simple syntax is proposed as
mentioned in Section ??.

1.3.10 Setting up Goals

Agents are autonomous programs. As such they can have goals. OMAS allows defining one-shot or
cyclic goals as described in Section 4.3.

1.3.11 Defining Dialogs

When interacting with a user, personal assistants use dialogs. Dialogs are difficult to design and
implement and they are presented in Section ??.

1.3.12 Using Ontologies

Ontologies are unavoidable when dealing with agents. OMAS ontologies are formalized with the MOSS
knowledge representation language, a powerful but complex frame language. They are presented in a
different document.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 44

Chapter 2

The OMAS IDE

Contents

2.1 OMAS Control Panel . 45
2.1.1 Examining Agents . 46
2.1.2 Creating and Sending Messages . 47
2.1.3 Monitoring Messages . 49
2.1.4 Monitoring an Agent Execution . 50
2.1.5 Miscellaneous Control Buttons . 51

This chapter describes the OMAS IDE (Interactive Debugging Environment) and the features
associated with the OMAS panel controlling it. The IDE is used to exercise agents and to visualize
what is happening when the MAS is working. Its working is illustrated on the factorial example
described in Tutorial 1.

2.1 OMAS Control Panel

The OMAS control panel has a number of features, associated with the various buttons. It allows the
user to examine the state of the various agents (statically) and trace how they interact (dynamically).
Typically, we want to know

• How many agents we have

• What skills have the agents

• What is the current state of one agent

• What are the messages available

• What concept are recorded in the ontology of an agent

We want to do things to exercise the agents

• Create or modify a message

• Send a message

We want to monitor execution

• View the messages being exchanged

• View the messages an agent has received

45

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• Trace the messages being exchanged

• Monitor the behavior of an agent

2.1.1 Examining Agents

Viewing the List of Agents

The agents of the application appear in the right pane of the control panel. Fig.2.1 displays the four
agents of the factorial example. Note that the name of each agent is prefixed by SA for Service Agent.

Figure 2.1: Agents from the factorial application

Viewing a Particular Agent

Clicking on one of the agents in the display opens the agent window that appears right below the
control panel (Fig.2.2).

Figure 2.2: Agent window

The agent window contains two panes and several buttons. The panes will display incoming and
outgoing messages. The buttons are:

• details that gives information about the internal state of the agent (Fig.2.3)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 46

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• ontology that displays the agent ontology (none in the case of the factorial example)

• trace for tracing the agent

• inspect for opening a Lisp inspection window on the agent structure (for Lisp specialists)

Figure 2.3: Some details of the content of the factorial agent

2.1.2 Creating and Sending Messages

Viewing the List of Available Messages

When some messages have already been defined, it is possible to view them by clicking the agents/msg
button that switches between the list of agents and the list of messages (Fig.2.4).

Of course the available messages must have been predefined in the application file (usually by
means of the defmessage macro).

Examining a Message

Selecting and examining a message is done by double clicking on one of the messages from the list,
e.g. DF. A message editing window appears then as shown Fig.2.5.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 47

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 2.4: List of messages showing four predefined messages

Figure 2.5: Message editing window showing the content of the DF (dumb factorial) message

The message shown Fig.2.5 is a request message, the sender is the user, the receiver is the agent
:FAC, the requested action is :dumb-fac (a dumb way of computlng factorial), the list of arguments
contains a single argument: 4. The other pieces of information have been added by OMAS and are
irrelevant here.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 48

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Creating a Message

A message can be created by clicking the new msg button. An empty message editing window appears,
the fields of which can be filled by the user. The minimal information required to obtain a message
similar to that shown Fig.2.5 is TYPE, TO, ACTION and ARGS, the rest is optional.

Sending a Message

There are two ways of sending a message:

• clicking on the send button of a message editing window (Fig.2.5)

• selecting a message in the message list and clicking on the send meg button of the control panel.

2.1.3 Monitoring Messages

It is important to be able to visualize exchanges of messages. This is done through the graphics
window.

Clicking the reset graphics button of the control panel wakes up a graphics window that appears
at the right side of the control panel. By default the graphics window displays life lines for the agents
located on our machine. What is displayed in the graphics window is controlled by the three top left
check boxes of the control panel. For example, if we select the DF message in the message list and
send it by cllicking the send msg button, we see the exchanges of messages (Fig.2.6).

Figure 2.6: Monitoring the exchanges after sending the DF message

The user sends the DF message to the FAC agent. The FAC agent in turn sends a message asking
the MUL-1 agent to multiply 4 and 3 (blue request message), waits until the answer comes back (green
arrow), then sends a request asking to multiply 2 and 12 (previous result), waits for the answer and
returns it to the user (who by convention resides at the left of the window).

We can notice several things:

• Each message has a color (blue for requests and green for answers).

• Each message has an associated text summary of the content of the message, starting with the
time at which it was sent. Unchecking the trace messages check box in the control panel
removes the text associated with the messages.

• The life line of an agent becomes red when the agent is busy (i.e. does at least one thing).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 49

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• At the left of an agent life line, there is a light green vertical line. This indicates a timer
associated with the task of the agent (by default the maximal duration of a task is set to one
hour 1). Unchecking the draw timers check box in the control panel removes the timer lines.

2.1.4 Monitoring an Agent Execution

Monitoring an agent execution is the same as tracing an agent. To do so, one must select the agent in
the list of agents and click on the trace button. Then, to be able to visualize the behavior of an agent,
on must check the verbose check box, which opens a text window underneath the graphics window.
One then can send a message and view what the traced agent is doing (Fig.2.7).

Figure 2.7: Monitoring the execution of the factorial agent

The Text Trace window show the following steps:

• FAC received a message from the user asking to compute 4! with the dumb approach

• it processed the user message

• it created a task
1This means that the task is aborted if not completed within one hour, which prevents the system to keep orphan

threads when the corresponding agent is waiting for some event that does not happen

Jean-Paul A. Barthès©UTC, 2010 N260/Page 50

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• ... and a timer with a delay of 1 hour (3600 seconds)

• then it sends a message to MUL-1

• etc.

Such a trace may be valuable, but is in general difficult to exploit.

2.1.5 Miscellaneous Control Buttons

Control Panel

Figure 2.8: Agents from the factorial application

Let us summarize the role of the control buttons appearing on the control panel.

• On the right-hand side:

Trace: Allows printing a trace to follow what an agent is doing in a special Text Trace
window (the verbose option check box should be checked). The agent is selected from the
scrolling list.

Untrace: Cancel the trace for an agent.

Reset: Resets the system by reinitializing the various processes.

Quit: Quits the application.

• Check boxes on the left hand-side:

Trace messages: Toggles the text on and off on the Message Diagram.

Draw bids: Draws (or not) the bids when the Contract Net protocol is used.

Draw timers: Draws the life-line for the timers, when checked.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 51

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Verbose: Prints a detailed trace of what is happening.

• Buttons on the center left hand-side:

Kill msg: Removes the selected message from the list of messages.

New msg: Creates a new message (a message box appears).

Send msg: Sends the selected message.

• Buttons on the center right hand-side:

Agents/msg: Toggles between showing the agents or the predefined messages.

Load agent: Allows to load a new agent (provided its files have been previously defined).

Reset graphics: Resets the graphics trace.

Agent Window

Figure 2.9: Agent window

Let us summarize the role of the buttons of an agent window.

• Top row:

details: Opens a window giving some details on the content of the agent.

ontology: Opens a window showing the content of the associated ontology (all agents do not
have necessarily an ontology).

trace: toggles tracing/untracing an agent (coupled with the verbose check box of the control
panel).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 52

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

inspect: opens a Lisp inspector for inspecting the agent structure (reserved for Lisp special-
ists).

• Second row:

tasks: displays the list of tasks being executed by a given agent (transient display).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 53

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 54

Chapter 3

Architecture

Contents

3.1 Global Architecture . 55

3.2 Models of Agents . 56

3.2.1 Service Agents . 56

3.2.2 Personal Assistant and Staff Agents . 57

3.2.3 Transfer Agents (Postmen) . 57

3.2.4 Inferer Agents . 57

This chapter describes the architecture of the OMAS platform. The first section deals with the
global architecture of an application. The second section deals with the different models of agents
supported by OMAS.

3.1 Global Architecture

A single machine may support several agents, in which case all agents reside in the same Lisp environ-
ment (whether MCL on MacOS or ACL on Windows). This fits in particular the situation in which
a personal Assistant has a staff of technical agents. Such a configuration is called a local coterie.

Local coteries are grouped into a larger coterie, supported by a network of several machines
(Fig.3.1). A local coterie does not necessarily contain a personal agent, but may rather shelter one or
more service agents.

Within a coterie, all inter-agent messages are broadcast (using the UDP protocol). A coterie is
bound by the physical connections of a network (number of adjacent loops a broadcast message can
travel; usually a single loop). An OMAS platform may contain several coteries located on distant
LAN loops.

Inter-coterie messages use their own protocol and use TCP. When connected to a foreign platform
the protocol may be FIPA compliant. In other words, an OMAS platform can be a platform in the
FIPA sense.

Within a coterie (platform), agents have unique names (assigned freely by the designer of the
application).

Local Coteries

All agents are independent. They have their own name space, different from that of the coterie and
different from the OMAS name space. The code defining an agent, its skills, goals, ontology, tasks or
dialogs (for Personal Assistants), is contained in separate files.

55

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 3.1: Coterie showing local coteries and inter-coterie link

A local coterie contains invisible agents namely, a Spy agent and a Manager Agent1 .

3.2 Models of Agents

OMAS agents follow several models:

• Service Agents (SA)

• Personal Assistants (PA)

• Transfer Agents or Postmen (XA)

• Inferer Agents

They are briefly presented in the following paragraphs and described in the following chapters.

3.2.1 Service Agents

Service Agents are regular agents that provide a set of services. They can be thought as Web Services
with the difference that they may not answer even if they can do the job. Their structure is shown
Fig.3.2.

The various parts of the structure of an agent are:

• net interface, handling message and log;

• skills, containing the skills corresponding to tasks the agent can do;

• world, containing a model of the world, namely a description of other agents obtained through
the processing of messages;

• tasks, a model of the current tasks being active in the system (currently unused);

1The manager agent is not activated in the current OMAS version

Jean-Paul A. Barthès©UTC, 2010 N260/Page 56

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• ontology, containing the ontology and knowledge base;

• self, containing a self description, a description of skills and the agent memory;

• control, containing all the necessary internal structures for running the agent.

Figure 3.2: The structure of a Service Agent / Personal Assistant (with grey additions)

3.2.2 Personal Assistant and Staff Agents

A Personal Assistant (PA) is a digital butler in the Negroponte’s sense. Its job is to communicate
with its master. To avoid too much complexity, a personal assistant has staff agents, i.e. agents that
perform a specific task either directly or by using other agents of the coterie. Staff agents are devoted
to a specific personal assistant and answer its requests and requests from agents of the same staff, but
do not answer requests from other agents of the coterie or from foreign agents.

3.2.3 Transfer Agents (Postmen)

A Transfer Agent (XA) also called a postman is a gateway between an OMAS coterie and another
remote coterie belonging to the same platform, or between a platform and a foreign platform, or
between a platform and Web Services, etc. It is used to implement other protocols and encapsulate
the corresponding services.

3.2.4 Inferer Agents

An Inferer Agent (IA) is an agent defined in terms of production rules. It is capable of inference using
the rules. Currently the inference engine is limited to simple forward chaining. An important point
(for some people) is that it does not contain any Lisp code.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 57

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 58

Chapter 4

Service Agent

Contents

4.1 Structure . 60
4.2 Skills . 60

4.2.1 The defskill macro . 61
4.2.2 Acknowledge Option . 61
4.2.3 Bid Cost Option . 62
4.2.4 Bid Quality Option . 62
4.2.5 Bid Start Time Option . 62
4.2.6 Dynamic Option . 63
4.2.7 How-long Option . 63
4.2.8 How Long Left Option . 63
4.2.9 Preconditions Option . 63
4.2.10 Mechanism . 64
4.2.11 Time Limit Option . 64
4.2.12 Timeout Option . 65
4.2.13 Predefined Skills . 67

4.3 Goals . 67
4.3.1 Overview . 67
4.3.2 Detailed Goal Mechanism . 67
4.3.3 Implementation . 69
4.3.4 Activating Goals . 70
4.3.5 Simple Tests . 70
4.3.6 Creating Goals Dynamically . 76

4.4 Memory . 76
4.4.1 Memory Attached to a Task . 76
4.4.2 Memory Attached to an Agent . 76

4.5 Initial State . 77
4.5.1 Initializing data . 77
4.5.2 Predefining Messages . 77

4.6 Ontology . 77
4.7 Persistency . 77
4.8 Appendix A - Service Agent Structure . 78
4.9 Appendix B - Agent Skill Structure . 79

59

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

This chapter describes the structure of a Service Agent (SA), and various mechanism like skills,
memory; or goals. A service agent is a basic agent structure on top of which other agents are built.
The chapter takes the point of view of a developer who wants to create an SA.

4.1 Structure

Creating an SA is done simply by using the defagent macro:

(defagent :OSCAR)

The macro can take several options:

• :learning

• :master

• :persistency

• :hide

Learning means that the agent keeps the results of performing tasks in a cache and if it is asked to
do the same thing another time, it will read the result from its cache. It does not really implement
any kind of learning, and can only be used in specific situations.

(defagent :OSCAR :learning t)

Master means that the agent is a Staff Agent serving a master (usually a Personal Assistant). The
agent can only give answers to its master. However, it can send messages to any other agent on the
platform.

(defagent :CALENDAR :master (:oscar))

Note. An agent may have several masters. This may be convenient when a user has several PAs.

Persistency means that the agent has a persistent store in which it keeps its ontology and knowledge
base.

(defagent :OSCAR :persistency t)

Saving the initial ontology and knowledge base and reopening it on later connections is done auto-
matically. In the ACL environment OMAS uses Allegrostore. In the MCL environment OMAS uses
Woods database.

Hide means that the agent remains hidden from the user. E.g. the agent handling the graphics
window is hidden from the user.

(defagent :demon :hide t)

This is normally reserved for system agents that are not displayed to the user.

4.2 Skills

An agent has skills corresponding to what it can do (not to be confused with goals corresponding to
what it is planning to do).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 60

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

4.2.1 The defskill macro

Creating a skill is done simply by using the defskill macro. In its simplest form:

(defskill :bye :OSCAR
:static-fcn static-bye)

When receiving a message where he action is :bye the agent will execute the static-bye function defined
as:

(defun static-bye (agent message {arg*}) <body>)

where agent points to OSCAR and message is the message just received. {arg*} represent optional
arguments of the skill. Note that the full Lisp syntax can be used, namely: optional arguments, key
arguments, rest argument, etc.

A skill has a number of possible options:

• acknowledge-fcn

• bid-cost-fcn

• bid-quality-fcn

• bid-start-time-fcn

• dynamic-fcn

• how-long-fcn

• how-long-left-fcn

• preconditions

• time-limit-fcn

• timeout-handler

4.2.2 Acknowledge Option

Sometimes it is useful to know if a message has reached some agent, in particlar when the answer
might take a long time. For such cases, we can use the :ack option in a message.

Definition

When an agent receives a message containing the :ack option, it then returns an acknowledge message
before trying to process the received message. Sending an acknowledge message doen not imply that
the agent will process or answer the received message. It simply indicates that the message was
received.

Example

(send-subtask :to :joe :action :confirm-appointment :args ("tuesday 10 am") :ack t)

When the acknowledge message returns we may want to process it independently from the task
dynamic part. To do so we may define an acknowledge handler.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 61

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Specifying an Acknowledge Handler

This is done using the :acknowledge-fcn option of the defskill macro.

(defskill :CONFIRM-APPOINTMENT TOM.
:static-fcn static-confirm-appointment
:dynamic-fcn dynamic-confirm-appointment
:acknowledge-fcn acknowledge-confirm-appointment
)

(defun acknowledge-confirm-appointment (agent message info)
"called when receiving an acknowledge message"
(declare (ignore message))
;; memorize whatever info was returned
(remember agent info :appointment-request-acknowledgement))

The arguments to an acknowledge handler are the agent, the task message and the arguments of the
subtask message.

4.2.3 Bid Cost Option

This option allows the user to specify a function for computing the cost of doing a task. Far example
if the agent is a bookstore and it receives a request for a book, then the cost could be the price of the
book, plus a shipment cost, plus a service charge.

Example:

(defskill :BOOK-REQUEST :OSCAR
:static-fcn static-book-request
:bid-cost-fcn bid-cost-book-request
)

(defun bid-cost-book-request (agent args)
"called when when computing the cost associated to a bid"
(declare (ignore message))
(let ((book (access ‘("book" ("title" :is ,(car args))))))
;; if we have the book get its price
(if book (car (send (car book) ’=get "price))
;; otherwise put large number

1000000))

4.2.4 Bid Quality Option

This option allows the user to specify a function for computing the quality of the result of a task on a
scale 0 to 100. Default is 100. This can be used when the task is a computation using an approximate
method for example.

4.2.5 Bid Start Time Option

This option allows the user to specify a function for computing the number of seconds before a task
can start if granted. Default is 0, since whenever an agent receives a task it starts a new thread to
execute it.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 62

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

4.2.6 Dynamic Option

The option is a handler that receives the answers of subcontracted tasks. If agents send answers then
the handler is activated. If nobody send an answer, then we must provide a timeout handler.

An example was given with the factorial agent in the tutorials:

(defun dynamic-dumb-fac (agent message answer)
"this function is called whenever we get a result from a subtask. This ~

approach is not particularly clever, since the computation is linear ~
and uses the same multiplying agent, i.e., MUL-1."

(declare (ignore message))
(let ((nn (env-get agent :n)))

;; if the recorded value is 1 or less, then we are through
(if (< nn 2)

;; thus we do a final exit (in fact we should never go there ??
(dynamic-exit agent answer)
;; otherwise we multiply the answer with the next high number
;; creating a subtask
(progn

(send-subtask agent :to :MUL-1 :action :multiply
:args (list answer nn))

;; update environment
(env-set agent (1- nn) :n)
;; then the function returns a value to nobody in particular
answer
))))

The answer from a subcontracted agent is passed directly to the handler. Events and dispatching is
done by the platform. An agent could do several factorial computations in parallel, there is no danger
of mixing the data.

4.2.7 How-long Option

This option allows the user to specify a function for computing the length in seconds a task will take
to execute. This could be difficult for a standard task. However, it can be used in the case of a PA
when the master has to answer a question. The PA could evaluate the time the master will take to
do the job.

4.2.8 How Long Left Option

This option allows the user to specify a function for computing the length in seconds a task will take
to complete. Again, this is in general a difficult question.

4.2.9 Preconditions Option

Sometimes it is necessary to dynamically check the arguments of a message before deciding to consider
it or not. This can be done with the :preconditions option of the defskill macro.

Definition

Preconditions are a test on the arguments associated with a skill.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 63

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

4.2.10 Mechanism

When a preconditions function has been defined, it is executed prior to taking into account the
corresponding subtask. If it returns nil, then the subtask is disregarded.

Specifying a Preconditions Function

(defskill :MULTIPLY MUL-1
:static-fcn multiply
:preconditions-fcn preconditions-multiply
)

(defun preconditions-multiply (agent environment n1 n2)
"called before triggering the skill?
(declare (ignore agent environment))
(and (integerp n1) (integerp n2)))

Preconditions are not restricted to checking the type of the arguments. One could imagine that the
multiplying agent does not know how to multiply large numbers for example.

4.2.11 Time Limit Option

If the timeout applies to the sender of the message, the time limit applies to the receiver of the message.

Definition

A time limit is the maximum time allowed to an agent for executing a task.

Specifying a Time Limit

A time-limit can be specified in a message by using the :time-limit option, e.g. specifying a time-
limit of 20 seconds for a subtask.

(send-subtask agent :to (answering-agent agent) :action :multiply
:args (list answer (cadr (member :res environment)))
:time-limit 20)

Default Behavior

By default when a time limit is reached OMAS gives two more possibilities (extending the time-limit
twice). On the third retry, the task is aborted.

Specifying a Time Limit Handler

This is done by using the :time-limit-fcn option of the defskill macro.

(defskill :fast-fac fac
:static-fcn static-fast-fac
:dynamic-fcn dynamic-fast-fac
:time-limit-fcn time-limit-fast-fac)

(defun time-limit-fast-fac (agent environment message)
"function for handling time-limit errors"

Jean-Paul A. Barthès©UTC, 2010 N260/Page 64

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(declare (ignore environment)
(format t "~&Warning; we went over time to process subtask ~S"

(omas::task-id message))
(abort-current-task agent))

Normally, the user aborts the task in the handler. However, when this is not the case, the default
behavior takes over, i.e., two retries are allowed.

Usage

Of course a time limit option can be used to tell an agent that its time to execute a specific skill is
limited. Thus, if the agent knows that it cannot execute the subtask within the specified time, it can
avoid undertaking it. In practice this is difficult to evaluate. Hence the time limit mechanism is rather
used by the system internally to avoid orphaned tasks. OMAS associates a time limit of 1 hour to
each task. Thus, after 1 hour, the task is aborted, cleaning the agent environment.

Another possible use is one involving human intervention. When a subtask must be solved by a
human, then the 1 hour deadline may be too short and it is possible to specify a longer time-limit for
executing the subtask.

4.2.12 Timeout Option

Definition

A timeout specifies the maximum time an agent is willing to wait for an answer before taking action.

Note: A timeout thus is used by the sending agent and has no meaning for the receiving agent.

Types of Timeouts

We can distinguish two kinds of timeouts:

• A normal timeout that constitutes a warning and gives the choice to wait some more time after
having taken some possible corrective action,

• A severe timeout when all solutions have been exhausted and no answer was returned.

Specifying a Timeout

In a message A timeout limit can be specified in the send-subtask function by means of the :timeout
parameter. E.g., within the dynamic part of the skill for computing a factorial, we can insert a timeout
in the subtask function call:

(send-subtask agent :to (answering-agent agent) :action :multiply
:args (list answer (cadr (member :res environment)))
:timeout 2)

The subtask will be aborted (default behavior if no timeout handler has been defined) after 2 seconds.
By default the task itself we be aborted.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 65

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Providing a Timeout Handler Specifying a user-defined timeout handler can be done by using
the :timeout-handler option of the defskill macro. E.g.

(defskill :fast-fac-with-timeout fac
:static-fcn static-fast-fac-with-timeout
:dynamic-fcn dynamic-fast-fac-with-timeout
:timeout-handler timeout-fast-fac-with-timeout)

(defun timeout-fast-fac-with-timeout (agent message)
"function for handling timeout errors"
(case (omas::action message)

(multiply
;; if a multiply subtask is timed out, then reallocate to another agent
;; by simply doing another broadcast
(send-subtask agent :to :ALL :action :multiply

:args (omas::args message)
:protocol :contract-net
:timeout *multiply-timeout*)

;; exit
:done
)
(otherwise
;; for any other skill we let the system process the timeout condition
:unprocessed))

)

On timeout the handler is called and run.
The handler arguments are the agent structure and the message that was sent (containing the

:timeout option. Parts of the message can be accessed by using (yet undocumented) internal OMAS
functions. In the example omas::action retrieved the action specification of the message, and if the
action is :multiply executes a new broadcast.

Note An important point is that there exists but a single timeout-handler within a given task, which
means that it could be used for different types of subtasks.

Default Timeouts in OMAS

Standard messages No timeout on standard messages.

Broadcast messages The default broadcast timeout is 3 seconds defined by the internal global
parameter contained in the global parameter object omas::*omas*:

(omas::broadcast-default-timeout omas::*omas*)

Contract-Net call-for-bids timeout The default Contract-Net call-for-bids timeout is 0.5 second
defined by the internal parameter:

(omas::default-call-for-bids-timeout-delay omas::*omas*)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 66

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

4.2.13 Predefined Skills

An agent when created has predefined skills:

• HELLO: when sending an HELLO request message to an agent without arguments, the agent
answers ”Hello from <name of the agent>.

• PING: when sending a PING request message to an agent, the agent answers with its key.

• SEND: used when one wants to ask an agent to send a message to other agents. It has a static
and dynamic part and a timeout handler.

4.3 Goals

4.3.1 Overview

Goals are defined so that an agent can display a particular behavior.
A goal is constructed as an object structure and kept inside the agent memory. A goal has

different parameters like a type (cyclic, one-shot), a period, an activation date, an expiration date, an
importance, an urgency, a status, or a script.

Scripts
Goals use scripts. A script represents a plan to achieve the goal. A script is a function that is called

on the particular agent. It produces a list of internal messages that are set into the agent mailbox
when the goal fires. For example a skill may produce an internal request.

Energy (not available yet)
Associated with a goal is a level of energy on a 0-100 scale together with a threshold. As long as

the level is below the threshold, the goal is not activated. A level of 0 means that the goal is never
activated a level of more than 100 means that the goal is always activated. The exact mechanism for
changing the energy level is yet unspecified. The idea is related to the activation energy level of Patty
Maes, or to the stressed agents (eco-resolution of the reactive agents).

4.3.2 Detailed Goal Mechanism

A goal is represented within an agent by a structure in its memory (part of the self model). The goal
structure contains the parameters that control the firing of the goal as well as optional functions that
can modify the normal control mechanism (for increased flexibility).

Goal Structure

A goal is an object having a number of properties:

GOAL
name (name)
type (cyclic, one-shot,...)
mode (rigid, flexible/allows activation level mechanism)
period (period for a cyclic goal)
expiration-date (date at which it dies)
expiration-delay (delay after which it dies)
expiration-process (timer process that will kill the goal)
importance (high, medium, low)
urgency (high, medium, low)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 67

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

status (waiting, active, dead,...) may not be useful with activation
activation-date (date at which the goal should fire)
activation-level (on a 0-100 scale)
activation-threshold (value above which the goal is activate)
activation-change-fcn (fcn that change the activation level at each cycle)
goal-enable-fcn (function, can be included in the static skill)
script (function that produces a list of messages)

The various properties of the goal object have the following meaning and usage.

- name records the name of the goal (e.g., :WAKE-UP)

- type describes the type of the goal that can be

- cyclic, in which case it will be checked periodically according to the period delay specified in
the period argument

- one-shot, in which case it will be fired only once after which its status will be set to dead.

By default goals are of the one-shot type.

- mode can be rigid or flexible. A rigid goal is controlled by the clock. A flexible goal is controlled by
its level of energy (not yet implemented).

- importance, urgency are currently unused.

- status gives the status of the goal as a basic mechanism. The status may be :waiting, :active, or
:dead. It may not be necessary when one uses a more sophisticated mechanism like the level of
energy (de facto when the level of energy stays below the threshold, then the goal is waiting).

- activation-date date at which the goal is activated (expressed in universal-time).

- activation-level is the current level of activation energy

- activation-threshold is the level at which the goal is fired.

- activation-change-fcn is a function that is called at each cycle for updating the level of activation.
It is called by the system but defined by the user.

- goal-enable-fcn is a user defined function, called the goal is ready to fire and can prevent it from
firing.

- script is the name of a function expressing the scenario implementing the goal, i.e., returning a
detailed plan expressed as a series of internal messages.

The script is currently expressed as a function of one argument (the current agent) that should return
a list of messages to be sent when the goal is fired. However, this is insufficient, and a script language
should be defined.

Control Mechanism

When a goal is created two timers are also created. The first timer, an activation timer, will fire
when it is time to activate the goal, the second timer is a time limit. It is created if the goal has an
expiration date. When it fires the goal will be disabled.

When the goal must be repeated periodically, the launching timer will be rearmed to fire after the
length of the specified period.

If a goal is disabled, then its status is set to :dead. However the goal structure is not removed
from the agent memory.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 68

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Advanced Mechanisms (not implemented yet)

Advanced mechanisms are related to the mechanism of activation energy. The main idea is to give
each goal a level of energy and to modify it periodically by means of a special timer that will activate
the goal-enable-fcn. When the energy level reaches the activation threshold, then the corresponding
action is inserted into input-messages queue of the agent (mailbox). Two problems remain to be
solved: (i) how does the energy level changes at each cycle; and (ii) what do we do to the energy level
when the goal fires.

4.3.3 Implementation

Creating Goals

A goal is created by means of the make-goal function or the defgoal macro. Once it is created it
becomes active.

make-goal goal-name agent-name &key (mode :rigid) (type :1-shot) (period 10) expiration-
date expiration-delay importance urgency activation-date (activation-delay 0)
(activation-level 50) (activation-threshold 50) (status :waiting) (goal-enable-fcn
’agent-goal-always-true) script

function

Required Arguments
(goal-name name (keyword) chosen to specify the goal)
(agent-name name (keyword) of the agent concerned by the goal)

Optional Keyword Arguments
(mode activation mode, i.e., :rigid or :flexible (default is :rigid))
(type type of goal :cyclic :1-shot (default is :1-shot))
(period period for cyclic goals (default is 20))
(expiration-date date at which the goal dies, i.e., becomes inactive)
(expiration-delay delay after which the goal dies, i.e., becomes inactive)
(importance on a 1-100 scale (currently unused))
(urgency on a 1-100 scale (currently unused))
(activation-date date at which the goal should fire (default is now))
(activation-delay delay after which the goal should fire (default is now))
(activation-level on a 1-100 scale (default is 50))
(activation-threshold on a 1-100 scale (default is 50))
(status :waiting, :active, :dead,... may not be useful with activation)
(goal-enable-function goal allowing goal to fire (if non nil return). Default is agent-goal-always-true
that returns t)
(script function that takes the agent as an argument and must return a list of messages)

defgoal goal-name agent-name &key (mode :rigid) (type :1-shot) (period 10) expiration-date
expiration-delay importance urgency activation-date (activation-delay 0) (activation-
level 50) (activation-threshold 50) (status :waiting) (goal-enable-fcn ’agent-goal-
always-true) script

macro

Calls the make-goal function.

Example
The following definition creates a one-shot goal named :send-action for agent :BOSS, starting

immediately, and executing the send-action script.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 69

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defgoal :send-action :boss :script send-action)

expands to:

(MAKE-GOAL :SEND-ACTION :BOSS
:MODE :RIGID
:TYPE :1-SHOT
:GOAL-ENABLE-FCN ’AGENT-GOAL-ALWAYS-TRUE
:SCRIPT ’SEND-ACTION)

The make-goal function creates the goal structure, and installs it with the agent. It returns a list
of the goal name and the agent name.

4.3.4 Activating Goals

Goals are activated by their activation timer. When it fires the timer calls the agent-run-goal function.

Processing a Rigid Goal

The agent-run-goal function checks whether the goal is dead or not. If dead it simply does nothing. If
not dead, it checks whether the goal has a goal-enable function; if yes, then runs it. If the result is non
NIL, it then executes the goal (currently putting the goal messages into the input-messages queue of
the agent). Otherwise, does nothing or simply rearms the activation timer in case of a periodical goal.

Warning The list of messages corresponding to the goal are inserted into the mailbox of the agent.
Thus, the messages may not be processed in the order in which they were written.

Processing a Flexible Goal

Unclear as of now.

4.3.5 Simple Tests

The following paragraph contains the description of a simple test that can be easily performed to
check the functioning of the goal mechanism. One defines a simple agent with a simple skill :PRINT
that prints the current time (value of the clock).

If you want to exercise the following examples, you should be extremely careful in specifying the
names of the skills, of the goals and the associated functions.

Agent, Skill and Scenario

We define a single TEST agent that will receive an :inform message asking to print something (PRINT
skill).

? (defagent :TEST :redefine t)
#<AGENT TEST>

? (defskill :PRINT :TEST
:static-fcn static-TEST-PRINT)

(:PRINT TEST)

? (defun static-test-print (agent environment)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 70

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

"simple skill that prints a message whenever the agent is called"
(declare (ignore environment))
(format t "~&Hello, my name is TEST, and current time is ~S"

(time-string (get-universal-time)))
(static-exit agent nil))

STATIC-TEST-PRINT

Simple Rigid Goal

Let us set a 1-shot goal to be executed at t=3s.
First we must define the script: a function producing a list of messages that will be inserted into

the agent agenda.

? (defun goal-print-1 (agent)
(list (make-instance

’omas::message :type :request
:from (omas::key agent) :to (omas::key agent)
:action :print
:args nil
:task-id :T0
)))

GOAL-PRINT-1

Then we define (and activate) the goal itself:

? (make-goal ’PRINT-1 :TEST
:activation-date (+ (get-universal-time) 3) ; call at t=4 seconds
:script ’goal-print-1)

This produces the following trace (verbose option, i.e. omas::*omas-verbose* set to true).

;=== make-goal; exp-delay: goal expires in NIL seconds
;= make-goal; time now: "18:16:45"; activation-date: "18:16:48"; activation-delay: 0;
activation-time: "18:16:48"; setting goal process.
;= make-goal; time now: "18:16:45"; expiration process set.
#<GOAL PRINT-1: 1-SHOT AD:3425559408 ED:NIL AL:50 AT:50 S:WAITING>
;=== agent-run-goal; time now: "18:16:45"; delay: 3 seconds
?

After 3 seconds the following messages are is printed:

;= agent-run-goal: time now: "18:16:48"; goal-enable-fcn: OMAS::AGENT-GOAL-ALWAYS-TRUE

;=== agent-execute-goal; time now: "18:16:48";
;= message-list: (#<MESSAGE 18:16:48 :TEST :TEST :REQUEST :PRINT NIL NIL Tid::T0 :BASIC-PROTOCOL no-TO TL:3600>)
...TEST: setting a time-limit timer, process: TEST/:T0-time-limit, delay: 3599

Hello, my name is TEST, and current time is "18:16:49"

One can check that the status of the goal has been set to :dead
Running the goal again with omas::*omas-verbose* set to nil produces the following trace:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 71

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

? (make-goal ’PRINT-1 ’TEST
:activation-date (+ (get-universal-time) 3) ; call after 3 seconds
:script ’goal-print-1)

#<GOAL PRINT-1: 1-SHOT AD:3425559789 ED:NIL AL:50 AT:50 S:WAITING>
?

And, after 3 seconds:

Hello, my name is TEST, and current time is "18:23:9"

Periodical Rigid Goal

We use the same agent but a periodical goal.

? (defun goal-print-2 (agent)
(list (make-instance ’omas::message :type :request

:from (omas::key agent) :to (omas::key agent)
:action :print
:args nil
:task-id :T1
)))

GOAL-PRINT-2

? (make-goal ’PRINT-2 ’TEST
:type :cyclic
:period 4 ; seconds
:activation-date (+ (get-universal-time) 3) ; call at t=1 then every 3 seconds
:script ’goal-print-2)

#<GOAL PRINT-2: CYCLIC AD:3425560329 ED:NIL AL:50 AT:50 S:WAITING>

creates the following goal (internal structure):

OMAS::NAME: PRINT-2
OMAS::MODE: :RIGID
TYPE: :CYCLIC
OMAS::PERIOD: 4
OMAS::EXPIRATION-DATE: NIL
OMAS::EXPIRATION-DELAY: NIL
OMAS::EXPIRATION-PROCESS: NIL
OMAS::IMPORTANCE: NIL
OMAS::URGENCY: NIL
OMAS::ACTIVATION-DATE: 3337144166
OMAS::ACTIVATION-DELAY: 0
OMAS::ACTIVATION-LEVEL: 50
OMAS::ACTIVATION-THRESHOLD: 50
OMAS::ACTIVATION-CHANGE-FCN: NIL
OMAS::STATUS: :ACTIVE
OMAS::GOAL-ENABLE-FCN: NIL
OMAS::SCRIPT: GOAL-PRINT-2

This produces the following trace:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 72

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

? Hello, my name is TEST, and current time is "18:32:9"
?
Hello, my name is TEST, and current time is "18:32:13"
?
Hello, my name is TEST, and current time is "18:32:17"
?
Hello, my name is TEST, and current time is "18:32:21"
?
Hello, my name is TEST, and current time is "18:32:25"
?
Hello, my name is TEST, and current time is "18:32:29"
?
Hello, my name is TEST, and current time is "18:32:33"
?
Hello, my name is TEST, and current time is "18:32:37"
?
Hello, my name is TEST, and current time is "18:32:41"

To kill this goal, one first has to get the list of the goals of the agent TEST:

? (omas::goals test)
(#<GOAL PRINT-1: 1-SHOT AD:3425559408 ED:NIL AL:50 AT:50 S:DEAD>
#<GOAL PRINT-1: 1-SHOT AD:3425559789 ED:NIL AL:50 AT:50 S:DEAD>
#<GOAL PRINT-2: CYCLIC AD:3425560329 ED:NIL AL:50 AT:50 S:ACTIVE>)

... and kill the last one:

? (car (last *))
#<GOAL PRINT-2: CYCLIC AD:3425560329 ED:NIL AL:50 AT:50 S:ACTIVE>
? (omas::agent-kill-goal test *)
:GOAL-KILLED

Verify:

? (omas::goals test)
(#<GOAL PRINT-1: 1-SHOT AD:3425559408 ED:NIL AL:50 AT:50 S:DEAD>
#<GOAL PRINT-1: 1-SHOT AD:3425559789 ED:NIL AL:50 AT:50 S:DEAD>)

The goal has been removed from the list of goals. A less drastic action would have been to set its
status to :dead.

Combining Several Goals

In order to understand the trace more easily, we create several skills.

(defskill :PRINT :TEST
:static-fcn static-TEST-PRINT)

(defskill :SHOUT :TEST
:static-fcn static-TEST-SHOUT)

(defskill :YELL :TEST
:static-fcn static-TEST-YELL)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 73

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defun static-test-print (agent environment)
"simple skill that prints a message whenever the agent is called"
(declare (ignore environment))
(format t "~&Hello, my name is ~A and time is ~A"

(omas::name agent) (omas::time-string (get-universal-time)))
(static-exit agent "*done*"))

(defun static-test-shout (agent environment)
"simple skill that prints a message whenever the agent is called"
(declare (ignore environment))
(format t "~&SHOUTING, my name: ~A at time ~A"

(omas::name agent) (time-string (get-universal-time)))
(static-exit agent "*done*"))

(defun static-test-yell (agent environment)
"simple skill that prints a message whenever the agent is called"
(declare (ignore environment))
(format t "~&YELLING MY NAME: ~A at time ~A"

(omas::name agent) (time-string (get-universal-time)))
(static-exit agent "*done*"))

We prepare the different scenarios:

? (defun goal-say-hello (agent)
(list (make-instance ’omas::MESSAGE :type :request

:protocol :simple-protocol
:from :TEST :to :TEST
:date (get-universal-time)
:action :PRINT :args nil)))

GOAL-SAY-HELLO

? (defun goal-shout-hello (agent)
(list (make-instance ’omas::MESSAGE :type :request

:protocol :simple-protocol
:from :TEST :to :TEST
:date (get-universal-time)
:action :SHOUT :args nil)))

GOAL-SHOUT-HELLO

? (defun goal-yell-hello (agent)
(list (make-instance ’omas::MESSAGE :type :request

:protocol :simple-protocol
:from :TEST :to :TEST
:date (get-universal-time)
:action :YELL :args nil)))

GOAL-YELL-HELLO

We set the different goals:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 74

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(make-goal :SAY-HELLO :TEST
:activation-date (+ (get-universal-time) 4)
:type :cyclic :period 2
:expiration-date (+ (get-universal-time) 15)
:script ’goal-say-hello)

(make-goal :SHOUT-HELLO :TEST
:activation-date (+ (get-universal-time) 5)
:type :cyclic :period 4
:expiration-date (+ (get-universal-time) 20)
:script ’goal-shout-hello)

(make-goal :YELL-HELLO :TEST
:activation-date (+ (get-universal-time) 2)
:type :cyclic :period 1
:expiration-date (+ (get-universal-time) 15)
:script ’goal-yell-hello)

This yields the following trace:

YELLING MY NAME: TEST at time 22:37:7
?
YELLING MY NAME: TEST at time 22:37:8
?
Hello, my name is TEST and time is 22:37:9
YELLING MY NAME: TEST at time 22:37:9
?
SHOUTING, my name: TEST at time 22:37:10
YELLING MY NAME: TEST at time 22:37:10
?
Hello, my name is TEST and time is 22:37:11
YELLING MY NAME: TEST at time 22:37:11
?
YELLING MY NAME: TEST at time 22:37:12
?
Hello, my name is TEST and time is 22:37:13
?
YELLING MY NAME: TEST at time 22:37:13
?
SHOUTING, my name: TEST at time 22:37:14
?
YELLING MY NAME: TEST at time 22:37:14
?
Hello, my name is TEST and time is 22:37:15
?
YELLING MY NAME: TEST at time 22:37:16
?
YELLING MY NAME: TEST at time 22:37:17
?
Hello, my name is TEST and time is 22:37:17
?

Jean-Paul A. Barthès©UTC, 2010 N260/Page 75

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

YELLING MY NAME: TEST at time 22:37:18
?
SHOUTING, my name: TEST at time 22:37:18
?
YELLING MY NAME: TEST at time 22:37:19
?
Hello, my name is TEST and time is 22:37:19
?
YELLING MY NAME: TEST at time 22:37:20
?
SHOUTING, my name: TEST at time 22:37:22

4.3.6 Creating Goals Dynamically

Goals can be created dynamically during the execution of a skill. They can also be removed dynami-
cally, as shown in the previous example, although this is more difficult.

4.4 Memory

The memory mechanism is in reality a set of areas where the designer can store different elements.
There is a volatile memory attached to a task, and an agent memory that lasts the time of a session.
Then, if one wants to keep information over time, one must use persistency. We will see later that
there are other places where one can saved data, in particular during the dialogs with a PA.

4.4.1 Memory Attached to a Task

Tasks are executing in a thread. Functions like handlers are executing, then exit. Thus, if one wants
to save data in between executions one must use a set of specific functions that save the data by
attaching them to the task structure. The needed functions are:

• env-add-values agent values tag

• env-get agent tag

• env-rem-values agent values tag &key test

• env-set agent values tag

The functions allow to save a set of values associating them with a tag (preferably a keyword),
modify the values by adding or removing some, and recovering them when needed.

This was used in the factorial example of Tutorial 1, for saving the value of nn:

;; define a tag (:n) in the environment to record the value of the next
;; products to compute
(env-set agent nn :n)

4.4.2 Memory Attached to an Agent

It is possible to save data in the memory of an agent. The data will be saved for the length of the
session. This is done with the functions:

• remember agent fact index

Jean-Paul A. Barthès©UTC, 2010 N260/Page 76

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• recall agent index

The remember function allows to save data in a structured memory element: index is usually a
keyword. The recall function can be used to retrieve the data.

4.5 Initial State

When starting a short session and making a demo, one sometimes needs to initialize the application
by providing data to some of the agents or by predefining messages for debugging the application.

4.5.1 Initializing data

Initializing data in the agent memory can be done with the deffact macro that creates a memory
element:

(deffact agent fact key)

where fact can be any expression and key is usually a keyword.
Initializing data expressions are usually included in the agent definition file.

4.5.2 Predefining Messages

Predefining messages is a convenient way of speeding debugging, since when the application is reloaded
the messages need not be redefined and are available in the IDE. Creating messages is done with the
defmessage macro:

? (defmessage :MSG01 :type :request :to :test :action :hello :args ("Hello!"))
MSG01
? (send-message MSG01)
:MESSAGE-SENT

where the fist argument is the name of the message, usually a keyword and the following arguments
are the initial arguments needed to specify the message.

Initial messages are usually included in the Z-message file of the application folder.

4.6 Ontology

OMAS ontologies are formalized using the MOSS representation language. The approach is detailed
in chapter ??.

4.7 Persistency

Currently persistency is only available for service agents. Of course it is always possible to define skills
that use databases. But in the OMAS platform writing

(defagent :calendar :persistency t)

creates automatically a database partition in which the ontology concepts and knowledge base are
saved. The database is opened automatically when starting a new session. Of course while working
the skills must read and write objects from and into the database in the habitual sense, i.e. data are
commited after changes to be kept.

Persistency is described in details in Chapter ??.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 77

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

4.8 Appendix A - Service Agent Structure

Internally an agent has the following structure, implemented as a set of CLOS objects.

an agent has the following structure, implementes as sub-objects
name ; qualifies the agent (external name) e.g. SA_ADDRESS
key ; keyword corresponding to its name
master-if-staff ; list of masters (keyword) for a staff service agent

comm
input-messages ; list of input-messages
delayed-input ; list, used for time-out messages
output-messages ; list of output messages
delayed-output ; list or results
input-log ; log of all input messages
output-log ; log of all input messages

self
data ; area containing data (user’s structured)
features ; features (e.g., :learning)
goals ; long-term goals of the agent
intentions ; for implementing BDI agent?
memory ; contains what the agent has learned so far

world
acquaintances ; other known agents
environment ; (obsolete: replaced by data)
external-services ; knowledge of other agents

control
active-task-list ; list of active tasks (each task in its own thread)
agenda ; list of messages (waiting tasks)
editing ; if true, creating or editing objects
new-objects ; when editing saves newly created objects
processs-list ; list of processes except for scan, min, and assistant
pending-tasks ; subtask list needed when executing the skill

; sould be part of the corresponding task
pending-bids ; active bids still pending

; used by the CNet protocol
saved-answers ; keeps the unprocessed received answers
saved-changes ; we store objects prior to modifying them to be able to

; make an UNDO if needed
status ; :idle
task-in-progress ; message corresponding to the task being executed

; unused since each task has its own thread
ontologies

ontology ; ? unused
agent-ontology ; internal ontology for agent mechanisms
dialog-ontology ; ? unused
domain-ontology ; e.g. addresses
language ; ontology language (e.g. :en :fr or :all)
master-ontology ; ? unused
moss-context ; integer referring to MOSS version of the ontologies
moss-system ; contains a reference to the value of the special

; *moss-system* special variable (usually $E-SYSTEM.1)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 78

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

to-save ; contains a list of objects to be saved during the
; next transaction

moss-version-graph ; version (configuration) graph
package ; agent package (for ontology symbols)

tasks
projects ; description of complex tasks (unused yet)
waiting-tasks ; description of task being processed (learning agents)

appearance
h-pos ; horizontal position for graphics display
v-pos ; vertical position for graphics display
window ; output window
comm-window ; window for communicating with the user
window-position ; output window position
thread ; (?)

skills
skills ; list of functions to be applied
rule-sets ; list of rule sets to be applied

master-bins (implemented in the assistant file)
waiting-messages ; messages to be processed by the master
pending-requests ; issued requests waiting for answer
discarded-messages ; messages discarded by the assistant (scanner)
waiting-answers ; answers to be examined
to-do ; input string from the master
conversation ; current conversation
conversation-state ; unused
conversation-context ; unused
dialog-header ; start of the initial dialog
pending-task-id ; unused?
answer ; answer to a send-request message

transfer (implemented in the POSTMAN file)
destination ; destination ip
port ; transfer port
transfer-protocol ; tranfer protocol (default TCP)

process ; process running the agent
mbox-process ; process attached to the input-messages mailbox
traced ; t if agent must be traced, nil otherwise

4.9 Appendix B - Agent Skill Structure

skills are CLOS objects

Jean-Paul A. Barthès©UTC, 2010 N260/Page 79

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 80

Chapter 5

Personal Assistant Agent

Contents

5.1 Creating a Personal Assistant Agent (PA) 82
5.2 PA Interaction Window . 82

5.2.1 Basic Mechanism . 82
5.2.2 Answers/Info . 83
5.2.3 Tasks to Do . 83
5.2.4 Pending Requests . 84
5.2.5 Discarded Messages . 85

5.3 Principle of the Dialog . 86
5.4 Tasks . 86

5.4.1 The Library of Tasks . 86
5.5 Dialogs . 87

5.5.1 The dialog Mechanism . 87
5.5.2 Top-Level Conversation . 87

5.6 Task Subdialog . 99
5.6.1 The Print Help Sub-Dialog . 100
5.6.2 The Get Address Sub-Dialog . 101

5.7 System Internals . 104
5.7.1 Viewing the defstate Code . 104
5.7.2 The MOSS vformat Macro . 105
5.7.3 Tracing the Dialog . 105

5.8 More on the defstate Macro . 105
5.8.1 A Simple Use . 105
5.8.2 Using Staff Agents . 107
5.8.3 Executing Some Piece of Code . 108
5.8.4 Complex Answer Analysis . 108

5.9 Some Problems . 109
5.9.1 Input Text Segmentation . 109
5.9.2 Overall State of the ALBERT-DIALOG.lisp File 109

5.10 Syntax of the defstate Macro . 109
5.10.1 Global Syntax . 109
5.10.2 Global Options . 110
5.10.3 Options for the =execute method . 110

81

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

5.10.4 Options for the =resume Method . 112

5.11 PA Communications . 113

5.12 Creating a Foreign Personal Assistant . 113

This chapter describes the model of Personal Assistant agent and how to add tasks and associate
dialogs for an easy interaction with the master (user).

A Personal Assistant (PA) is a Service Agent interfacing a Human with the platform. Its role is to
facilitate the interactions. Thus, a PA offers a default interface with its master. A PA is identified to
serve one person, to help this person obtain services. The privileged mode of interaction is a natural
language dialog, through keyboard input or vocal input, in French or in English. Specific mechanisms
have been developed to allow constructing such dialogs easily.

5.1 Creating a Personal Assistant Agent (PA)

Creating a PA can be done through the defassistant macro:

CG-USER(12): (defassistant :zoe)
#<AGENT ZOE>

However, if the agent ZOE has indeed been created, there is no visible means of interaction other
than sending it messages like to a standard service agent. The main reason is the necessity to set up a
specific interaction machinery that consists of a set of tasks, an ontology, a dialog and an interaction
window. This is normally done by creating specific files containing the required elements. Such files
are then loaded automatically when loading an application (See Chapter 1 §1.2.3).

When loading an agent file, a default task file and a default dialog file, an interaction window
appears as shown Fig.??. One can then communicate with the PA by typing things in the master’s
pane of the window.

5.2 PA Interaction Window

5.2.1 Basic Mechanism

The Master (user) communicates with her personal assistant through the interface (Fig.??). Commu-
nication is usually done as a dialog carried in the right hand side of the interface, using the Assistant
and the Master areas.

The left hand side of the interface is devoted to handling communications with external agents,
corresponding to messages sent or received. It includes four areas:

• Answers/Info: an area containing answers to requests done by the PA on behalf of the master.

• Tasks to do: the list of requests that are asked to the master and that the agent could not
process by itself.

• Pending requests: request that have been asked by the master and that did not receive an
answer yet.

• Discarded messages: the waste basket into which the assistant has thrown irrelevant messages.

The following sections detail the use of the different areas.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 82

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

5.2.2 Answers/Info

The Answers/Info area displays messages that are either answers to questions that the master asked
previously or information messages corresponding to the PA skill :tell.

Message Summary

Each line corresponds to a single message, like in an email browser. The displayed information indicates
the day and hour the message has been received, the urgency, the sender identity, and the object of
the message.

Example

08/09/12/ 9:26:40/ NORMAL/ Meteo

Possible Actions

The answers/info area has three buttons:

• Examine: to display the content of a message into the Assistant area;

• Discard: to remove a message from the list;

• Save: to save the content of the message somewhere in the memory.

Viewing Dialog

In the French version of a PA examining the dialog prints the following information into the assistant
pane:

Expéditeur : <USER>
Urgence : Normal
Objet : Méteo

Il va pleuvoir

Voulez-vous garder ce message ?
(Do you want to save this message?)

If the answer is yes the message is kept, otherwise the message is discarded.

5.2.3 Tasks to Do

The tasks to do area displays messages that have been received by the PA and correspond to questions
to the master that need to be answered. The corresponding PA skill is :ask.

Message Summary

Each line corresponds to a single message, like in an email browser. The displayed information indicates
the day and hour the message has been received, the urgency, the sender identity, and the object of
the message.

Example

08/09/12/ 9:26:23/ URGENT/ Your mother’s birthday

Jean-Paul A. Barthès©UTC, 2010 N260/Page 83

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Possible Actions

The tasks to do area has three buttons:

• Examine: to display the content of a message into the Assistant area;

• Discard: to remove a message from the list;

• Process: to display the content of the message and start a dialog to process it.

Processing Dialog

In the French version of a PA the processing dialog goes as follows:

Voulez-vous répondre à ce message ?
(Do you want to answer this message?)

If the answer is non (no) then

Voulez-vous garder ce message pour le traiter plus tard ?
(do you want to keep this message for later processing?)

If the answer is non (no), then the message is deleted. Otherwise the message is kept in the list.

If the answer to the first question is oui (yes), then

Tapez votre réponse puis cliquez sur le bouton DONE.
(Type in your answer and click the DONE button.)

The system allows you to input a text message as long as you want until you click the DONE button.
After you clicked the DONE button the answer is returned to the sender of the message.

5.2.4 Pending Requests

The pending requests area displays messages corresponding to requests that have been sent by the
master but have not yet been answered. I.e. there is a process waiting for the answer.

Message Summary

Each line corresponds to a single message, like in an email browser. The displayed information indicates
the day and hour the message has been received, the urgency, the sender identity, and the object of
the message.

Example

08/09/12/ 9:26:40/ NORMAL/ Air France ticket to RIO

Possible Actions

The tasks to do area has three buttons:

• Examine: to display the content of a message into the Assistant area;

• Discard: to remove a message from the list;

Removing the message from the list kills the corresponding task and sends an abort message in
broadcast mode.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 84

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Viewing Dialog

In the French version of a PA the processing dialog goes as follows:

Destinataire : Agence de voyage
Urgence : Normal
Objet : Air France Réservation pour RiO

Bonjour,
Voudriez-vous me dire si la réservation pour le vol sur RIO a été faite ?
Merci.

Voulez-vous garder ce message ?
(Do you want to save this message?)

If the answer is oui (yes) the message is kept, otherwise the message is discarded.

5.2.5 Discarded Messages

The Answers/Info area displays messages that have been discarded by the PA. The master has the
possibility to retrieve them from the waste basket.

Message Summary

Each line corresponds to a single message, like in an email browser. The displayed information indicates
the day and hour the message has been received, the urgency, the sender identity, and the object of
the message.

Example

08/09/12/ 11:21:40/ NORMAL/ Air France ticket to RIO

Possible Actions

The tasks to do area has three buttons:

• Examine: to display the content of a message into the Assistant area;

• Discard: to remove a message from the list;

• Revive: to remove a message from the the waste basket and insert it into the Answers/Info area
or the Tasks to Do area;

Viewing Dialog

In the French version of a PA the processing dialog goes as follows:

Expéditeur : PayPal
Urgence : Normal
Objet : Your account

Info about your account has been lost.
Please send you password again.

Voulez-vous récupérer ce message ?
(Do you want to recover this message?)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 85

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

If the answer is oui (yes) the message is extracted from the waste basket, otherwise the message is left
there.

5.3 Principle of the Dialog

Dialogs between a user and his PA is organized in such a way as to trigger an action on the PA side.
The dialog is composed of a top-level loop in which the PA tries to find out what type of action
is requested or if the master simply is giving information. An action results in a task that will be
executed after acquiring more information. Each task has an associated conversation the purpose of
which is to obtain the data necessary to execute the task.

Selecting an action (a task) is done as follows:

1. The user tells something to her PA, like ”what are the current projects?”;

2. For each task in the library the PA checks the sentence for phrases specified in the index pattern
describing the task, and computes a score by using a MYCIN-like formula1;

3. Tasks are then ordered by decreasing scores;

4. The task with the higher score is selected as well as all tasks with a score above a specific
threshold.

5. The task with the highest score is launched, i.e. its associated dialog is triggered.

Two points must be made here regarding the choice of the indices and the choice of the weights.

• Indices use terms from the ontology. However, one needs additional terms like ”on going” or
abbreviations that are linguistic additions. Also, one could lemmatize the input sentence, but
this has not been found very useful. Selecting the right linguistic cues should be the result of
experiments using for example a magician of Oz set up.

• Specifying the weights manually is tricky. The resulting score is used to differentiate among
tasks. Thus the weights have to be fine tuned to produce the right answer. An algorithm
developed by Gonzalez allows computing the weights using a neural network, but it has not
been published yet.

Tasks are described in Section 5.4 and dialogs are described in Section dialogs.

5.4 Tasks

5.4.1 The Library of Tasks

Whenever the user asks something, its PA first tries to determine what action is actually meant by
the request (or assertion). To do so it uses a library of possible actions, defined as individuals of the
concept of task. Next paragraph shows how the task for obtaining project statistics is defined. The
property index pattern gives a list of linguistic cues. Each phrase has a weight between -1 and 1.
Note the properties dialog and the pair <where to ask>, <message action>. The first one, dialog, is
used for calling a dialog to analyze the input and ask for missing information before calling the staff
agent(s). It is used when access is done through a PA client interface. The pair <where to ask>,
<message action> indicates which staff agent and what skill are concerned with the input, and is
used when no dialog is feasible, which is the case considered in this paper.

1If 2 cues are present, the combined score is computed by the formula a+b-ab

Jean-Paul A. Barthès©UTC, 2010 N260/Page 86

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(deftask "get-project"
:doc "Task for getting project statistics"
:dialog _get-project-statistics-conversation
:indexes

("project" .4 "projects" .5 "statistics" .4 "stats" .4
"current" .4 "active" .4 "on going" .4 "actual" .4)

:where-to-ask :PROJECT
:action :statistics-html
)

5.5 Dialogs

The DIALOG file is the heart of the interaction mechanism and is by far the most complex. It has
three parts:

• a general high level conversation;

• a set of task-related sub-conversations (sub-dialogs);

• an escape set of patterns used in case of failure of the analysis of the input text.

5.5.1 The dialog Mechanism

Dialogs are internally represented as automata using the MOSS formalism. A given state of a dialog
automaton is a MOSS object. Associated with the state are two methods: =execute and =resume.
The automaton is traversed by a crawler. When the crawler enters a state it runs the corresponding
=execute method. If some information is required from the master or from other agents, then the
crawler waits for the answer and then executes the =resume method. In all cases a transition is
computed to another state of the automaton, or else a global error is declared and the conversation is
restarted. The details of the algorithm are given in the following document:

UTC/GI/DI/N217 - OMAS v7 - Personal Assistant (June 2008)

Constructing the various dialogs is not easy, although some macros are available for simplifying the
task. Adapting the dialog to a different language however, can be done by replacing some of the
strings without too much worrying about the mechanism.

We examine first the top-level conversation (dialog), then an example of a sub-conversation (sub-
dialog).

5.5.2 Top-Level Conversation

The Top-Level conversation is used to select a task from the list of tasks. It can be modified. However,
I do not recommend to modify it other than translating the various strings into the target language
counterparts.

The top-level conversation loop is shown Fig.5.1. The graph shows an entry state, a sub-dialog with
a return onto the ”More?” state, and three transitions possible to a ”Sleep” state, back to the ”Main
Conversation Process” sub-dialog, or to the ”Get input” state. The ”Dialog Abort” state corresponds
to a reset of the conversation when an error occurs and no transition can be found.

Let us now examine step by step how the dialog proceeds.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 87

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 5.1: PA Main Conversation, showing the ”Main Conversation Process” sub-dialog

Top-Level Dialog Entry State

The entry state structure is composed of a Dialog-Header individual, referenced by the global main-
conversation variable (ALBERT-DIALOG.lisp file). All the dialog structures are created in the AL-
BERT name space (ALBERT package), meaning that each PA has its own dialog structures indepen-
dent of any other agent.

;;;==
;;;
;;; Conversations and Sub-Conversations
;;;
;;;==

;;; the following conversations are defined thereafter
;;; the entry point of the dialog is _MAIN-CONVERSATION

(eval-when (load compile eval)
(proclaim ’(special

_MAIN-CONVERSATION
...
)))

;;;==
;;;
;;; MAIN CONVERSATION (CONTROL LOOP)
;;;
;;;==

;;; create a dialog header to be used for the main conversation

Jean-Paul A. Barthès©UTC, 2010 N260/Page 88

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defindividual
Q-DIALOG-HEADER
(HAS-LABEL "Main conversation loop")
(HAS-EXPLANATION "This is the main conversation loop.")
(:var _main-conversation))

The main conversation is linked once and for all to the agent by inserting a pointer into the agent
structure:

;; declare that conversation, replacing default conversation
(setf (omas::dialog-header PA_ALBERT) _main-conversation)

The states of the main conversation are declared as global variables:

;;;===== states are declared as global variables
;;; the set of states can be considered as a plan to be executed for conducting the
;;; conversation with the master

;;;--
(eval-when (compile load eval)

(proclaim ’(special
_mc-entry-state
_mc-get-input
_mc-more?
_mc-process
_mc-sleep)))

;;;--

The entry-state structure can now be defined:

(defstate _mc-entry-state
(:entry-state _main-conversation)
(:label "Début du dialogue")
(:explanation
"Initial state when the assistant starts a conversation. Send a welcome message ~
and wait for data. Also entered on a restart following an abort.")

(:reset-conversation)
(:text "Attention! Ce dialogue est trés limité. Chaque phrase est indépendante ~

et l’on ne peut utiliser des pronoms référents.")
(:question-no-erase
("~%- Bonjour ! que puis-je faire pour vous ?"

"~%- Salut ! Que voudriez-vous savoir ?"
"~%- Bonjour ! Je vais faire de mon mieux pour répondre à vos ~
questions. Mais, rappelez-vous que mon QI est faible."))

(:transitions
(:always :target _mc-process))

)

It reads as follows:

• the defstate macro creates the node structure and the associated methods;

• the global variable pointing to the state is main-conversation declared to be an entry-state;

Jean-Paul A. Barthès©UTC, 2010 N260/Page 89

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• a label indicates the name of the state ”Début du dialogue”;

• an explanation provides some documentation;

• the :reset-conversation option reset all the internal variables of the dialog;

• the :text option prints the associated text;

• the :question-no-erase option prints the associated text selecting randomly one of the following
strings (the number of strings or choices is not limited);

• the :transitions option has sub-options:

– :always means that the transition will always be executed;

– :target identifies the transition state.

On the screen the process starts as follows (Fig.5.2):

• a welcome message is printed into the assistant pane;

• the crawler waits for the master to type or to say something (vocal interface).

Figure 5.2: Initial opening of the Main Conversation dialog

Main Conversation Process Sub-Dialog

After the master’s input the crawler makes a transition to the ”Main Conversation Process” sub-dialog
that can be seen as a subroutine in a traditional programming language. The corresponding automaton
is shown Fig.5.3.

The sub-dialog includes an entry-state, and two exit states respectively labeled ”Success” and
”Failure.” It also includes a new sub-dialog called ”Task Dialog.”

The statements defining the sub-dialog in the ALBERT-DIALOG.lisp file are the following:

;;;==
;;;
;;; MAIN CONVERSATION (EXECUTION PART)
;;;
;;;==

;;; this conversation is intended to process the input from te user by first
;;; determining the performative, then the list of possible tasks

Jean-Paul A. Barthès©UTC, 2010 N260/Page 90

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 5.3: Main Conversation Process sub-dialog

(eval-when (compile load eval)
(proclaim ’(special

_mc-eliza
_mc-failure
_mc-find-performative
_mc-find-task
_mc-select-task
_mc-task-dialog)))

This declares the names of the various states (nodes of the automaton). In addition, the sub-dialog is
declared through the defsubdialog macro as follows:

;;;--- (MC) PROCESS-CONVERSATION

(defsubdialog
_process-conversation
(:label "Process conversation")
(:explanation
"Processing steps of the main conversation.")

)

Main Conversation Process Entry State

The entry state of the dialog is in fact the ”Find Performative” state defined as follows:

;;;--- (MC) FIND-PERFORMATIVE

(defstate _mc-find-performative

Jean-Paul A. Barthès©UTC, 2010 N260/Page 91

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(:entry-state _process-conversation)
(:process-state _main-conversation)
(:label "Find performative")
(:explanation
"Process what the user said trying to determine the type of performative ~
among :request :assert :command. Put the result if any into the performative ~
slot of the conversation object.")

(:transitions
;; time?
(:patterns (("Quelle" "heure" (?* ?x)))

:exec (moss::print-time moss::conversation :fr) :success)
;; now really select performatives
(:patterns (("qui" (?* ?x))

("quel" "est" (?* ?x))
("quelle" "est" (?* ?x))
("quels" "sont" (?* ?x))
("quelles" "sont" (?* ?x))
("qu" "est-ce" "que" (?* ?x))
("quoi" (?* ?x))
("quand" (?* ?x))
("où" (?* ?x))
("pourquoi" (?* ?x))
("qui" (?* ?x))
("combien" (?* ?x))
("comment" (?* ?x))
("est-ce" "que" (?* ?x))
("est-il" (?* ?x))
("est" "il" (?* ?x)) ; interface vocal ?
("est-elle" (?* ?x))
("est" "elle" (?* ?x))
("sont-ils" (?* ?x))
("sont" "ils" (?* ?x))
("sont-elles" (?* ?x))
("sont" "elles" (?* ?x))
("a-t-il" (?* ?x))
("a-t-elle" (?* ?x))
("ont-ils" (?* ?x))
("ont-elles" (?* ?x))
((?* ?x) "c" "est" "quoi" (?* ?y))
((?* ?x) "c" "est" "qui" (?* ?y))
((?* ?x) "?")
)
:set-performative (list :request)
:target _mc-find-task)

(:patterns (((?* ?x) "notez" (?* ?y))
((?* ?x) "noter" (?* ?y)))
:set-performative (list :assert)
:target _mc-find-task)

(:otherwise
:set-performative (list :command)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 92

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

:target _mc-find-task))
)

The macro reads as follows:

• the :entry-state option indicates that the state is the entry state of the sub-dialog;

• the :process-state option is currently unused;

• the :label and :explanation options are self explanatory;

• the :transitions option computes a possible transition from the saved input contained in the
context object. It has sub-options:

– the first :patterns option tests whether the master is asking for the time by checking if the
input starts with ”Quelle heure” (What time), in which case the

(moss::print-time moss::conversation :fr)

is executed and the sub-dialog returns with a success.

– the second :patterns option checks whether the input starts or contains different expressions
that will qualify it to be a question (request performative). If so, it will set the performative
(:set-performative), and make a transition to the ”Find Task” state (:target);

– the third :patterns option checks if the input contains ”notez” or ”noter” that will qualify
the input to be an assertion (assert performative). If so, it will set the performative (:set-
performative), and make a transition to the ”Find Task” state (:target);

– the :otherwise option sets the performative to :command, and make a transition to the ”Find
Task” state (:target);

The defstate macro produces the state structure and the associated methods =execute and =resume.
The code is sometimes difficult to visualize. However, it is possible to see the code by using a debug
mode (See Section 5.7.1).

Main Conversation Process Find Task State

The ”Find Task” state is somewhat more complex because the defstate macro is not powerful enough
to synthesize the =execute method. Consequently we must write a special =answer-analysis method
by hand as follows:

;;;--- (MC) FIND-TASK

(defstate _mc-find-task
(:label "Find task")
(:explanation
"Process the input to determine the task to be undertaken. Combines the words ~
from the sentence to see if they are entry points for the index property of ~
any task. Collect all tasks for which there is an index in the sentence.")

(:answer-analysis)
)

(defownmethod
=answer-analysis _mc-find-task (conversation input)
"Using input to find tasks If none failure, if one, OK, if more, must ask user to ~

Jean-Paul A. Barthès©UTC, 2010 N260/Page 93

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

select one. Checks for an entry point for an index of a task.
Arguments:

conversation: current conversation
input: list containing the input as a list of words"

(let* ((performative (read-fact conversation :PERFORMATIVE))
task-list)

(moss::vformat "_mc-find-task /input: ~S, package: ~S" input *package*)
;; try to find a task from the input text
(setq task-list (moss::find-objects

’(task (has-index-pattern (task-index (has-index :is :?))))
input :all-objects t))

;; filter tasks that do not have the right performative
(setq task-list

(mapcan #’(lambda (xx)
(if (intersection performative (HAS-PERFORMATIVE xx))
(list xx)))

task-list))
(moss::vformat "_mc-find-task /task list after performative check: ~S" task-list)
(cond
;; if empty, ask ELIZA
((null task-list)
‘(:transition ,_mc-ELIZA))
;; if one, then OK
((null (cdr task-list))
;; save results, make the task the conversation task
(setf (HAS-TASK conversation) task-list)
‘(:transition ,_mc-task-dialog))
(t
;; otherwise must select one from the results
(setf (HAS-TASK-LIST conversation) task-list)
‘(:transition ,_mc-select-task)))

))

Let us examine the manual =answer-analysis method.

(let* ((performative (read-fact conversation :PERFORMATIVE))
task-list)

First we recover the parformative from the FACTS area of the conversation object. A local task-list
variable is declared.

Then, the MOSS find-objects function is called with the list of words contained in the input variable
to extract from the ALBERT knowledge base the tasks that contain some of the words as indices (task-
index).

;; try to find a task from the input text
(setq task-list (moss::find-objects

’(task (has-index-pattern (task-index (has-index :is :?))))
input :all-objects t))

The result may be NIL, contain one task, or contain several tasks.
Then, the task are filtered according to the type of performative:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 94

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;; filter tasks that do not have the right performative
(setq task-list

(mapcan #’(lambda (xx)
(if (member performative (HAS-PERFORMATIVE xx))

(list xx)))
task-list))

Again, the result may be NIL, contain one task, or contain several tasks.
Then a transition is selected according to the result:

(cond
;; if empty, ask ELIZA
((null task-list)
‘(:transition ,_mc-ELIZA))
;; if one, then OK
((null (cdr task-list))
;; save results, make the task the conversation task
(setf (HAS-TASK state-context) task-list)
‘(:transition ,_mc-task-dialog))
(t
;; otherwise must select one from the results
(setf (HAS-TASK-LIST state-context) task-list)
‘(:transition ,_mc-select-task)))

If no task are left we have a failure (i.e. we did not understood what the master said), in which case
we make a transition to the ELIZA state. If we have a single task left, we execute it. If we have more
than one task, we must select one and make a transition to the ”Select Task” state. In all cases the
=answer-analysis method returns the following pattern:

(:transition <internal ID of a state>)

The moss::vformat function is used for debugging.

Main Conversation Process Select Task State

The role of the ”Select Task” state is to select one of the tasks to execute. IAgain, the defstate macro
is not powerful enough to synthesize the =execute method and we must provide an =answer-analysis
method:

;;;--- (MC) SELECT-TASK

(defstate
_mc-select-task
(:label "mc select task")
(:explanation "we have located more than one task. We rank the tasks by computing ~

the average weight of the terms in the task index slot. We then ~
record the list of tasks into the statte-context task-list slot ~
and activate the highest ranking task.")

(:answer-analysis)
)

(defownmethod =answer-analysis _mc-select-task (conversation input)
"we have located more than one task. We rank the tasks by computing ~

Jean-Paul A. Barthès©UTC, 2010 N260/Page 95

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

the MYCIN combination weight of the terms in the task index slot. We then ~
record the list of tasks into the conversation task-list slot ~
and activate the highest ranking task."

;(declare (ignore input))
;; the list of tasks is in the HAS-TASK-LIST slot
(let* ((task-list (HAS-TASK-LIST conversation))

patterns weights result pair-list selected-task level word-weight-list)
(moss::vformat "_select-task /input: ~S~& task-list: ~S" input task-list)
;; first compute a list of patterns (combinations of words) from the input
(setq patterns (mapcar #’car (moss::generate-access-patterns input)))
(moss::vformat "_select-task /input: ~S~& generated patterns:~&~S"

input patterns)
;; then, for each task
(dolist (task task-list)

(setq level 0)
;; get the weight list
;(setq weights (HAS-INDEX-WEIGHTS task))
(setq weights (moss::%get-INDEX-WEIGHTS task))
(moss::vformat "_select-task /task: ~S~& weights: ~S" task weights)
;; check the patterns according to the weight list
(setq word-weight-list (moss::%get-relevant-weights weights patterns))
(moss::vformat "_select-task /word-weight-list:~& ~S" word-weight-list)
;; combine the weights
(dolist (item word-weight-list)

(setq level (+ level (cadr item) (- (* level (cadr item))))))
(moss::vformat "_select-task /level: ~S" level)
;; push the task and weight onto the result list
(push (list task level) result)
)

(moss::vformat "_select-task /result:~&~S" result)
;; order the list
(setq pair-list (sort result #’> :key #’cadr))
(moss::vformat "_select-task /pair-list:~& ~S" pair-list)
;; remove the weights
(setq task-list (mapcar #’car pair-list))
;; select the first task of the list
(setq selected-task (pop task-list))
(moss::vformat "_select-task /selected task: ~S" selected-task)
;; save the popped list in the task-list slot of the conversation object
(setf (HAS-TASK-LIST conversation) task-list)
(setf (HAS-TASK conversation) (list selected-task))
;; go to task-dialog
‘(:transition ,_mc-task-dialog)
))

The first part is similar to the previous case, recovering the list of tasks from the conversation object
and declaring local variables:

(let* ((task-list (HAS-TASK-LIST conversation))
patterns weights result pair-list selected-task level word-weight-list)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 96

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Then, using the MOSS internal generate-access-patterns, the words contained in the input are combined
to produce patterns that will be checked against the index patterns of each task:

;; first compute a list of patterns (combinations of words) from the input
(setq patterns (mapcar #’car (moss::generate-access-patterns input)))

Then, for each task a score is computed using the MYCIN combination and a list of sublists (task
score) is produced (result variable):

;; then, for each task
(dolist (task task-list)

(setq level 0)
;; get the weight list
;(setq weights (HAS-INDEX-WEIGHTS task))
(setq weights (moss::%get-INDEX-WEIGHTS task))
(moss::vformat "_select-task /task: ~S~& weights: ~S" task weights)
;; check the patterns according to the weight list
(setq word-weight-list (moss::%get-relevant-weights weights patterns))
(moss::vformat "_select-task /word-weight-list:~& ~S" word-weight-list)
;; combine the weights
(dolist (item word-weight-list)

(setq level (+ level (cadr item) (- (* level (cadr item))))))
(moss::vformat "_select-task /level: ~S" level)
;; push the task and weight onto the result list
(push (list task level) result)
)

Then, the list contained in result is ordered by decreasing weights:

;; order the list
(setq pair-list (sort result #’> :key #’cadr))

Then we remove the scores from the list, select the first task and remove it from the list:

;; remove the weights
(setq task-list (mapcar #’car pair-list))
;; select the first task of the list
(setq selected-task (pop task-list))

Then we update the context object and make a transition to the ”Task Dialog” state:

;; save the popped list in the task-list slot of the conversation object
(setf (HAS-TASK-LIST conversation) task-list)
(setf (HAS-TASK conversation) (list selected-task))
;; go to task-dialog
‘(:transition ,_mc-task-dialog)

Again, the moss::vformat function is used for debugging.

Main Conversation Process Task Dialog State

The Main Conversation Process Task Dialog state calls the sub-dialog associated with the task to
execute. An example will be detailed in Section 5.6. The state code is the following:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 97

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;;--- (MC) TASK-DIALOG

(defstate _mc-task-dialog
(:label "Task dialog")
(:explanation
"We found a task to execute (in the GOAL slot of the conversation). We activate ~
the dialog associated with this task.")

;; we launch the task dialog as a sub-conversation
;; the task contains the name of a sub-conversation header, e.g. _get-tel-nb
(:answer-analysis)
)

;;;********** must check for possible problems
(defownmethod

=answer-analysis _mc-task-dialog (conversation input)
"We prepare the set up to launch the task dialog.

Arguments:
conversation: current conversation"

(declare (ignore input))
(let* ((task-id (car (send conversation ’=get ’HAS-TASK))))

(moss::vformat "_mc-task-dialog /task-id: ~S dialog: ~S"
task-id (HAS-DIALOG task-id))

;; we launch the task dialog as a sub-conversation
;; the task contains the name of a sub-conversation header, e.g. _get-tel-nb
‘(:sub-dialog ,(car (HAS-DIALOG task-id)) :failure ,_mc-failure)
))

The =answer-analysis method returns the pattern:

(:sub-dialog <sub-conversation header>)
:failure <state internal ID for transition on failure>)

Main Conversation Process Failure State

A transition to this state occurs when the executed task returns with a failure. The current policy is
to execute the next task from the list of tasks if any is left, otherwise to return the :failure pattern:

;;;--- (MC) FAILURE

(defstate _mc-failure
(:label "Failure state of main conversation")
(:explanation
"Failure state is entered when we return from a sub-dialog with a :failure tag. ~
We check for more tasks to perform (listed in the task-list slot of the ~
conversation object). If there are more, we execute the first one. If there ~
are no more, we return with a failure tag.")

(:answer-analysis)
)

(defownmethod
=answer-analysis _mc-failure (conversation input)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 98

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(declare (ignore input))
(let* ((task-list (HAS-TASK-LIST conversation))

task)
(if task-list

(progn
;; record next task
(setq task (pop task-list))
;; remove it from task-list
(send conversation ’=replace ’HAS-TASK-LIST task-list)
;; add it to conversation
(send conversation ’=replace ’HAS-TASK (list task))
;; transfer to sub-dialog
‘(:transition ,_mc-task-dialog))

;; when no more tasks we return :failure and the state variable still contains
;; :failure. The crawler will return one more level until hitting a non
;; failure return containing a specific state (e.g. the one for the main
;; conversation)
(list :failure)
)))

The code is self explanatory.

Main Conversation Eliza State

The ELIZA state is a special state that is visited when the PA cannot make any sense of the master’s
input. It is intended to trigger small talk rather than letting the PA answer ”I did not understand,
please rephrase your request...” ELIZA has been copied from Peter Norvig’s book on Artificial Intel-
ligence programming. The code is the following:

;;;--- (MC) ELIZA

(moss::defstate _mc-ELIZA
(:label "ELIZA")
(:explanation
"Whenever MOSS cannot interpret what the user is saying, ELIZA is called to ~
do some meaningless conversation to keep the user happy. It then record the ~
master’s input and transfers to find performative state.")

(:eliza)
(:transitions
(:always :target _mc-find-performative))

)

The :eliza option triggers the ELIZA sub-dialog.

5.6 Task Subdialog

Task dialogs may be simple or very complex, depending on the task to be executed. We examine two
different dialogs found in the ALBERT-DIALOG.lisp file. For each task to be executed by the agent,
an associated dialog must be provided. The rationale is to control the order in which required missing
parameters are asked from the master.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 99

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

5.6.1 The Print Help Sub-Dialog

This is an example of very simple sub-dialog associated with the Print Help task. It has only two
states declared as follows:

;;;==
;;;
;;; PRINT HELP CONVERSATION
;;;
;;;==

;;; this conversation is intended to help the master by giving information:
;;; - in general (what tasks are available
;;; "what can you do for me?" "help." "what can I do?"
;;; - on a particular topic
;;; "how do I send a mail?" "help me with the mail?"
;;; specific help corresponding to special help tasks are caught by the task
;;; task selection mechanism?

(eval-when (compile load eval)
(proclaim ’(special

_ph-print-global-help
)))

The corresponding automaton is shown Fig.5.4.

Figure 5.4: Print Help sub-dialog

Print Help Entry State

The Print Help entry state simply prints the information and returns a success.

;;;-- (PH) PRINT-GLOBAL-HELP

(defstate
_ph-print-global-help
(:label "Print general help")
(:entry-state _print-help-conversation)
(:explanation "No specific subject was included.")
(:execute
(let

((obj-id (car (send ’>-global-help ’=get ’is-title-of)))

Jean-Paul A. Barthès©UTC, 2010 N260/Page 100

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(*language* :fr)
(task-list (access ’(task)))
(conversation (omas::conversation albert::pa_albert))
)
(when obj-id (send obj-id ’=get-documentation)

(send conversation ’=display-text *answer*))
(send conversation ’=display-text

"~2%Je peux faire les choses suivantes :")
(dolist (task task-list)

(send task ’=get-documentation :lead " - ")
(send conversation ’=display-text *answer*)
)

(send conversation ’=display-text "~2%")
))

(:transitions
(:always :success))

)

5.6.2 The Get Address Sub-Dialog

The Get Address sub-dialog is more complex and uses a staff agent to complete the required task. It
has the following states:

;;;==
;;;
;;; GET ADDRESS CONVERSATION
;;;
;;;==

;;; this conversation is intended to print the address of a person or of a
;;; place. It fills the task pattern and sends the message to the address specialist.
;;; The simplest version is to send to the :SA-ADDRESS agent, wait for the result and
;;; print it.

(eval-when (compile load eval)
(proclaim ’(special

_get-address-dialog ; required by defstate
_gad-entry-state
_gad-dont-understand
_gad-try-again
_gad-sorry)))

This corresponds to the automaton shown Fig.5.5.

Get Address Entry State

The code is as follows:

;;;-- (GAD) GET-ADDRESS-CONVERSATION

;;; The simplest use is to take text in the HAS-DATA slot of the Q-CONTEXT
;;; and send a message to :SA-ADDRESS

Jean-Paul A. Barthès©UTC, 2010 N260/Page 101

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 5.5: Get Address sub-dialog

(defsubdialog
_get-address-conversation
(:label "Get address conversation")
(:explanation
"Master is trying to obtain an address.")

)
;;;--- (GAD) GET-ADDRESS-ENTRY-STATE

(defstate
_get-address-entry-state
(:entry-state _get-address-conversation)
(:label "Get address dialog entry")
(:explanation "Assistant is sending a free-style message to the ADDRESS agent.")
(:send-message :to :ADDRESS :self PA_ALBERT :action :get-address

:args ‘(((:data . ,(moss::read-fact moss::conversation :input))
(:language . :fr)))

)
(:transitions
(:on-failure :target _gad-dont-understand)
(:test (> (length (read-fact moss::conversation :answer)) 3)

:exec
(progn

;; record the pattern for printing selection summaries into the working
;; list
(replace-fact moss::conversation :control-string "~{~A~^ ~}, ~{~A~^ ~}")
(replace-fact moss::conversation :properties (list "nom" "prénom"))
)

:sub-dialog _make-choice-conversation :failure _gad-dont-understand)
(:otherwise
:print-answer #’print-address :success))

)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 102

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

The :send-message option sends a message to the :ADDRESS staff agent with the request :get-address
and the argument composed of a single list:

‘(((:data . ,(moss::get-data moss::conversation))
(:language . :fr)))

Data includes the input from the user, and language specifies the language to be used because staff
agents can have multilingual capacities.

If the answer from the staff agent is a failure, we transfer to the ”dont-understand” state. Oth-
erwise, if we have more than 3 answers, we use the FACT area of the conversation object to store a
control string and the names of the properties we want to print as a summary and transfer to the
make-choice subdialog. If we have less than 3 answers, we print them and return a success.

Dont Understand and Sorry States

The ”Dont Understand and Sorry states are self explanatory:

;;;--- (GAD) GAD-DONT-UNDERSTAND

(defstate
_gad-dont-understand
(:label "Did not understand. Ask master.")
(:explanation "could not find the address with the given information. Thus, ~

asking master for whose address...")
(:question-no-erase "~%- L’adresse de qui ?")
(:answer-type :answer)
(:transitions
(:always :target _gad-try-again)))

;;;--- (GAD) GAD-SORRY

(defstate
_gad-sorry
(:label "Address failure.")
(:explanation "We don’t have the requested address.")
(:text "Désolé, si vous recherchiez une adresse, je ne la trouve pas.~%")
(:reset)
(:transitions (:failure))
)

Try Again State

The Try again sends a message again to the staff agent with the master’s answer from the ”don’t
understand” state:

;;;--- (GAD) GAD-TRY-AGAIN

(defstate
_gad-try-again
(:label "Ask again for address.")
(:explanation "Assistant is asking :ADDRESS.")
(:send-message :to :ADDRESS :self PA_ALBERT :action :get-address

Jean-Paul A. Barthès©UTC, 2010 N260/Page 103

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

:args ‘(((:data . ,(read-fact moss::conversation :input))
(:language . :fr))))

(:transitions
(:on-failure :target _gad-sorry)
(:otherwise
:print-answer #’print-address
:success))

)

This is similar to the entry state code except for the transitions.

Make Choice Sub-conversation

The Make Choice sub-dialog is commented out and should be rewritten.

5.7 System Internals

Debugging is difficult and can be somewhat improved as explained in the next sections.

5.7.1 Viewing the defstate Code

The defstate macro produces code which may be examined as follows:

• set the moss::*debug* global variable to T;

• execute the (defstate ...) expression.
Example: if we execute the following expression:

(defstate _mc-SLEEP
(:label "Nothing to do")
(:explanation
"User said she wanted nothing more.")
(:reset)
(:text "- OK. J’attends que vous soyez prêt.~%")
(:question-no-erase
"- Réveillez moi en tapant ou en disant quelque chose...")
(:transitions
(:always :target _mc-process)))

OMAS will print:

;***** Debug: STATE: _MC-SLEEP

;*** Debug: state: _MC-SLEEP =EXECUTE
(MOSS::%MAKE-OWNMETHOD

=EXECUTE
_MC-SLEEP
(MOSS::CONVERSATION &REST MOSS::MORE-ARGS)
"*see explanation attribute of the _MC-SLEEP state*"
(DECLARE (IGNORE MOSS::MORE-ARGS))
(SEND MOSS::CONVERSATION

Jean-Paul A. Barthès©UTC, 2010 N260/Page 104

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

’=DISPLAY-TEXT
’"- OK. J’attends que vous soyez prêt.~%"
:ERASE
T)

(SEND MOSS::CONVERSATION
’=DISPLAY-TEXT
’"- Réveillez moi en tapant ou en disant quelque chose...")

’(:WAIT))

;*** Debug: state: _MC-SLEEP =RESUME
(MOSS::%MAKE-OWNMETHOD

=RESUME
_MC-SLEEP
(MOSS::CONVERSATION)
"*see explanation attribute of the _MC-SLEEP state*"
(LET* (MOSS::RETURN-VALUE)

(CATCH :RETURN
(COND ((INTERSECTION MOSS::*ABORT-COMMANDS*

(READ-FACT MOSS::CONVERSATION :INPUT)
:TEST
#’STRING-EQUAL)

(THROW :DIALOG-ERROR NIL))
(T (SETQ MOSS::RETURN-VALUE (LIST :TRANSITION _MC-PROCESS)))))

MOSS::RETURN-VALUE))
_MC-SLEEP

5.7.2 The MOSS vformat Macro

vformat is a macro defined in the :moss package as follows:

(defMacro vformat (cstring &rest args)
‘(if *verbose* (format *debug-io* ,(concatenate ’string "~&;***** " cstring)

,@args)))

Thus, vformat prints to the *debug-io* channel whenever moss::*verbose* is not nil.

5.7.3 Tracing the Dialog

Tracing the dialog is obtained by setting the following global variables:

(setq moss::*transition-verbose* t)
(setq moss::*traced-agent* albert::ALBERT)

5.8 More on the defstate Macro

defstate is a key macro for writing dialogs. I present several examples of its use in this paragraph.

5.8.1 A Simple Use

When we simply want to ask a question and do a simple processing on the result, then the syntax is
easy. Example from the Main Conversation More? state:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 105

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defstate _mc-more?
(:label "More?")
(:explanation "Asking the user it he wants to do more interaction.")
(:reset-conversation)
(:question-no-erase
("~%- Que puis-je faire d’autre pour vous ?"
"~%- Y a-t-il autre chose que je puisse faire pour vous ?"
"~%- Avez-vous d’autres questions ?"
"~%- OK.")
)

(:transitions
(:starts-with ("rien") :target _mc-sleep)
(:no :target _mc-sleep)
(:yes :target _mc-get-input)
(:otherwise :target _mc-process)))

Here, we first reset the conversation, meaning we clean the conversation object and erasing the window
pane, then we print one of the 4 sentences, selecting one at random, then if the answer starts with
”rien” we sleep, if it is negative, we sleep, if it is affirmative we go get a new input, otherwise we
consider that the input was something to be processed directly. In this example the options :yes
and :no will work for French, English, or German. For other languages, one can use :starts-with or
:patterns to locate negative or positive answers.

Another example from the EXPLAIN conversation is the following:

(defstate
_exp-entry-state
(:label "Explain dialog entry")
(:entry-state _explain-conversation)
(:explanation "The data is cleaned prior to look for an entry point.")
(:transitions
;;remove useless words explain, define, or else...
(:patterns (((?* ?x) "définir" (?* ?y))

((?* ?x) "définition" (?* ?y))
((?* ?x) "expliquer" (?* ?y))
((?* ?x) "expliquez" (?* ?y))
((?* ?x) "que" "veut" "dire" (?* ?y))
("c" "est" "quoi" (?* ?y) "?")
((?* ?y) "c" "est" "quoi" (?* ?x))
)
:keep ?y ; put a list of the binding value into context HAS-DATA
:sub-dialog _print-concept-documentation-conversation)

;; we do not know how the user got here and keep everything
(:otherwise :sub-dialog _print-concept-documentation-conversation)
)

)

Here the text from the user is checked for the presence of some words, matching part of the input.
The ?y variable will contain the end of the sentence that will be transferred to the :input part of
the FACTS area of the conversation object, before we transfer control to the PRINT CONCEPT
DOCUMENTATION sub-dialog.

The following piece of code corresponds to a ”sorry” state, when the PA could not find anything.
It tells the master and quits (returns a failure):

Jean-Paul A. Barthès©UTC, 2010 N260/Page 106

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defstate
_ghad-sorry
(:label "Address failure.")
(:explanation "We don’t have the requested address.")
(:text
"Désolé, si vous recherchiez une adresse personnelle, je ne la trouve pas.~%")

(:transitions (:failure))
)

5.8.2 Using Staff Agents

The following example from the GET BIBLIO conversation uses the BIBLIO agent:

(defstate
_get-biblio-entry-state
(:entry-state _get-biblio-conversation)
(:label "Get biblio dialog entry")
(:explanation "Assistant is sending a free-style message to the BIBLIO agent.")
(:send-message :to :BIBLIO :self PA_ALBERT :action :get-publications

:args ‘(((:data . ,(read-fact moss::conversation :input))
(:language . :fr))))

(:transitions
(:on-failure :target _gbd-dont-understand)
(:otherwise
:exec (omas::assistant-display-text

PA_ALBERT (moss::make-print-list (read-fact moss::conversation :answer)))
:success))

)

The PA sends a message to the :BIBLIO agent using the content of the :input from the FACTS area
of the conversation object, and waits for an answer. If the answer is a failure then a transition to the
”Don’t understand” state is done, otherwise the content of the :answer area of FACTS is printed and
a success is returned.

The following example does the same thing but the message contains a pattern specifying how the
answer should be structured. The concepts and properties are taken from the PA ontology.

(defstate
_get-biblio-entry-state
(:entry-state _get-biblio-conversation)
(:label "Get biblio dialog entry")
(:explanation "Assistant is sending a free-style message to the BIBLIO agent.")
(:send-message :to :BIBLIO :self PA_ALBERT :action :get-publications

:args ‘(((:data . ,(read-fact moss::conversation :input))
(:language . :fr)
(:pattern . ("personne"

("nom")
("prénom")
("adresse"
("domicile"
("rue") ("code postal") ("ville"))))))))

(:transitions

Jean-Paul A. Barthès©UTC, 2010 N260/Page 107

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(:on-failure :target _gbd-dont-understand)
(:otherwise
:exec (omas::assistant-display-text

PA_ALBERT (moss::make-print-list (read-fact moss::conversation :answer)))
:success))

)

5.8.3 Executing Some Piece of Code

If one has to do some light computation, then it is possible to execute some sequence of code either
before the question is asked to the master, or prior to a transition.

The first example shows how to set up flags so that the reader does not use periods or question
marks to terminate the input:

(defstate
_pa-get-answer
(:label "obtain master’s answer to an ask message.")
(:explanation "Record text typed into the master pane until the DONE button is ~

pushed. We must disable . and ? terminations.")
;; set global so that we can have . and ? in the text
(:execute-preconditions
(let ((win (car (has-input-window moss::conversation))))

(when win
(setf (omas::pass-every-char win) t)))

)
(:question-no-erase "~% ...Tapez votre réponse puis cliquez sur le bouton Terminer.")
(:answer-analysis)
)

This is done by the :execute-preconditions option.
The second example shows how code can be executed prior to a transition:

(defstate
_pa-destroy
(:label "Destroy ASK message.")
(:explanation "Master does not want to answer the message nor keep it. We ~

remove it from the list and return to the task with an :abort~
mark, so that it will exit without answering.")

(:transitions
(:always
:exec
(let ((agent (car (has-agent moss::conversation))))

;; discard the message from the list, assuming it is still selected
(omas::ASSISTANT-DISCARD-SELECTED-TO-DO-TASK agent)
;; clean up conversation
(replace-fact moss::conversation :todo-message nil))

:success))
)

5.8.4 Complex Answer Analysis

When an answer from the master or from other agents is complex to analyze, then one can manually
write an =answer-analysis method that will do the processing. This has been demonstrated in the

Jean-Paul A. Barthès©UTC, 2010 N260/Page 108

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Main Conversation dialog.

5.9 Some Problems

5.9.1 Input Text Segmentation

One of the problems that occurs in particular in the Chinese context is the problem of input segmen-
tation. The input data is normally segmented using the space and punctuation marks, which cannot
be done so easily in the Chinese contexts since words are not separated. Thus, a segmentation module
should be inserted into the get-input function from the master. This cannot be done at the application
level and requires an internal modification.

5.9.2 Overall State of the ALBERT-DIALOG.lisp File

The file has been developed in several steps and the code contained in this file is not always very clean.
It could use a serious uplifting.

5.10 Syntax of the defstate Macro

The defstate macro is used to simplify the programming of dialogs. Its role is to create a state object
and to synthesize the =execute and =resume methods attached to such a state. Normally, when the
crawler function traverses the dialog graph and arrives at a specific state, it will tell something to
the master or ask something (=execute method), wait for the answer, and then analyze the answer
(=resume method). The defstate macro allows specifying such a behavior easily in most cases.

There are however some cases where the behavior at a given case may be different, e.g. if we
analyze a previously obtained input directly, or if we want to print something and not wait, or if
we want to ask another agent (staff agent of other), or if we want to do a very specific analysis of
the master’s input. In some cases the defmacro cannot synthesize the required code and an escape
mechanism consists in writing a specific =answer-analysis method manually, or, if things are really
complex to write the =execute and =resume methods manually.

This paragraph gives the current syntax of the defstate macro. The options may change in time
since the conversation language they define is not really stable yet. Some options of the macro apply
to the =execute method, others apply to the =resume method. However, options may be given in any
order, thus one must be aware of the time at which options will apply.

Finally, the code produced at each state applies mainly to the content of the conversation object,
but may refer to any part of the OMAS system. The conversation object is a MOSS object, the
structure of which is described in Table 5.1.

Among all the properties of conversation the FACTS attribute is specially important since it is
used to store and retrieve all kinds of informations during the dialog. Two functions are used to so
that:

• replace-fact to insert a new value

• read-fact to retrieve an old value

5.10.1 Global Syntax

The global syntax is:

(defstate <state-variable> <options>*)

where

Jean-Paul A. Barthès©UTC, 2010 N260/Page 109

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Table 5.1: Structure of the conversation object

Property att/rel role
OUTPUT-WINDOW att panel in which to write questions
INPUT-WINDOW att panel from which to read master’s data
STATE Q-STATE rel current-state of the conversation
INITIAL-STATE Q-STATE rel initial state
AGENT att PA ID implied in the conversation
DIALOG-HEADER rel main conversation header
SUB-DIALOG-HEADER rel current sub-conversation
FRAME-LIST att list of return addresses of sub-dialogs
TEXT-LOG rel record conversation texts
TASK-LIST rel list of potential tasks for dialog
TASK rel current task
FACTS att FACT base structured as an alternated list

• state-variable points to the state object (by convention it will start with an underscore (e.g. new-
state) and should be declared as a global variable (see the examples in the ODIN-MAIL/ALBERT-
DIALOG.lisp file);

• options are expressed as a list starting with a keyword, e.g. (:execute (print moss::conversation)).
Two options are useful, :label that should be short and label the state, and :explanation that gives
a short description of what happens at this state.

Example:

(defstate
_pt-brush
(:label "bookkeeping")
(:explanation "remove item from FACTS.")
(:execute (replace-fact moss::conversation :message nil))
(:transitions
(:always :success))

)

The Backus-Nauer form of the defstate syntax is given in Table 5.2.

5.10.2 Global Options

They are:

• :label associated with a short text (string) that gives a title to the state;

• :explanation associated wit a text (string) that gives an explanation of what happens in this
particular state.

5.10.3 Options for the =execute method

The execute method should have a minimum of executable code. It is normally used to print a text
or ask a question. The options are:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 110

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Table 5.2: Grammar of the defstate macro

Clause Content
<state definition> ::= (defstate <state name><global option> ∗ <state options> ∗)
<state name> ::= <symbol>
<global option> ::= (:label <string>) | (:explanation <string>)
<state options> ::= <execute option> ∗ <resume option>
<execute option> ::= (:answer-type <performative>) |

(:eliza) |
(:execute-preconditions <Lisp code>) |
(:question <string>*) |
(:question-no-erase <string>*) |
(:reset) |
(:send-message <message args>) |
(:send-message-no-wait <message args>) |
(:text :no-erase <string>) |
(:wait)

<resume option> ::= (:answer-analysis) |
(:execute <Lisp code>) |
(:transitions <transition clause>*{<otherwise clause>})

<transition clause> ::= (:always <action clause> ∗ <transition>) |
(:contains (<string> ∗ <action clause> ∗ <transition>) |
(:empty <action clause> ∗ <transition>) |
(:on-failure <action clause> ∗ <transition>) |

Jean-Paul A. Barthès©UTC, 2010 N260/Page 111

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• :answer-type, can be used to specify the type (performative) of the answer message that will be
returned.

• :eliza, call to ELIZA. We expect an answer grom the master.

• :execute-preconditions, escape mechanism to execute Lisp code directly in the =execute method,
e.g. to set flags.

• :question {:no-erase}, the associated value is either a string or a list of strings. When we have
a list of strings one is chosen randomly for printing. Once the question is asked, the user is
supposed to answer. The answer is inserted into the INPUT area of the FACTS slot if the
conversation object that is the link between the external system and MOSS.

• :reset, reset the conversation by restarting it at the beginning. Cleans FACTS and transfers to
the entry state.

• :send-message args, send a message to other agents. Args are those for an OMAS message. An
answer is expected. A timeout may be specified.

• :send-message-no-wait args, send a message to other PAs. Since the message is similar to an
e-mail, we do not wait for the answer in the dialog (not in the process).

• :text {:no-erase}, print text e.g. prior to asking a question.

• :wait, set OMAS to wait for master’s input. Presumably the question has been asked in a
previous state.

5.10.4 Options for the =resume Method

• :answer-analysis, indicates that a special method named =answer-analysis will be applied to the
data (INPUT). The method must return a transition state or the :abort keyword, in which case
the conversation is locally restarted.

• :execute, executes the corresponding Lisp code.

• :otherwise, always fires (should be last clause)

• :transitions, specifies the transitions after doing some tests (details in the next paragraph).

The :transitions option is the important one since it contains the transition rules. the syntax of its
arguments is the following:

• :on-failure ..., tests if the returned value from the master or from the agents was a failure by
checking if the content of the FACT/input area is (”*failure*”)

• :patterns ...,

– :keep,

–

• :otherwise ..., always fire (should be the last option).

• :print-answer print-function, prints the content of the FACTS/answer area applying the print-
function function.

• :reset

Jean-Paul A. Barthès©UTC, 2010 N260/Page 112

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• :save

• :self method args

• :sub-dialog dialog-header

• :target state

• :test expr

5.11 PA Communications

5.12 Creating a Foreign Personal Assistant

Jean-Paul A. Barthès©UTC, 2010 N260/Page 113

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 114

Chapter 6

Transfer Agent or Postman

Contents

6.1 Introduction . 115

6.1.1 Definitions . 115

6.1.2 Principle . 116

6.1.3 Protocol . 116

6.1.4 Functioning . 116

6.1.5 Possible Problems . 117

6.2 Implementation . 117

6.2.1 Data Structures . 117

6.2.2 Creating a Postman . 118

6.2.3 Connecting a New Remote or Local Coterie . 118

6.2.4 Sending a Message . 118

6.2.5 Receiving a Message . 119

6.2.6 Disconnecting a Coterie . 119

6.2.7 Resetting Connections . 119

6.2.8 Getting the Connection Status . 119

6.3 Example of Minimal Postman . 119

6.3.1 Postman File . 119

6.3.2 User Point of View . 121

Until version 7.14 postmen were defined in a user package and included a number of skills, which
turned out to be generic. This OMAS version 7.15 developed a model of generic agent, simplifying
the user’s programming work.

This chapter contains information about the principle that were chosen to develop the generic
postman agent.

6.1 Introduction

6.1.1 Definitions

First we need to recall some definitions.

Agent: An agent is the smallest processing unit.

115

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Coterie Fragment A coterie fragment is a set of agents located on the same machine and executing
in the same Lisp environment.

Local Coterie: A local coterie is a set of agents located on a single LAN loop.

Site: A site is a set of loops (local coteries) enclosed by a firewall.

Coterie: A coterie is the set of local coterie residing in the same site.

Application: An application is a set of local coteries that can reside on different sites.

Consequently, we have several kinds of names:

• agent names, e.g. ADDRESS;

• names of files containing several agents executing on the same Lisp environment (i.e. on the
same machine), e.g. UTC@DELOS-HDSRI, where UTC@DELOS refers to the machine;

• site names, e.g. UTC;

• application names, e.g. HDSRI (applications may group several coteries located in different
sites).

A postman has a name, e.g. UTC, is contained in a specific folder UTC@SKOPELOS-NEWS, belongs
to a coterie, on a specific site UTC, for a give application NEWS. When connecting a postman to a
remote coterie or to a local coterie, we use the destination postman name and IP.

A given site has a single server (postman) that uses the external site IP address to receive messages
from other sites.

Agent names must be unique for a given application.

6.1.2 Principle

A postman is intended to connect OMAS coteries, or an OMAS coterie to a foreign system. Thus, a
postman is a gateway.

The default postman is intended for connecting OMAS coteries that can be located on the same
site (local coteries) or on different sites (remote coterie).

All messages received by the postman will be transferred to the other active coteries automatically,
with some exceptions. The exceptions cover:

• system messages (local to a coterie);

• messages specifically addressed to the coterie postman;

• messages addressed to the local user to be posted into the coterie control panel.

6.1.3 Protocol

By default the communication protocol is TCP/IP. Thus, each agent is both a server and a client.
Messages use sockets on port 52008.

6.1.4 Functioning

A postman has two functioning modes: sending and receiving.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 116

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Sending

When a postman wants to send a message to another coterie, it only needs to know the IP address of
the receiving machine. For some sites the IP is known and fixed. The postman creates a socket for
sending the message, tags its identity and coterie name and sends the message. The remote site must
be connected, which is done by a connect skill.

Receiving

When a postman is created, it starts a specific receiving process that will wait for a connection on port
52008. When a message comes in, if it is an old message, it is discarded. If it is a new message, then
the message is broadcast onto the local coterie loop and distributed to other active remote coteries
that have not received it yet.

6.1.5 Possible Problems

A number of problems can arise:

• looping: e.g., if a message is transmitted to another postman, then to a third postman, then
comes back to the original coterie. One must take care of possible looping conditions.

• IPs: Machines in different research center are usually protected by a firewall. Thus the IP is not
that of the machine hosting the postman, but the external IP for this machine. On the contrary,
if postmen link two internal machines, the IPs are the IPs of the local machines. Note that in
general an external address will be given to one machine per site (the OMAS server). Thus,
the postman located on the OMAS server can address and receive messages to other sites, other
local coteries on the same site must connect to the OMAS server to communicate with coteries
located on other sites.

• when a machine is connected to the network in DHCP mode the IP is determined dynamically;
i.e. is not known a priori.

• port 52008 of postmen machines must be defiltered to allow message transfers.

6.2 Implementation

6.2.1 Data Structures

A postman uses a number of data structures containing relevant information.

• list of known postmen. This is a list of local postmen names expressed as a list of pairs
<postman-name, IP>. Usually, IP is the external IP through which messages can be routed.
This list is first initialized when the postman is created, but may be extended if messages are
received from unknown sites.

• list of connected postmen. The list is the list of sites or local coteries that are currently
active, i.e. to which one can send a message. A site or coterie is added to the list as a result of
executing a connect skill. If this list is empty, it is not necessary to send messages.

• receiving-process. contains the id of the process set up for accepting external messages.

• local site. A key specifying the local site, e.g. :UTC or :CIT.

• site-ip. The IP of the postman site (local coterie).

Jean-Paul A. Barthès©UTC, 2010 N260/Page 117

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• send-socket. The socket object for sending messages.

• receive-socket. The socket for receiving external messages.

• ids-of-received-messages. A list of ids of recently received messages. Used to check if a
new incoming message has been already processed locally. The length of the queue is set by
irm-max-size.

6.2.2 Creating a Postman

When creating a postman, one must specify a number of parameters:

• the name of the postman as a key, e.g. :UTC; if the postman is a server for the site, this will
also be the site name;

• the machine IP if known and fixed (cannot be done for machines connected in DHCP mode);

• the list of known postmen as a list of pairs <postman key, IP>, where the IP may be external
or internal;

• the fact that the postman is a server (:server t);

• an optional user-defined receiving function (:receiving-fcn <user-defined function>).

6.2.3 Connecting a New Remote or Local Coterie

When one sends a connect message to the postman directly or using the postman window, the postman
tries to open a socket onto the remote site or local target coterie. If it succeeds, then the remote
postman name and IP are added to the list of connected postmen. If it fails, e.g. on a timeout, then
they are not added to the list. When the connection succeeds, the agent uses the socket to retrieve
its local IP address (only if it is unknown and on the first time).

6.2.4 Sending a Message

Sending a message is done by the send skill of the postman as defined by the user. However, it is
possible to use the OMAS postman-send function that does the following:

1. It computes the list of postmen to which the message is to be sent by removing from the active
list list itself and the postmen of the thru list contained in the message.

2. If nothing remains, or if the message receiver is the local user, or if the receiver is itself, or if the
message is a system message, it does not send the message.

3. Otherwise, it updates the thru list adding itself and the target postmen; it adds an id to the
message if there is none, and sends to each target postman.

4. For each send message, it created a new thread to avoid delaying other messages in case of a
socket error, calling the send-remote function. The rest is done by the send-remote function.

5. The target postman is checked to see if it is still active (not very useful).

6. The message to send is converted into a coded string.

7. A socket is created for connecting to server (target postman).

8. If an error is detected, the target postman is removed from the list of active postmen and the
local postman window is updated.

9. Otherwise the message is sent and the socket is closed.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 118

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

6.2.5 Receiving a Message

When the postman was create a special thread with the postman-receiving function has been set up.
The function created a passive socket, then enters a loop creating a stream and connection socket. It
then waits for incoming messages on the receiving socket. When a message comes in the following
happens:

1. The message (string) is read and the connection socket is closed.

2. If the message is empty, go wait from the next one.

3. The message is converted into an OMAS message object (demarshalling). If this fails we go wait
for the next message.

4. The id of the message is then compared to the ids of the messages that have already been
received. If the message has already been received it is discarded.

5. Otherwise, the id is added to the list of received message ids.

6. The name and IP of the sending postman are extracted from the message.

7. If the sending postman is known and already active, nothing is done.

8. If the sending postman is known but not active, it is added to the list of active postmen.

9. If the sending postman is not known, then an entry is added to the list of active postmen.

10. Then, the message is put on the loop of the local coterie. Doing so results in the postman
receiving the message again. The send skill is recalled and the postman will transfer the message
to the active sited that were not yet visited by the message.

6.2.6 Disconnecting a Coterie

The :disconnect skill simply remove the postman info from the list of active postmen.

6.2.7 Resetting Connections

In case of problems the :reset skill disconnects all active postmen, closes all sockets, kills the receiving
process and creates a fresh one. It updates the postman window if opened.

6.2.8 Getting the Connection Status

The :status skill print info about the status of the connection into the console.

6.3 Example of Minimal Postman

6.3.1 Postman File

The following piece of code shows a minimal postman for connecting a local coterie called UTC to
distant coteries in Japan and in Brazil. It uses the postman-send function provided by OMAS.

;;;-*- Mode: Lisp; Package: "UTC" -*-
;;;===
;;;10/05/01
;;; AGENT POSTMAN :UTC

Jean-Paul A. Barthès©UTC, 2010 N260/Page 119

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;;
;;; Postman to transfer messages from :UTC to remote OMAS platforms
;;;===

;;; the postman is only valid for ACL
;;; Note that sites protected by a firewall should specify the GLOBAL IP in the
;;; send message, NOT the IP of the physical machine that sends the message.
;;; This uses the new v.7.16 implementation of the postmen

#|
2010
0501 Re-creation
|#

;;;===
;;;
;;; Creating postman
;;;
;;;===

(omas::defpostman :UTC
:redefine t
:server t
:known-postmen ((:CIT . "219.166.183.59")

(:TECPAR . "200.183.132.15"))
)

;;;===
;;;
;;; skills
;;;
;;;===

;;; ================================= skill section ========================= SEND

(defskill :SEND :UTC
:static-fcn static-SEND
)

(defun static-send (agent in-message message-string message)
"skill that sends every message seen by the postman to active remote sites,
with the exception of the user and system messages.

Arguments:
agent: postman
in-message: incoming message
message-string: message to send, a string (ignored)
message: message to send, an object"

(declare (ignore in-message message-string))
;; we transfer messages only if some platforms are connected and active
(omas::postman-send agent message)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 120

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(static-exit agent :done))

;;; ===

:EOF

6.3.2 User Point of View

The user must provide the Postman code. When the postman file is loaded, a receiving process is
created waiting for messages on port 52008. This can be checked by examining the list of active
processes.

To connect a remote coterie one can use the postman window (Fig.6.1), select the target remote
postman and click the connect button.

Figure 6.1: Postman Window

If the connection succeeds a green color appears briefly in the list of remote postmen, and the
OFF tag switches to ON. If an error occurs, meaning that the remote site is not reachable, a red color
appears in the postmen pane and the OFF flag does not change (this may take 30 seconds or more on
timeout errors).

Once the remote coterie is connected, it will receive all messages exchanged locally and send all
messages exchanged in the remote coterie. Nothing more needs to be done.

If for some reason the remote coterie becomes disconnected, then the ON flag switches to OFF in
the postman window.

The disconnect button of the postman window disconnects the associated coterie, and no more
messages are sent to it, although messages can still be received. Currently, this is not very useful.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 121

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 122

Chapter 7

Inferer Agent

Contents

7.1 Example . 123
7.1.1 Problem . 123
7.1.2 Implementation . 124
7.1.3 Messages . 125
7.1.4 Tests . 125

7.2 Improvements . 125
7.2.1 Better Rule Format . 125
7.2.2 Other types of Inferences . 125
7.2.3 Order of the Rule System . 126
7.2.4 External Inference engines . 126
7.2.5 Model Based Reasoning . 126

7.3 Appendix A - Content of the Test File . 126

Until version 7.14 OMAS agents included Service Agents, Personal Assistants, Transfer Agents or
Postmen. One problem with such agents is that they have to be coded in Lisp, which is unbearable
to some people. Thus, the Logical Agent or Inferer has been developed to allow users writing rules
rather than writing Lisp functions.

A preliminary version of the Inferer has been developed implementing a simple forward-chaining
agent.

7.1 Example

7.1.1 Problem

Let us examine the classical movies example by Harmon and King []. We have an agent that must
decide how to go to the movies and has the following rules:

• R1 : If d > 5 km, we drive.

• R2 : If d > 1 km and t < 15 minutes, we drive.

• R3 : If d > 1 km and t > 15 minutes, we walk.

• R4 : If we drive and the theatre is in town, then we take a taxi.

• R5 :If we drive and the theatre is not in town, then we take our car.

123

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• R6 : If we walk and the weather is bad, then we take an umbrella.

• R7 : If we walk and the weather is nice, then we stroll along.

The system is order 0.

7.1.2 Implementation

In order to implement the example, we do the following:

1. We declare an agent with name starting with ”IA-” for inference agent, e.g. IA-MOVIES.

2. We add it to the *local-coterie-agents* agent list of the agents.lisp file.

3. We create a file named IA-MOVIES.lisp in which we write the rules.

Rule Format The current format for writing rules is quite simple:

(defrule R1
:if (("d" . ">5"))
:then ("means" . "car"))

(defrule R2
:if (("d" . ">1") ("t" ."<15"))
:then ("means" . "car"))

(defrule R3
:if (("d" . ">1") ("t" . ">15"))
:then ("means" . "walk"))

(defrule R4
:if (("means" . "car") ("cinema" . "in town"))
:then (:action . "taxi"))

(defrule R5
:if (("means" . "car") ("cinema" . "not in town"))
:then (:action . "own car"))

(defrule R6
:if (("means" . "walk") ("weather" . "bad"))
:then (:action . "walk with umbrella"))

(defrule R7
:if (("means" . "walk")("weather" . "nice"))
:then (:action . "stroll"))

(defrule R8
:if (("d" . "<1"))
:then ("means" . "walk"))

The precise format is not important and can be changed if needed. It could be:

[R2
:if d is >1 and t is <15
:then means is car]

or any other style of format.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 124

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

7.1.3 Messages

Inferer agents have the following skills:

• :hello, answers to an hello message;

• :infer-ask, sends a fact and ask if there is an answer;

• :infer-tell, sends a fact to be added to the database

• :infer, asks to start an inference;

• :infer-reset, removes all facts from the fact base.

7.1.4 Tests

The example can be loaded and messages sent to the IA-MOVIES agent, by means of the control
panel. The result will appear in the control panel. Messages can be pre-loaded from the Z-messages
file, e.g.

(defmessage :MV-D<1 :to :movies :type :inform
:action :infer-tell :args ((:data ("d" . "<1"))))

(defmessage :MV-D>1 :to :movies :type :inform
:action :infer-tell :args ((:data ("d" . ">1"))))

(defmessage :MV-D>5 :to :movies :type :inform
:action :infer-tell :args ((:data ("d" . ">5"))))

(defmessage :MV-beau :to :movies :type :inform
:action :infer-tell :args ((:data ("temps" . "beau"))))

(defmessage :MV-mauvais :to :movies :type :inform
:action :infer-tell :args ((:data ("temps" . "mauvais"))))

(defmessage :MV-enville :to :movies :type :inform
:action :infer-tell :args ((:data ("cinema" . "en-ville"))))

(defmessage :MV-T<15 :to :movies :type :inform
:action :infer-tell :args ((:data ("t" . "<15"))))

(defmessage :MV-T>15 :to :movies :type :inform
:action :infer-tell :args ((:data ("t" . ">15"))))

(defmessage :mv-INF :to :movies :type :request :action :infer)
(defmessage :mv-RST :to :movies :type :request :action :infer-reset)

7.2 Improvements

Several types of improvements can be done.

7.2.1 Better Rule Format

Since rules are translated internally into Lisp structure, any format keeping the semantics of the rules
could be defined.

7.2.2 Other types of Inferences

Forward Chaining is currently implemented. One could easily implement backward chaining, or mixed
strategies.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 125

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

7.2.3 Order of the Rule System

The exemple has been implemented with an order-0 system. One could add order-0+ and order-1.
Order-1 can be implemented by re-using Peter Norvig [] implementation of unification.

7.2.4 External Inference engines

Exteral inference engines can be called, using the foreign function mechanism.

7.2.5 Model Based Reasoning

Using ontologies and knowledge bases, e.g. from MOSS is a more serious problem, but can be also
implemented. The main point consists in exploding all the objects, ontology concepts and individuals,
into triples, and using a unification algorithm on the resulting set of triples. This can be done, but is
much less efficient than using the MOSS query mechanism directly onto the objects without exploding
them. However, I plan to offer the possibility of doing it. In that case, the agent can receive facts,
accept queries (logical expression with free variables), or simply be asked to start applying the rules
to its database. The internal mechanism is unification (Prolog style).

7.3 Appendix A - Content of the Test File

;;;===
;;;10/03/20
;;; RULE BASE FOR AGENT "MOVIES" (file IA-MOVIES.lisp)
;;;
;;;===

#|
2010
0320 creation for testing IA
|#

(defrule R1
:if (("d" . ">5"))
:then ("moyen" . "voiture"))

(defrule R2
:if (("d" . ">1") ("t" ."<15"))
:then ("moyen" . "voiture"))

(defrule R3
:if (("d" . ">1") ("t" . ">15"))
:then ("moyen" . "a-pied"))

(defrule R4
:if (("moyen" . "voiture") ("cinema" . "en-ville"))
:then (:action . "taxi"))

(defrule R5
:if (("moyen" . "voiture") ("cinema" . "pas-en-ville"))
:then (:action . "voiture-personnelle"))

(defrule R6
:if (("moyen" . "a-pied") ("temps" . "mauvais"))
:then (:action . "a-pied-avec-impermeable"))

(defrule R7

Jean-Paul A. Barthès©UTC, 2010 N260/Page 126

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

:if (("moyen" . "a-pied")("temps" . "beau"))
:then (:action . "promenade"))

(defrule R8
:if (("d" . "<1"))
:then ("moyen" . "a-pied"))

:EOF

Jean-Paul A. Barthès©UTC, 2010 N260/Page 127

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 128

Chapter 8

Communications

Contents

8.1 Agent Communication Language . 129
8.1.1 Message Structure . 129
8.1.2 Message Description . 131
8.1.3 Type of Communicative Act . 131
8.1.4 Participant in Communication . 131
8.1.5 Content of Message . 132
8.1.6 Description of Content . 133
8.1.7 Control of Conversation . 133
8.1.8 System Information . 135
8.1.9 OMAS Conditional Addressing . 136

8.2 OMAS Content Language . 136
8.2.1 Overall Approach . 136
8.2.2 Structure of the Content of a Message . 137

8.3 Network Interface . 137
8.3.1 Introduction . 137
8.3.2 Overview . 137
8.3.3 Exchange Process . 138
8.3.4 Message Format . 139
8.3.5 OMAS Net Interface . 141

This chapter concerns communications. It has three parts: the first part describes the OMAS agent
communication language, comparing it with FIPA/ACL (FIPA ACL Message Structure Specification
SC00061G); the second part describes OMAS content language: the last part describes the network
interface.

8.1 Agent Communication Language

8.1.1 Message Structure

A FIPA or OMAS ACL contains one or more parameters. If an agent is unable to process one of
the parameters, in the FIPA context it can reply with the not-understood message (presumably this
applies to the additional user-defined parameters). In the OMAS context, it simply may not answer
at all.

The set of OMAS and FIPA parameters in contained in Table 8.1 and described in the subsequent
sections.

129

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Table 8.1: FIPA and OMAS list of parameters

FIPA Parameter OMAS Parameter Category
- name Message description
- date Message description
performative type Type of communicative act
receiver to Participant in communication
sender from Participant in communication
reply-to reply-to Participant in communication
content content, action, args Content of message
language - Description of content
encoding - Description of content
ontology - Description of content
- error-contents Description of content
protocol protocol Control of conversation
conversation-id task-id Control of conversation
reply-with - Control of conversation
in-reply-to task-id Control of conversation
reply-by time-limit Control of conversation
- acknowledgement Control of conversation
- repeat-count Control of conversation
- but-for Control of conversation
- strategy Control of conversation
- sender-ip System Information
- sender-site System Information
- thru System Information
- task-timeout System Information
- timeout System Information
- id Message identifier

Jean-Paul A. Barthès©UTC, 2010 N260/Page 130

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

8.1.2 Message Description

Name

Denotes the name of the message.

FIPA/ACL N/A.

OMAS/ACL The name is an identification unique within the local site. Can be used to reference
message objects.

Date

Denotes the time at which the message was created.

FIPA/ACL N/A.

OMAS/ACL The date is the sender’s local time when the message is created. However, when
a message arrives onto a different platform the value of the date parameter is changed to the local
platform time. If we assume that the travel time is negligible, then it is a way o synchronize clocks.
This is not the case however when the coterie comprises remote platforms.

8.1.3 Type of Communicative Act

Performative / Type

Denotes the type of the communicative act of the FIPA/ACL message or the type of message in the
OMAS/ACL. It is a required parameter.

8.1.4 Participant in Communication

Sender / From

Denotes the identity of the sender of the message, that is, the name of the agent of the communicative
act in FIPA/ACL and OMAS/ACL.

OMAS/ACL The parameter may have the following values:

- a (Lisp) keyword, e.g. :ALBERT as the name of an agent

- the special keyword :<USER> or :<site-USER> indicating that the message is sent not to an agent
but directly to the user. The result will be posted into the OMAS panel. This is used in
debugging conditions.

- NIL or an empty list or the parameter being omitted. Previously indicating the user of the OMAS
panel in debugging conditions. Deprecated.

Receiver / To

Denotes the identity of the intended recipients of the message

FIPA/ACL Maybe any single agent-name or a non empty set of agent names (multicast)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 131

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

OMAS/ACL May be the following things:

- a (Lisp) keyword, e.g. :ALBERT as the name of an agent

- a non empty list of agent names (multicast)

- the special keyword :ALL (broadcast) the intended effect is to broadcast to all reachable agents on
the local site, whether they are known or not.

- the special keyword :ALL-AND-ME. The effect is the same as :ALL but includes the sender as a
recipient

- a special form representing a MOSS query, that will be evaluated in each agent context by the
middleware (stub). If the answer is NIL the message will not be delivered to the receiver,
otherwise it will. Please refer to Section 8.1.9 for details.

- the special keyword :<USER> or :<site-USER> indicating that the message is sent not by an agent
but directly by the user through the OMAS panel. This is used in debugging conditions.

- NIL or an empty list or the parameter being omitted. Previously indicating the user of the OMAS
panel in debugging conditions. Deprecated.

Reply To

Continuation. The result should be sent to the agents qualified by the content of the reply-to param-
eter. The syntax is the same as that of receiver.

8.1.5 Content of Message

Content

Denotes the content of the message, equivalently denotes the object of the action.The meaning of the
content of an ACL message is intended to be interpreted by the receiver of the message.

FIPA/ACL This is particularly relevant for an instance when referring to referential expressions,
whose interpretation might be different for the sender and for the receiver. Some messages like cancel
have an implicit content, expecially in cases using the conversation-id or the in-reply-to parameters.

OMAS/ACL Nothing particular.

Error Content

Contains an expression giving the reason for the error.

FIPA/ACL N/A.

OMAS/ACL This is intended for an agent that wants to recover from errors. However, it should
be part of the content parameter, associated with a special property error content, to let us use the
action and data property for locating the content of the faulty message.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 132

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

8.1.6 Description of Content

Language

Denotes the language in which the content parameter is expressed (formal language).This field may
be omitted if the agent receiving the message can be assumed to know the language of the current
expression.

OMAS/ACL The content language is an associted list containing the following properties:

- action: denotes the type of skill required. It is a keyword.

- data: denotes the arguments to be sent to the skill.

- data-language: denotes the language in which the data is expresses in case of a query or a free
language sentence, e.g. :MOSS-QL or :FREE :fr indicating free language in French, etc.

- answer-pattern: gives a pattern to express the answer to a MOSS query, expressed as a tree of
ontological terms in the specified data language (English by default).

Encoding

Denotes the specific encoding of the content language expression.

FIPA/ACL If the encoding is not present, the encoding is specified in the message envelope that
encloses the ACL message.

OMAS/ACL If the encoding is not specified it defaults to UTF-8.

Ontology

Denotes the ontology used to give a meaning to the symbols in the content expression.

FIPA/ACL The ontology parameter is used in conjunction with the language parameter to support
the interpretation of the content expression y the receiving agent. In many situations, the ontology
parameter will be commonly understood by the agent community and this message parameter may
be omitted.

OMAS/ACL Each agent has its own ontology. The ontology parameter is this not very useful,
except when sending messages to external FIPA compliant agents.

8.1.7 Control of Conversation

Acknowledgement

Denotes a request for specific acknowledgement from the receiver that it received the message. Similar
to registered mail.

FIPA/ACL N/A.

OMAS/ACL OMAS/ACL Used by the contract-net protocol to allocate tasks and inform loosers
with a single cancel-grant message. Addressing the message could be done with a predicate in the
receiver parameter, however, this is a shorthand syntax specific to the cansel-grant performative. The
result is an atomic granting of subtasks that can minimize racing conditions.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 133

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Protocol

Denotes the interaction protocol that the sending agent is employing with this ACL message.

FIPA/ACL Any ACL message that contains a non null value for the protocol parameter is consid-
ered to belong to a conversation and is required to respect the following rules:

- the initiatior of the protocol must assign a non null value to thr conversation-id parameter

- the responses to the message, within the scope of the same interaction protocol should contain the
same value for the conversation-id parameter

- the timeout value of the reply-by parameter must decide the latest time by wich the sending agent
would like to have received the next message in the protocol flow.

OMAS/ACL Each message is sent within specific task and is stamped with a task-id parameter.
Answers to that message contain the task-id. This parameter is controlled by OMAS directly.

Repeat Count

FIPA/ACL N/A.

OMAS/ACL Since OMAS is using a connectionless transport protocol (UDP) the sender cannot
be sure that a message has been received when there is no answer. Thus, if the message is repeated
after a timeout, the receiver must identified if it is a nex version of a message it has already received
in order to avoid doing the task again. The process is handled by OMAS internally, meaning that the
parameter should not be set by the programmer.

Reply With

Denotes an expression that references an earlier action to which the message is a reply.

OMAS/ACL Uses the task-id parameter instead.

Reply By

Denotes a time and/or date expression which indicates the latest time by which the sending agent
would like to receive a reply.

FIPA/ACL The time will be expressed according to the sender’s view of the time on the sender’s
platform. The reply message can be identified in several ways: as the next sequential message in an
interaction protocol, through the use of the reply-with parameter, through the use of a conversation-id
and so forth. The way that the reply message is identified is determined y the agent implementor.

OMAS/ACL The parameter is time-limit. The time howeer specifies the maximum delay for the
execution of the subcontracted task on the receiver’s platform. The rational is that clocks are not
usually synchronized and there may be a gap between the clock in the sender’s platform and the user’s
platform. The maximum waiting time of the sender is specified by a timeout parameter but this does
not need to be transmitted to the receiver...

Strategy

Denotes the strategy for selecting answers when several answers are expected, e.g. after a broadcast.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 134

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

FIPA/ACL N/A.

OMAS/ACL The strategy parameter may take two values: take-first-answer or collect-answers.
In the latter case a specific timeot should be specified. However, this parameter is handled by the
middleware. It is of interest only to the sender and should not be part of the message. To be removed.

8.1.8 System Information

The flowing parameters are intended for the system. Some should be removed from the message.

Sender IP

Contains the IP of the sending site.

FIPA/ACL N/A.

OMAS/ACL The value of the parameter is only of interest when messages are sent from a given
site to another by a postman. An unknown remote site, e.g. from a notebook must give its IP address
so that messages can be sent back. Mainly used for debugging.

Sender Site

Denotes the site of the sender of the message.

FIPA/ACL N/A.

OMAS/ACL The value of the parameter is only of interest when messages are sent from a given
site to another by a postman. Mainly used for debugging.

Thru

Denotes the list of sites to which the message has already been sent.

FIPA/ACL N/A.

OMAS/ACL When a coterie is spread over several remote sites, transfer agents propagate messages
to those sites in a transparent fashion. The thru parameter is used to avoid infinite loops. It is handled
by the middleware.

Task Timeout

Denotes the times the sender is willing to wait for bids in a contract-net protocol.

FIPA/ACL N/A.

OMAS/ACL The task-timeout parameter is handled by the middleware. It is of interest only to
the sender and should not be part of the message. To be removed.

Timeout

Denotes the time the sender is willing to wait until an answer comes back.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 135

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

FIPA/ACL N/A.

OMAS/ACL The value of the parameter is only of interest to the sender, this should not be part
of the message. To be removed.

Id

Denotes an identifier for a specific message.

FIPA/ACL N/A.

OMAS/ACL The value of the parameter is only of interest to remote platforms. It is used to check
if the message has already been received from another path.

8.1.9 OMAS Conditional Addressing

OMAS allows conditional addressing, by means of MOSS queries1. The query acts as a semi-predicate.
E.g.

(:_cond ("agent" ("eyes" ("eyes" ("color" :is "blue")))))

will deliver messages to all agents with known blue eyes.
More specifically, the MOSS query will be executed in the agent environment, and if the result is

not NIL, the message will be delivered to the agent. The query may contain anything. Two cases may
be distinguished:

• The target class is ”agent” like in the previous example. In this case the referred properties are
those of the agent.

• The target class is not ”agent.” In that case, the query is applied to the ontology and knowledge
base of the agent, thus addressing the beliefs of the agent. E.g.

(:_cond ("sky" ("color" ("color" :is "blue"))))

will pass the test if the agent believes that the sky is blue.

Of course the query must contain concepts available in the particular ontology of the agent, oth-
erwise the query will fail.

8.2 OMAS Content Language

OMAS does not impose any particular content language. However, a simple structured language can
be used for simple applications.

8.2.1 Overall Approach

The result of working on several application lead us to propose a simple content language, and to
define some conventions.

Request messages will contain either a structured MOSS query or a list of words in some natural
language. They will specify what should be the form of the answer by providing a pattern.

The answer messages will contain a list of answer structured as specified in the request message
or a keyword indicating failure and a list of reasons for the failure.

1Please refer to the MOSS documentation for the specification of a MOSS query.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 136

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

8.2.2 Structure of the Content of a Message

The content of the message is in the args area of the message and is structured as an association list.

8.3 Network Interface

8.3.1 Introduction

OMAS is a multi-agent platform written in Lisp. It has been tested in the Macintosh OS X environment
(PPC processors) using MCL 5.2 and in the Windows XP environment using ACL 8.2.

Communication among the agents uses several levels of protocol, in particular:

• the Agent Communication Language presented in the first part of this chapter

• the Agent Content Language presented in the second part of this chapter

• the exchange protocol that delivers the messages through the network. It can be implemented
at a high level, e.g. using CORBA, or lower level using TCP/IP or UDP protocols.

This section describes the communication mechanism of the OMAS system, when agents are dis-
tributed,namely ow the different protocols are implemented.

8.3.2 Overview

Transmission across machines is done using the UDP protocol and sockets.
Globally, a message is a structured object that must be transformed into a string to be exchanged

on the net (marshalling).

Sending Messages

The message is eventually broken into pieces if too long 2, and each piece is sent over the net.

Receiving Messages

A message is received by the net-receive function as a string in a buffer.
A special process waiting on the buffer processes strings as they arrive. Three cases may occur:

1. the message is whole;

2. the message is a piece of a new message;

3. the message is a piece of a message for which we already have received fragments.

The corresponding actions are:

1. If the message is whole, it is transformed back into an object (demarshalling) and put into the
input mailboxes of the local agents.

2. If the message is a piece of a new message, then a specific process is created and a timer is
activated setting a delay during which the other pieces of the message must arrive.

3. If the message is a piece of a message already identified, then the corresponding task is awaken,
the piece is added to the previous fragments. When all the fragments have been received, the
message is restructured and dispatched to the local agents.

2A typical maximal length for a piece of UDP message is 64K bytes

Jean-Paul A. Barthès©UTC, 2010 N260/Page 137

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

8.3.3 Exchange Process

Activating the Net

The net mechanism is activated by calling the omas-net-initialize function that calls the net-initialize-
broadcast function specific to Mac or Windows environments, and creates a new process for receiving
the messages. The global variable *net-dispatch-process* references this process.

Activation is done by OMAS unless the omas::*net-broadcast* is NIL, meaning that all agents
are contained in the same environment.

It is however always possible to call the omas-net-initialize function manually if needed.

Sending Messages

Sending a message is a straightforward process and is done automatically by OMAS with the omas-net-
send function. The function takes a message object, translates it into a string, then sends fragments
no longer than the value of *udp-max-message-length* each fragment having a header containing
the fragment number (last one is negative), the name of the sender, the name of the message, the
repeat count and a piece of the global message. For example, when the maximal length is 40, we
obtain something like the following:

"1;FAC-3;MM-0;;(1 MM-0 2 :REQUEST 3 32758"
"2;FAC-3;MM-0;;40314 4 FAC-3 5 MUL-2 6 MU"
"3;FAC-3;MM-0;;LTIPLY 7 (5 7) 11 3600 13 "
"-5;FAC-3;MM-0;;:BASIC-PROTOCOL 17 T-0)"

The omas-net-send function uses the net-send function that depends on the environment (calling
Open Transport for MCL, using sockets for ACL).

Note that each fragment is sent using UDP in broadcast mode. Thus, nothing whatsoever is done
to check whether somebody has received the message.

Note also that the broadcast life parameter is set to 1 by default, meaning that the message is sent
on the current local network loop and does not pass to adjacent loops.

Receiving Messages

Receiving messages is a slightly more complex process.
Every time a new fragment comes in, the omas-net-dispatch function is called. It extracts the new

fragment, and proceeds as follows:

• if the message is whole, then builds a message object out of the message and dispatches it using
the omas-net-distribute-message function.

• otherwise

- if the fragment is the first one of a new message, then creates a new message task frame and
adds it to the frame,

- if the fragment is part of a partially received message, then adds it to the corresponding
message task frame using the omas-net-add-and-process-fragment function.

When all fragments have been received, then they are ordered and merged, a new message object
is built (demarshalling) and the message is dispatched.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 138

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Message Task Structure

The sending and receiving process for the net is a mechanism common to all local agents, involving
however a separate process. Thus, we can use a single global IO-frame, shared by all local agents and
containing all the information for running the necessary processes.

A message task frame (MTF) is an object having a number of properties

MESSAGE TASK FRAME
from-name : name of sending agent, e.g. MUL-3 (NIL if user)
message-name : message name, e.g. MM-34
fragment-list : list of all pieces of a message
timeout-process : timeout process seting the delay for receiving fragments
fragment-count : number of pieces to receive (as soon as known

Deactivating the Net

Before exiting the net is deactivated by calling the omas-net-close function that will in turn call the
net-terminate-broadcast function that depends on the particular environment.

8.3.4 Message Format

OMAS agents use a private protocol to communicate. Two cases occur:

• when agents share the same LISP environment, message objects are passed directly to the agents
mailboxes;

• when some agents are located on different machines, messages are sent through the net using
the UDP protocol.

This section gives the format of the web messages.

Marshalling and Demarshalling

Using a network connection requires to transform message objects into strings for sending them and to
build message objects from the received strings. Furthermore, the UDP protocol limits the length of
the messages being transmitted, hence we slice the messages into smaller pieces, fragments, numbering
them as we do so. Message fragments can be received out of order, thus, we must be careful when
rebuilding a message. Another point is that a message can be transmitted several times by OMAS.

Message Format

The message header contains five fields with the following meaning:

- Sequence number: An integer giving the sequence number of a fragment. The first fragment will be
numbered 1, the second 2, etc., the last one being numbered negatively.

- Sender Identifier: name of the agent sending the message

- Message Identifier: name of the message

- Repeat count (optional): an integer giving a count when a message is repeated (1 is the first message;
2 is a repeated message; etc.)

- Content: content of the message fragment.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 139

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Example

"1;FAC-3;MM-0;;(1 MM-0 2 :REQUEST 3 32758"
"2;FAC-3;MM-0;;40314 4 FAC-3 5 MUL-2 6 MU"
"3;FAC-3;MM-0;;LTIPLY 7 (5 7) 11 3600 13 "
"-4;FAC-3;MM-0;;:BASIC-PROTOCOL 17 T-0)"

The example shows a message sent as 4 fragments by agent FAC-3. The message is named MM-0
and the repeat count is omitted. The original message is the following:

(1 MM-0 2 :REQUEST 3 3275840314 4 FAC-3 5 MUL-2 6 MULTIPLY 7 (5 7) 11 3600
13 BASIC-PROTOCOL 17 T-0)

Note that the original message is an alternated list of pairs <property><value> where properties
are represented by integers (to make messages more compact).

Note also that the different parts of the message header are separated by semi-columns.
The total length of each fragment is specified by a global variable: *udp-max-message-length*

that was set to 40 in our example. However, its default value is 512.

Code of the Message Properties

To make message more compact each property of the message is replaced by an integer. The corre-
spondence is given Table 8.2.

Table 8.2: Code of message properties

1 OMAS::NAME
2 OMAS::TYPE
3 OMAS::DATE
4 OMAS::FROM
5 OMAS::TO
6 OMAS::ACTION
7 OMAS::ARGS
8 OMAS::CONTENTS
9 OMAS::ERROR-CONTENTS
10 OMAS::TIMEOUT
11 OMAS::TIME-LIMIT
12 OMAS::ACK
13 OMAS::PROTOCOL
14 OMAS::STRATEGY
15 OMAS::BUT-FOR
16 OMAS::TASK-ID
17 OMAS::REPLY-TO
18 OMAS::REPEAT-COUNT
19 OMAS::TASK-TIMEOUT

Of course the names of the properties are defined by the OMAS ACL

Receiving Buffer

The sire of the receiving internal buffer is governed by the value of the global variable *kTransferBufferSize*.
In our case its value is 4096.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 140

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Inter-Platform Communications

When we want to couple different platforms located on different network loops, then we must use a
transfer agent (alias Postman).

When the remote agents are OMAS agents, then there is nothing special to do except to make
sure that the global variable is initialized and the communications channels are set.

When the receiving platform is different from OMAS (e.g. JADE), then the structure of the
message has to be changed and rebuilt in terms of JADE. The transfer agent will take OMAS messages
and try to produce FIPA compliant messages, using FIPA ACL and eventually SL content. The
communication channel can then be different and set specifically by the transfer agent. In that case
the transfer protocol may also be changed to TCP if necessary.

8.3.5 OMAS Net Interface

The interface between OMAS and the net (within a coterie) is controlled by global variables and a set
of functions;

- *net-broadcast* controls the behavior of OMAS. When true, then all messages are broadcast
on the web and a special process listens to the web for incoming messages. When false, all
communications remain local, and the functions in this file are not used. Default is broadcasting.

- *local-broadcast-address-and-port* contains the broadcast address of the local loop, e.g.,
”172.17.255.255”

- *net-incoming-message-stack* contains the incoming messages

- initialize-net-broadcast: initializes the connection and creates a receiving process

- net-send: sends a broadcast message

- terminate-net-broadcast: closes the connection and cleans up

Each platform implements those functions:

• ACL uses sockets from the :sock package from the ACL library (Windows XP)

• MCL uses BSD sockets of Darwin, using the Apple CoreFoundation library (MacOSX)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 141

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 142

Chapter 9

API

Contents

9.1 Convention . 144
9.1.1 Elementary function names . 144
9.1.2 Package . 144
9.1.3 Agent names . 144
9.1.4 MOSS . 144

9.2 Global Variables . 144
9.2.1 Global Parameters . 144
9.2.2 Agents . 145
9.2.3 Messages . 145
9.2.4 Graphics . 146
9.2.5 Programming Control . 146
9.2.6 Timings . 147
9.2.7 Tracing . 147
9.2.8 Network Interface . 148

9.3 Functions . 148
9.3.1 Agents . 148
9.3.2 Agent Memory . 150
9.3.3 Agent Transient Memory . 151
9.3.4 Skills . 152
9.3.5 Tracing . 153
9.3.6 Tasks . 154
9.3.7 Messages . 157
9.3.8 Miscellaneous . 159

9.4 Functions by Alphabetical Order . 160

This chapter gives a list of functions that can be used in agent skills. When the functions are
exported they can be used without prefix otherwise the prefix omas:: is needed.

Warning: OMAS 7 is a complex platform using advanced features of Lisp environments. In par-
ticular OMAS agents are multi-threaded, and the OMAS platform uses windows extensively. This
led to several versions of the code, due to the differences in the ACL Lisp on Windows and MCL on
Macintoshes. The API functions however can be used in both cases.

Most of the content of the document was produced automatically from the function inline docu-
mentation using the User Manual code developed by Mark Kantrowitz at CMU (1991).

143

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

9.1 Convention

The user should be aware of a certain number of conventions used in the system. Some are related to
names, others are attached to internal obj-ids.

9.1.1 Elementary function names

All primitive functions start with a % sign, thus following the LISP machine LISP convention.
Some elementary functions are very primitive and somehow dangerous to use, they start with a

double %% sign.

9.1.2 Package

API functions are exported from the MOSS package. Thus, if one includes the command

(use-package :omas)

in the application code, they can be used without package prefixing.
The internal functions must be used carefully and prefixed by the omas:: package reference.

9.1.3 Agent names

Because each agent has its own package, agents are referred to by keywords rather than symbols. Each
agent name must be unique within its platform (set of coteries).

9.1.4 MOSS

The knowledge representation language MOSS is included in the OMAS environment. Thus, MOSS
can be used to define ontologies, knowledge bases, or various representations.

See the MOSS documentation for programming help.

9.2 Global Variables

Starting with version 7.9, global parameters have been grouped into and instance of a CLOS object
called SITE. The instance is called *omas* and is a global variable. All values can be accessed using
the accessor functions and set be doing a setf on the accessor functions. Previously defined global
variables are deprecated.

The *omas* object gives the state of the OMAS environment. The names of the global parameters
(slots) are given for information. It is strongly recommended not to change their value directly. Note
that in MCL special variables (globals) are shared by threads, in ACL they are not.

Note: some parameters appear in more than one table.

9.2.1 Global Parameters

Table 9.1 contains a few parameters governing the state of the OMAS local coterie.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 144

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Table 9.1: Global parameters for OMAS

Accessor Default Meaning
basic-processes mp:*all-processes*

active-processes
initial active processes

debugging t currently not used
languages ’(”:EN”) language being used (?)
local-user :<user> name of local user (control panel)
omas-directory nil pathname to OMAS directory
omas-verbose nil toggles the debugging trace
omas-window nil control panel
ontology nil ontology for normalizing concepts
screen nil used by Microsoft versions
spy-name :undefined the name of the invisible SPY agent (handling

graphics trace)
site-name ”*unknown*” name of the site of the local coterie
test-string ”Ceci est un test...” a string used for various tests
text-window nil window to print text information (ACL only)
voice-interaction nil voice flag if T we use the vocal interface (ACL only)

9.2.2 Agents

Table 9.2 contains parameters related to agents.

Table 9.2: Global parameters for agents

Accessor Default Meaning
application-name nil name of the application, e.g. FAC
local-reference nil a unique name characterizing the local machine,

e.g. THOR
local-agents nil the list of agents local to this Lisp environment

(local coterie)
names-of-known-agents nil the names of agents known to exist (used by the

graphics trace)
names-of-agents-to-
display

nil the names of agents to display in the graphic trace

site-name ”*unknown*” name of the site of the local coterie
traced-agents nil list of agents that are traced

9.2.3 Messages

Table 9.3 contains parameters related to messages.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 145

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Table 9.3: Global parameters for messages

Accessor Default Meaning
message-property-
dictionary

nil dictionary built automatically and remaining
constant for coding messages during the mar-
shalling/demarshalling processes

9.2.4 Graphics

Parameters described in Table 9.4 apply to the graphics trace display.

Table 9.4: Global parameters for agents

Accessor Default Meaning
application-name nil name of the application, e.g. FAC
local-reference nil a unique name characterizing the local machine,

e.g. THOR
local-agents nil the list of agents local to this Lisp environment

(local coterie)
names-of-known-agents nil the names of agents known to exist (used by the

graphics trace)
names-of-agents-to-
display

nil the names of agents to display in the graphic trace

site-name ”*unknown*” name of the site of the local coterie
traced-agents nil list of agents that are traced

9.2.5 Programming Control

Table 9.5 contains parameters related to the control of the OMAS platform. Most parameters are
modified by the system when options are selected in the functions allowing to send messages or create
subtasks. However, the user could change some of the values if needed, e.g. the number of times a
message is resent after a timeout.

Table 9.5: Global parameters for programming control

Accessor Default Meaning
basic-processes mp:*all-

processes*
Microsoft: if true timeouts are displayed

*active-
processes*

MCL: id.

Continued on next page

Jean-Paul A. Barthès©UTC, 2010 N260/Page 146

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Accessor Default Meaning
contract-net-strategy :take-first-bid contract-net strategy, can be :collect-bids
default-broadcast-repeat-
count

3 number of retries while broadcasting

default-broadcast-
strategy

:take-first-
answer

default broadcast strategy

default-call-for-bids-
repeat-count

3 number of times a call-for-bids is sent after timeout

default-contract-net-
strategy

:take-first-bid default contract net strategy

edit-message-window-list nil list of temporary windows editing messages
max-repeat-count 3 number of times a message is repeated after a time-

out
subtask-number 0 used to create subtask ids
task-number 0 used to create task ids
user-messages nil list of test messages produced by the user
voice-interaction nil if true we use vocal input (Microsoft only)

9.2.6 Timings

Table 9.6 contains parameters related to default timings.

Table 9.6: Global parameters for timing

Accessor Default Meaning
default-call-for-bids-
timeout-delay

1 time to wait for an answer to a call-for-bids (1s)

default-execution-time 36000 high number for a default execution time (10h)
default-time-limit 3600 default time limit on all tasks (1h)
highest-time-limit 60000000 a little less than 2 yr
security-timeout 3600 unused

9.2.7 Tracing

Table 9.7 contains parameters governing tracing options.

Table 9.7: Global parameters for tracing

Accessor Default Meaning
omas-verbose nil toggles the debugging trace
traced-agents nil for printing conversations (MCL onlly)

Continued on next page

Jean-Paul A. Barthès©UTC, 2010 N260/Page 147

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Accessor Default Meaning
trace-messages t if true print message text in graphics window

9.2.8 Network Interface

Table 9.8 contains parameters for handling local loop exchanges. Connections with remote coteries,
or other systems are handled by transfer agents.

Table 9.8: Global parameters for network interface

Accessor Default Meaning
ktransferbuffersize 4096 size of the buffer for receiving messages
local-broadcast-address nil local broadcast address, e.g. 172.17.255.255
local-ip-addres nil unused
net-broadcast nil if nil no message is broadcast on the net
net-dispatch-process nil process that handles reassembling pieces of mes-

sages and dispatches the resulting message
net-incoming-message-
stack

nil used by the demarshalling process

net-input-task-list nil list of task frames corresponding to processes trying
to reassemble incoming messages

net-receive-process nil process for receiving local coterie messages
net-send-process nil process for sending messages to local LAN loop
omas-port nil local port for broadcasting on local loop
socket nil reference to broadcasting socket (ACL only)
udp-max-message-length 512 maximal length of UDP messages

9.3 Functions

In this section, API functions have been grouped by features.

9.3.1 Agents

;;; ANSWERING-AGENT (agent) [FUNCTION]
;;; gives the id of the agent corresponding to the received answer
;;; message being processed.
;;; Arguments:
;;; agent: agent.
;;;
;;; ASSISTANT? (agent) [FUNCTION]
;;; check whether an agent is an assistant, in this case it returns t.
;;; Arguments:
;;; agent: agent.
;;;
;;; CREATE-AGENT-NAME (given-name &optional (package *package*)) [FUNCTION]
;;; create an internal agent name by prefixing the given name with SA_
;;; One should use the keywords anyway in the application code.
;;; Argument:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 148

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; given-name: e.g. ’MUL-1
;;; Return:
;;; SA_MUL-1
;;;
;;; CREATE-ASSISTANT-NAME (given-name [FUNCTION]
;;; &optional (package *package*))
;;; create an internal assistant name by prefixing the given name with
;;; PA_ One should use the keywords anyway in the application code.
;;; Argument:
;;; given-name: e.g. ’MUL-1
;;; Return:
;;; PA_MUL-1
;;;
;;; CREATE-POSTMAN-NAME (given-name &optional (package *package*)) [FUNCTION]
;;; create an internal assistant name by prefixing the given name with
;;; PA_ One should use the keywords anyway in the application code.
;;; Argument:
;;; given-name: e.g. ’UTC
;;; Return:
;;; XA_MUL-1
;;;
;;; GET-AGENT-NUMBER-OF-TIMERS "()" [FUNCTION]
;;; builds an a-list with the number of timers of the agents from the
;;; local coterie. An agent has currently one timer per task.
;;; Uses the *local-agents* list. Used by the display process,
;;; asynchronous with respect to calls. Arguments:
;;; none
;;; Return:
;;; an a-list, e.g. ((:FAC . 2)(:MUL . 1))
;;;
;;; GET-AGENT-STATES "()" [FUNCTION]
;;; builds an a-list with the state of the agents from the local coterie.
;;; An agent is either :busy if it is executing some task, :idle
;;; otherwise. Uses the *local-agents* list.
;;; Arguments:
;;; none
;;; Return:
;;; an a-list, e.g. ((:FAC . :BUSY)(:MUL . :IDLE))
;;;
;;; GET-VISIBLE-AGENT-IDS "()" [FUNCTION]
;;; get the list of ids of the non hidden local agents
;;; Arguments:
;;; none
;;; Return:
;;; a list of agent ids.
;;;
;;; LOCAL-AGENT? (agent-key) [FUNCTION]
;;; test if an agent represented by a keywod is a local agent, i.e., it
;;; is in the *local-agents* a-list.
;;; Arguments:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 149

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; agent-name: a symbol, presumably an agent name
;;; Return
;;; nil or the agent structure
;;;
;;; RECEIVING-AGENT ((message message)) [METHOD]
;;; getting the key of the receiver of the message.
;;; Argument:
;;; message: shoulc be a message object
;;; Return:
;;; the key of the sender or nil if message is not a message.
;;;
;;; RESET-ALL-AGENTS "()" [FUNCTION]
;;; clear all agents, reseting input and output trays, and emptying
;;; tasks; also reseting number of tasks to 0; and clock to 0
;;;
;;; SENDING-AGENT ((message message)) [METHOD]
;;; getting the key of the sender of the message.
;;; Argument:
;;; message: shoulc be a message object
;;; Return:
;;; the key of the sender or nil if message is not a message.
;;;
;;; AGENT-TRACE (agent-ref text &rest args) [FUNCTION]
;;; function used to trace agent’s behavior.
;;; Arguments:
;;; agent-ref: agent object, agent name or agent-key
;;; text: text for string format
;;; args: arguments for the format variables.
;;;
;;; TRACE-AGENT (agent) [FUNCTION]
;;; set the agent traced property.
;;; Arguments:
;;; agent: agent to trace.

9.3.2 Agent Memory

The following functions are related to an agent memory shared by all tasks.

;;; DEFFACT (agent fact key &key service info-type ontology) [MACRO]
;;; saves some data (a fact) as a memory item, associated with a key. When no key
;;; is provided makes one and return it.
;;; Arguments:
;;; agent: agent
;;; fact: the stuff to be saved with its own structure
;;; key (key): a keyword to retrieve the data
;;; service (key): the service that produced the value
;;; info-type (key): type of information (user-defined)
;;; ontology (key): ontology that allows to understand the fact
;;; Return:
;;; key, either the one provded or a synthetic one.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 150

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;;
;;; FORGET (agent index) [FUNCTION]
;;; removes some data from memory.
;;; Arguments:
;;; agent: agent
;;; index: key associated with memory item
;;; Return:
;;; irrelevant
:::
;;; FORGET-ALL (agent) [FUNCTION]
;;; used to wipe-out agent’s memory
;;; Arguments:
;;; agent: agent.
;;;
;;; REMEMBER (agent fact key &key service info-type ontology) [FUNCTION]
;;; saves data as an object in memory an a-list. The key is memorized in
;;; the tag slot.
;;; If no key is present (i.e. is nil), one is synthesized.
;;; Arguments:
;;; agent: agent
;;; fact: data to be saved
;;; key (key): pattern for recovering data (usually a keyword)
;;; service (key): service that produced the value
;;; info-type (key): type of information
;;; ontology (key): ontology for which the terms have a meaning.
;;; Return
;;; key under which the fact is saved."
;;;
;;; RECALL (agent index &key field) [FUNCTION]
;;; function called when trying to recover data from memory. Data is
;;; organized as an a-list. A piece of data is an object with a time-stamp
;;; and a value.
;;; Arguments:
;;; agent: agent
;;; index: pattern for recovering data
;;; field (key): field of interest to be returned (date, type, ontology,
;;; service, all none is data itself)
;;; Return:
;;; data according to the vale of field.

9.3.3 Agent Transient Memory

The following functions are related to the part of the agent memory related to a particular task. This
memory disappears when the task exits and the corresponding process is killed.

;;; ENV-ADD-VALUES (agent values tag) [FUNCTION]
;;; replace the agent environment with env.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent

Jean-Paul A. Barthès©UTC, 2010 N260/Page 151

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; env: environment part of the agent
;;; values: list of values to add to existing value
;;; tag: property
;;; Return:
;;; new list of values.
;;;
;;; ENV-GET (agent tag) [FUNCTION]
;;; gets the value attached to tag from the agent environment.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values to add to existing value
;;; tag: property
;;; Return:
;;; new list of values.
;;;
;;; ENV-REM-VALUES (agent values tag &key test) [FUNCTION]
;;; removes the list of values in task environment.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values to be removes
;;; tag: property
;;; test (key): fonction for the :test option of remove
;;; Return:
;;; new list of values.
;;;
;;; ENV-SET (agent values tag) [FUNCTION]
;;; replace the specified property and values in task environment.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values
;;; tag: property
;;; Return:
;;; new list of values.
;;;

9.3.4 Skills

;;; DYNAMIC-EXIT (agent result &key internal) [FUNCTION]
;;; user-called function that takes the result from a task, builds up a
;;; message to forward the answer as required and sends it.
;;; However, if the task was an internal task no answer is sent back
;;; (presumably the dynamic part of the skill will have
;;; processed the result. The dynamic-exit is called normally by a
;;; process executing the skill, thus it commits suicide. It

Jean-Paul A. Barthès©UTC, 2010 N260/Page 152

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; will not work if called from a different process (e.g.a
;;; timeout process). It kills the time-limit timer process. Arguments:
;;; agent: agent
;;; result: result to send back to the caller or to the continuation.
;;; internal (key): if t means that we are getting out of n internal
;;; process, it is not necessary to send an
;;; answer message Return:
;;; we never return from this function.
;;; Either the process is killed or we have an error.
;;;
;;; GET-ENVIRONMENT (agent) [FUNCTION]
;;; get the environment area contained in the task frame representing the
;;; current task. If no task is present declares an error. To be
;;; called from a requested skill, not an informed one since inform
;;; executes in the scan process. Arguments:
;;; agent: agent.
;;; Deprecated: use ENV-XXX functions
;;;
;;; PURELY-LOCAL-SKILL? (agent skill) [FUNCTION]
;;; checks if a skill operates locally, i.e., does not spawn any subtask.
;;; This is verified when there is no dynamic part to the
;;; skills. Returns nil if agent does not have the skill.
;;; Arguments:
;;; agent: agent
;;; skill: skill to check.
;;;
;;; STATIC-EXIT (agent arg) [FUNCTION]
;;; amounts to a noop so far
;;;
;;; UPDATE-ENVIRONMENT (agent env) [FUNCTION]
;;; replace the agent environment with env.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent.
;;; Deprecated: use ENV-XXX functions
;;;

9.3.5 Tracing

;;; AGENT-TRACE (agent text &rest args) [FUNCTION]
;;; function used to trace agent’s behavior.
;;; Arguments:
;;; agent: agent object or agent name
;;; text: text for string format
;;; args: arguments for the format variables.
;;;
;;; TEXT-TRACE (&rest ll) [FUNCTION]
;;; used for tracing agents. Used by ACL to trace into a special text
;;; trace window.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 153

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;;
;;; TRACE-AGENT (agent) [FUNCTION]
;;; set the agent traced property.
;;; Arguments:
;;; agent: agent to trace.
;;;
;;; UNTRACE-AGENT (agent) [FUNCTION]
;;; reset the agent traced property.
;;; Arguments:
;;; agent: agent to untrace.

9.3.6 Tasks

;;; ABORT-CURRENT-TASK (agent &key ignore-queues) [FUNCTION]
;;; When in the process of executing a particular task, the agent might
;;; decide to abandon the task, killing all subtasks.
;;; This is useful when an agent has a particular skill but does
;;; not want to answer a request.
;;; Arguments:
;;; agent: agent
;;; ignore-queues: if t does not clean queues (presumably already
;;; done).
;;;
;;; %ABORT-CANCEL-TASK (agent task-id sender [FUNCTION]
;;; &key task-frame no-subtasks ignore-queues
;;; cancel no-mark)
;;; code used to abort or to cancel a task. Aborting is the same as
;;; canceling except that an abort message is returned to the
;;; agent that asked for the task. Note that incase the answer
;;; should be sent to continuations (reply-to), it is not clear
;;; to whom we should send the message. Arguments:
;;; agent: agent
;;; task-id: task-number of the task to be aborted
;;; sender: agent that sent the task
;;; no-subtasks (key): if true does not cancel subtasks (presumably
;;; there are none) ignore-queues (opt): when t does not check
;;; input-messages, agenda or waiting tasks no-mark (key): when t
;;; does not draw a black mark on the agent life Return:
;;; does not return if called from the task process
;;; returns the id of the aborted task if called from somewhere else.
;;;
;;; ABORT-TASK (agent task-id sender &key task-frame no-subtasks [FUNCTION]
;;; ignore-queues no-mark)
;;; Abort a task even if it has not started. The input queues are
;;; cleaned. If the task was started, the structures are
;;; removed, the processes killed, and the subtasks canceled.
;;; Arguments:
;;; agent: agent
;;; task-id: task-number of the task to be aborted
;;; sender: agent that sent the task

Jean-Paul A. Barthès©UTC, 2010 N260/Page 154

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; no-subtasks (key): if true does not cancel subtasks (presumably
;;; there are none) ignore-queues (opt): when t does not check
;;; input-messages, agenda or waiting tasks no-mark (key): when t
;;; does not draw a black mark on the agent life Return:
;;; does not return if called from the task process
;;; returns the id of the aborted task if called from somewhere else.
;;;
;;; CANCEL-ALL-SUBTASKS (agent &optional task-frame) [FUNCTION]
;;; cancel all subtasks launched by a particular agent. Does not cancel ~
;;; the task that spawned the subtasks. Kill timeout processes
;;; related to the subtasks if active.
;;; When the optional task-frame argument is not present, then it is
;;; assumed that the concerned task is that corresponding to
;;; current process. Arguments:
;;; agent: agent.
;;; task-frame (opt): task-frame of the task that spawned the
;;; subtasks.
;;;
;;; CANCEL-ANSWERING-SUBTASK (agent) [FUNCTION]
;;; cancel subtask corresponding to the received answer message being
;;; processed. Should also remove the subtask-frame from the
;;; subtask-list slot of the task-frame. Should be called from the
;;; task process, e.g. while executing a skill. Arguments:
;;; agent: agent.
;;;
;;; CANCEL-CURRENT-TASK (agent &key no-subtasks task-frame no-mark) [FUNCTION]
;;; same function as abort-current-task, but does not sent error message
;;; to the agent that required the task. The task to be canceled
;;; is the one corresponding to the process being executed.
;;; Arguments:
;;; agent: agent
;;; no-subtaks: (key) if t, indicates that no sbtasks have been
;;; spawned and that it is not necessary to send cancel messages
;;; task-frame (key): corresponding task-frame if known.
;;; no-mark (key): when t, does not draq a black mark onthe agent
;;; life line Return:
;;; does not return
;;;
;;; CANCEL-SUBTASK (agent subtask-frame) [FUNCTION]
;;; Cancel the subtask corresponding to subtask-frame. Any info put into
;;; the user-managed environment area should be cleaned by the
;;; user. We clean input-messages, agenda, timeout process if
;;; any, and send a message to all agents that were executing
;;; the subtask as taken from the subtask-frame in the subtask
;;; list of current-task. Removes the subtask-frame from the list of
;;; subtasks. The function is usually called from the process
;;; executing the task that spawned the subtask, but could be
;;; called from a timeout or a time-limit process. Arguments:
;;; agent: agent
;;; subtask-frame: subtask-frame of the subtask to be cancelled.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 155

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;;
;;; CANCEL-TASK (agent task-id sender &key task-frame no-subtasks [FUNCTION]
;;; no-mark)
;;; same function as abort-task, but does not sent error message to the ~
;;; agent that required the task.
;;; Arguments:
;;; agent: agent
;;; task-id : id of the task to be canceled
;;; sender: agent that sent the task
;;; task-frame (opt): task-frame if known
;;; no-subtaks (key): if t, indicates that no subtasks have been
;;; spawned and that it is not necessary to send cancel
;;; messages. no-mark (kkey): when t, no black mark is drawn on agent
;;; life Return:
;;; When called from task process, does not return, otherwise returns
;;; the task-id.
;;;
;;; CREATE-SUBTASK-ID "()" [FUNCTION]
;;; called from skills to start a new subtask. Simply provides a subtask
;;; id. This version uses a global counter rather than gentemp
;;; so that we can reset task ids when debugging. A subtask-id
;;; is simply a moisitive number. Arguments:
;;; agent: agent (ignored)
;;; Return:
;;; a positive subtask number, e.g. 233
;;;
;;; CREATE-TASK-ID "()" [FUNCTION]
;;; a task id is simply a negative number. The task counter is updated
;;; Arguments:
;;; agent: agent (ignored)
;;; Return:
;;; a negative task number (e.g. -231)
;;;
;;; GET-TIME-LIMIT (agent) [FUNCTION]
;;; obtain the time-limit associated with the executing task. If none,
;;; then returns most positive integer in the system.
;;; Arguments:
;;; agent: agent.
;;;
;;; MASTER-TASK? (agent task-id) [FUNCTION]
;;; checks if the task with id task-id is one of the master’s task.
;;; Arguments:
;;; agent: agent
;;; task-id: id of the task to be checked.
;;;
;;; PENDING-SUBTASKS? (agent) [FUNCTION]
;;; return the list of pending tasks. If processing an answer message,
;;; then the list contains at least 1, the one corresponding to
;;; the answer being processed. The function must be called from the
;;; process executing the task for which subtasks are checked,

Jean-Paul A. Barthès©UTC, 2010 N260/Page 156

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; typically from a skill. Arguments:
;;; agent: agent.
;;;
;;; SLOW (delay) [FUNCTION]
;;; put the process in a wait state during delay time.
;;; Arguments:
;;; delay: time to wait in second.
;;;

9.3.7 Messages

;;; %REMOVE-MESSAGE-FROM-QUEUE (property value queue) [MACRO]
;;; macro to simplify the writing when removing messages from queues ~
;;; queue must be explicit (keyword)
;;;
;;; CREATE-MESSAGE-ID "()" [FUNCTION]
;;; creates a new message id that will be used for avoiding infinite
;;; loops or echos. Arguments:
;;; none
;;; Return:
;;; an integer
;;;
;;; SELECT-BEST-BIDS (agent bid-list) [FUNCTION]
;;; select best bids in a list of bids according to job-parameters found
;;; in :contents. Currently they are: start-time execution-time
;;; quality. For now best bid is the earlier job.
;;; Arguments:
;;; agent: agent
;;; bid-list: list of submitted bids (message objects).
;;;
;;; SEND-INFORM (agent &key (action :inform) to args (delay 0)) [FUNCTION]
;;; prepares a message containing the parameters for issueing an inform
;;; to another agent. Default action is :INFORM.
;;; Does not set up a subtask.
;;; Arguments:
;;; agent: agent
;;; action: (key) skill to be invoked (default: INFORM)
;;; to: (key) receiver
;;; args: (key) arguments to the inform message
;;; delay: additional delay in seconds (default 0).
;;;
;;; %SEND-MESSAGE (message &optional (locally? nil)) [FUNCTION]
;;; does the actual send as follows:
;;; - if the message is emitted by a local agent and the to-field is
;;; not :all-and-me then we remove the from agent from the local
;;; agent list We send a copy of the message to all agents left in
;;; the local-agent-list. When (net-broadcast *omas*) is on, we also
;;; broadcast on the net Argument:
;;; message: message to send (unchecked)
;;; locally? (opt): if T do not send through the network (default is

Jean-Paul A. Barthès©UTC, 2010 N260/Page 157

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; nil).
;;;
;;; SEND-MESSAGE (message &key (locally? nil)) [FUNCTION]
;;; send a message to other agents.
;;; - If the target is nil then we assume that the agent is the user.
;;; We currently print the answer in the lisp listener (debugging
;;; mode) and show it in the control panel
;;; - if the target is :all then we send the message to all local
;;; agents - if the target is :all-and-me we do the same as for :all
;;; including ourselves - if the target is a list of agents, it must
;;; be a list of agent names, then we send to each agent of the
;;; list - if the target is a single agent name, then we send the
;;; message to the target. In practice we send the message to all
;;; agents, but draw only what was intended in order to keep a
;;; legible graph. In addition we note the current state of the
;;; agents, since posting will be done asynchronously, and thus the agent
;;; state cannot be recovered at that time. Arguments:
;;; message: message to send (either structure or key)
;;; locally? (opt): if true does not send the message through the
;;; network Return:
;;; :message-sent
;;;
;;; SEND-SUBTASK (agent &key to action args (repeat-count 0) [FUNCTION]
;;; task-id delay timeout time-limit
;;; (protocol :basic-protocol)
;;; (strategy :take-first-answer) ack type)
;;; prepares a message containing the parameters for issueing a subtask
;;; to another agent. Builds a subtask-frame and adds it to the
;;; subtask-list slot. Checks the :protocol variable and determines
;;; the output message accordingly. Function is executed by a skill
;;; (usually), i.e. by a task process, but it can also be called
;;; from a timeout process (when relaunching a subtask). Arguments
;;; agent: agent sending the subtask
;;; to: (key) agent name
;;; action: (key) name of the skill required
;;; args: (key) arguments for the skill
;;; repeat-count: (key) number of times the task has been repeated
;;; after timeout, default is 0 (first time around)
;;; subtask-id: (key) specific id to identify the task. It should be
;;; unique. by default it is created by OMAS
;;; timeout: (key) timeout delay allowed for executing the subtask
;;; default is none protocol: (key) protocol for the message, default
;;; is :basic-protocol. ack: wants an acknowledgement message
;;; Return:
;;; :done
;;;
;;; SYSTEM-MESSAGE? (message) [FUNCTION]
;;; test if message is a system message, i.e. type is :sys-XXX.
;;; Arguments:
;;; message: to test

Jean-Paul A. Barthès©UTC, 2010 N260/Page 158

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; Return:
;;; message or nil.
;;;

9.3.8 Miscellaneous

Time

;;; TIME-STRING (time) [FUNCTION]
;;; get an integer representing universal time and extracts a string
;;; giving hour:minutes:seconds
;;;
;;; DATE-STRING (time) [FUNCTION]
;;; get an integer representing universal time and extracts a string
;;; giving year:month:day
;;;
;;; DATE-TIME-STRING (time) [FUNCTION]
;;; get an integer representing universal time and extracts a string
;;; giving year/month/day hour:minute:second

Reset, Exit,...

;;; OMAS "()" [FUNCTION]
;;; start function. Set up a special process that creates a control
;;; panel. If the local coterie is connected to the net
;;; (*net-broadcast* is true) then initializes net UDP
;;; interface.
;;;
;;; OMAS-EXIT "()" [FUNCTION]
;;; exits from omas, closing net communications and cleaning whatever
;;; needs to be cleaned.

Multilingual Text

;;; GET-TEXT (mln) [FUNCTION]
;;; Get the string corresponding to *language* from multilingual string.
;;; If not present, get the English one, if not present get a
;;; random one.
;;; Argument:
;;; mln: a multilingual name (deined in MOSS)
;;; Return:
;;; 2 values: first is a string, second is a language tag
;;; Error:
;;; if not an MLN.

General Service

;;; MAKE-KEYWORD (input) [FUNCTION]
;;; takes a symbol or a string in imput and returns a keyword
;;;
;;; PA (pa-key) [FUNCTION]
;;; set current package to pa-key

Jean-Paul A. Barthès©UTC, 2010 N260/Page 159

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Voice Interface (Microsoft Only)

;;; SPEAK (text) [FUNCTION]
;;; when the voice interface is activated, voice the argument text. The
;;; text must not be too long.
;;; Arguments:
;;; text: a string
;;; Return:
;;; nil

9.4 Functions by Alphabetical Order

;;;
;;; %REMOVE-MESSAGE-FROM-QUEUE (property value queue) [MACRO]
;;; macro to simplify the writing when removing messages from queues ~
;;; queue must be explicit (keyword)
;;;
;;; ABORT-CURRENT-TASK (agent &key ignore-queues) [FUNCTION]
;;; When in the process of executing a particular task, the agent might
;;; decide to abandon the task, killing all subtasks.
;;; This is useful when an agent has a particular skill but does
;;; not want to answer a request.
;;; Arguments:
;;; agent: agent
;;; ignore-queues: if t does not clean queues (presumably already
;;; done).
;;;
;;; %ABORT-CANCEL-TASK (agent task-id sender [FUNCTION]
;;; &key task-frame no-subtasks ignore-queues
;;; cancel no-mark)
;;; code used to abort or to cancel a task. Aborting is the same as
;;; canceling except that an abort message is returned to the
;;; agent that asked for the task. Note that incase the answer
;;; should be sent to continuations (reply-to), it is not clear
;;; to whom we should send the message. Arguments:
;;; agent: agent
;;; task-id: task-number of the task to be aborted
;;; sender: agent that sent the task
;;; no-subtasks (key): if true does not cancel subtasks (presumably
;;; there are none) ignore-queues (opt): when t does not check
;;; input-messages, agenda or waiting tasks no-mark (key): when t
;;; does not draw a black mark on the agent life Return:
;;; does not return if called from the task process
;;; returns the id of the aborted task if called from somewhere else.
;;;
;;; ABORT-TASK (agent task-id sender &key task-frame no-subtasks [FUNCTION]
;;; ignore-queues no-mark)
;;; Abort a task even if it has not started. The input queues are
;;; cleaned. If the task was started, the structures are
;;; removed, the processes killed, and the subtasks canceled.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 160

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; Arguments:
;;; agent: agent
;;; task-id: task-number of the task to be aborted
;;; sender: agent that sent the task
;;; no-subtasks (key): if true does not cancel subtasks (presumably
;;; there are none) ignore-queues (opt): when t does not check
;;; input-messages, agenda or waiting tasks no-mark (key): when t
;;; does not draw a black mark on the agent life Return:
;;; does not return if called from the task process
;;; returns the id of the aborted task if called from somewhere else.
;;;
;;; ANSWERING-AGENT (agent) [FUNCTION]
;;; gives the id of the agent corresponding to the received answer
;;; message being processed.
;;; Arguments:
;;; agent: agent.
;;;
;;; ASSISTANT? (agent) [FUNCTION]
;;; check whether an agent is an assistant, in this case it returns t.
;;; Arguments:
;;; agent: agent.
;;;
;;; CANCEL-ALL-SUBTASKS (agent &optional task-frame) [FUNCTION]
;;; cancel all subtasks launched by a particular agent. Does not cancel ~
;;; the task that spawned the subtasks. Kill timeout processes
;;; related to the subtasks if active.
;;; When the optional task-frame argument is not present, then it is
;;; assumed that the concerned task is that corresponding to
;;; current process. Arguments:
;;; agent: agent.
;;; task-frame (opt): task-frame of the task that spawned the
;;; subtasks.
;;;
;;; CANCEL-ANSWERING-SUBTASK (agent) [FUNCTION]
;;; cancel subtask corresponding to the received answer message being
;;; processed. Should also remove the subtask-frame from the
;;; subtask-list slot of the task-frame. Should be called from the
;;; task process, e.g. while executing a skill. Arguments:
;;; agent: agent.
;;;
;;; CANCEL-CURRENT-TASK (agent &key no-subtasks task-frame no-mark) [FUNCTION]
;;; same function as abort-current-task, but does not sent error message
;;; to the agent that required the task. The task to be canceled
;;; is the one corresponding to the process being executed.
;;; Arguments:
;;; agent: agent
;;; no-subtaks: (key) if t, indicates that no sbtasks have been
;;; spawned and that it is not necessary to send cancel messages
;;; task-frame (key): corresponding task-frame if known.
;;; no-mark (key): when t, does not draq a black mark onthe agent

Jean-Paul A. Barthès©UTC, 2010 N260/Page 161

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; life line Return:
;;; does not return
;;;
;;; CANCEL-SUBTASK (agent subtask-frame) [FUNCTION]
;;; Cancel the subtask corresponding to subtask-frame. Any info put into
;;; the user-managed environment area should be cleaned by the
;;; user. We clean input-messages, agenda, timeout process if
;;; any, and send a message to all agents that were executing
;;; the subtask as taken from the subtask-frame in the subtask
;;; list of current-task. Removes the subtask-frame from the list of
;;; subtasks. The function is usually called from the process
;;; executing the task that spawned the subtask, but could be
;;; called from a timeout or a time-limit process. Arguments:
;;; agent: agent
;;; subtask-frame: subtask-frame of the subtask to be cancelled.
;;;
;;; CANCEL-TASK (agent task-id sender &key task-frame no-subtasks [FUNCTION]
;;; no-mark)
;;; same function as abort-task, but does not sent error message to the ~
;;; agent that required the task.
;;; Arguments:
;;; agent: agent
;;; task-id : id of the task to be canceled
;;; sender: agent that sent the task
;;; task-frame (opt): task-frame if known
;;; no-subtaks (key): if t, indicates that no subtasks have been
;;; spawned and that it is not necessary to send cancel
;;; messages. no-mark (kkey): when t, no black mark is drawn on agent
;;; life Return:
;;; When called from task process, does not return, otherwise returns
;;; the task-id.
;;;
;;; CREATE-AGENT-NAME (given-name &optional (package *package*)) [FUNCTION]
;;; create an internal agent name by prefixing the given name with SA_
;;; One should use the keywords anyway in the application code.
;;; Argument:
;;; given-name: e.g. ’MUL-1
;;; Return:
;;; SA_MUL-1
;;;
;;; CREATE-ASSISTANT-NAME (given-name [FUNCTION]
;;; &optional (package *package*))
;;; create an internal assistant name by prefixing the given name with
;;; PA_ One should use the keywords anyway in the application code.
;;; Argument:
;;; given-name: e.g. ’MUL-1
;;; Return:
;;; PA_MUL-1
;;;
;;; CREATE-POSTMAN-NAME (given-name &optional (package *package*)) [FUNCTION]

Jean-Paul A. Barthès©UTC, 2010 N260/Page 162

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; create an internal assistant name by prefixing the given name with
;;; PA_ One should use the keywords anyway in the application code.
;;; Argument:
;;; given-name: e.g. ’UTC
;;; Return:
;;; XA_MUL-1
;;;
;;; CREATE-MESSAGE-ID "()" [FUNCTION]
;;; creates a new message id that will be used for avoiding infinite
;;; loops or echos. Arguments:
;;; none
;;; Return:
;;; an integer
;;;
;;; CREATE-SUBTASK-ID "()" [FUNCTION]
;;; called from skills to start a new subtask. Simply provides a subtask
;;; id. This version uses a global counter rather than gentemp
;;; so that we can reset task ids when debugging. A subtask-id
;;; is simply a moisitive number. Arguments:
;;; agent: agent (ignored)
;;; Return:
;;; a positive subtask number, e.g. 233
;;;
;;; CREATE-TASK-ID "()" [FUNCTION]
;;; a task id is simply a negative number. The task counter is updated
;;; Arguments:
;;; agent: agent (ignored)
;;; Return:
;;; a negative task number (e.g. -231)
;;;
;;; DYNAMIC-EXIT (agent result &key internal) [FUNCTION]
;;; user-called function that takes the result from a task, builds up a
;;; message to forward the answer as required and sends it.
;;; However, if the task was an internal task no answer is sent back
;;; (presumably the dynamic part of the skill will have
;;; processed the result. The dynamic-exit is called normally by a
;;; process executing the skill, thus it commits suicide. It
;;; will not work if called from a different process (e.g.a
;;; timeout process). It kills the time-limit timer process. Arguments:
;;; agent: agent
;;; result: result to send back to the caller or to the continuation.
;;; internal (key): if t means that we are getting out of n internal
;;; process, it is not necessary to send an
;;; answer message Return:
;;; we never return from this function.
;;; Either the process is killed or we have an error.
;;;
;;; ENV-ADD-VALUES (agent values tag) [FUNCTION]
;;; replace the agent environment with env.
;;; Must be called from a task process executing the right task.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 163

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values to add to existing value
;;; tag: property
;;; Return:
;;; new list of values.
;;;
;;; ENV-GET (agent tag) [FUNCTION]
;;; gets the value attached to tag from the agent environment.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values to add to existing value
;;; tag: property
;;; Return:
;;; new list of values.
;;;
;;; ENV-REM-VALUES (agent values tag &key test) [FUNCTION]
;;; removes the list of values in task environment.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values to be removes
;;; tag: property
;;; test (key): fonction for the :test option of remove
;;; Return:
;;; new list of values.
;;;
;;; ENV-SET (agent values tag) [FUNCTION]
;;; replace the specified property and values in task environment.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent
;;; values: list of values
;;; tag: property
;;; Return:
;;; new list of values.
;;;
;;; FORGET-ALL (agent) [FUNCTION]
;;; used to wipe-out agent’s memory
;;; Arguments:
;;; agent: agent.
;;;
;;; GET-AGENT-NUMBER-OF-TIMERS "()" [FUNCTION]
;;; builds an a-list with the number of timers of the agents from the
;;; local coterie. An agent has currently one timer per task.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 164

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; Uses the *local-agents* list. Used by the display process,
;;; asynchronous with respect to calls. Arguments:
;;; none
;;; Return:
;;; an a-list, e.g. ((:FAC . 2)(:MUL . 1))
;;;
;;; GET-AGENT-STATES "()" [FUNCTION]
;;; builds an a-list with the state of the agents from the local coterie.
;;; An agent is either :busy if it is executing some task, :idle
;;; otherwise. Uses the *local-agents* list.
;;; Arguments:
;;; none
;;; Return:
;;; an a-list, e.g. ((:FAC . :BUSY)(:MUL . :IDLE))
;;;
;;; GET-ENVIRONMENT (agent) [FUNCTION]
;;; get the environment area contained in the task frame representing the
;;; current task. If no task is present declares an error. To be
;;; called from a requested skill, not an informed one since inform
;;; executes in the scan process. Arguments:
;;; agent: agent.
;;;
;;; GET-TEXT (mln) [FUNCTION]
;;; Get the string corresponding to *language* from multilingual string.
;;; If not present, get the English one, if not present get a
;;; random one. Argument:
;;; mln: a multilingual name (deined in MOSS)
;;; Return:
;;; 2 values: first is a string, second is a language tag
;;; Error:
;;; if not an MLN.
;;;
;;; GET-TIME-LIMIT (agent) [FUNCTION]
;;; obtain the time-limit associated with the executing task. If none,
;;; then returns most positive integer in the system.
;;; Arguments:
;;; agent: agent.
;;;
;;; GET-VISIBLE-AGENT-IDS "()" [FUNCTION]
;;; get the list of ids of the non hidden local agents
;;; Arguments:
;;; none
;;; Return:
;;; a list of agent ids.
;;;
;;; LOCAL-AGENT? (agent-key) [FUNCTION]
;;; test if an agent represented by a keywod is a local agent, i.e., it
;;; is in the *local-agents* a-list.
;;; Arguments:
;;; agent-name: a symbol, presumably an agent name

Jean-Paul A. Barthès©UTC, 2010 N260/Page 165

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; Return
;;; nil or the agent structure
;;;
;;; MAKE-KEYWORD (input) [FUNCTION]
;;; takes a symbol or a string in imput and returns a keyword
;;;
;;; MASTER-TASK? (agent task-id) [FUNCTION]
;;; checks if the task with id task-id is one of the master’s task.
;;; Arguments:
;;; agent: agent
;;; task-id: id of the task to be checked.
;;;
;;; OMAS "()" [FUNCTION]
;;; start function. Set up a special process that creates a control
;;; panel. If the local coterie is connected to the net
;;; (*net-broadcast* is true) then initializes net UDP
;;; interface.
;;;
;;; OMAS-EXIT "()" [FUNCTION]
;;; exits from omas, closing net communications and cleaning whatever
;;; needs to be cleaned.
;;;
;;; PA (pa-key) [FUNCTION]
;;;
;;; PENDING-SUBTASKS? (agent) [FUNCTION]
;;; return the list of pending tasks. If processing an answer message,
;;; then the list contains at least 1, the one corresponding to
;;; the answer being processed. The function must be called from the
;;; process executing the task for which subtasks are checked,
;;; typically from a skill. Arguments:
;;; agent: agent.
;;;
;;; PURELY-LOCAL-SKILL? (agent skill) [FUNCTION]
;;; checks if a skill operates locally, i.e., does not spawn any subtask.
;;; This is verified when there is no dynamic part to the
;;; skills. Returns nil if agent does not have the skill.
;;; Arguments:
;;; agent: agent
;;; skill: skill to check.
;;;
;;; RECEIVING-AGENT ((message message)) [METHOD]
;;; getting the key of the receiver of the message.
;;; Argument:
;;; message: shoulc be a message object
;;; Return:
;;; the key of the sender or nil if message is not a message.
;;;
;;; RAL "()" [MACRO]
;;;
;;; RESET-ALL-AGENTS "()" [FUNCTION]

Jean-Paul A. Barthès©UTC, 2010 N260/Page 166

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; clear all agents, reseting input and output trays, and emptying
;;; tasks; also reseting number of tasks to 0; and clock to 0
;;;
;;; SELECT-BEST-BIDS (agent bid-list) [FUNCTION]
;;; select best bids in a list of bids according to job-parameters found
;;; in :contents. Currently they are: start-time execution-time
;;; quality. For now best bid is the earlier job.
;;; Arguments:
;;; agent: agent
;;; bid-list: list of submitted bids (message objects).
;;;
;;; SEND-INFORM (agent &key (action :inform) to args (delay 0)) [FUNCTION]
;;; prepares a message containing the parameters for issueing an inform
;;; to another agent. Default action is :INFORM.
;;; Does not set up a subtask.
;;; Arguments:
;;; agent: agent
;;; action: (key) skill to be invoked (default: INFORM)
;;; to: (key) receiver
;;; args: (key) arguments to the inform message
;;; delay: additional delay in seconds (default 0).
;;;
;;; %SEND-MESSAGE (message &optional (locally? nil)) [FUNCTION]
;;; does the actual send as follows:
;;; - if the message is emitted by a local agent and the to-field is
;;; not :all-and-me then we remove the from agent from the local
;;; agent list We send a copy of the message to all agents left in
;;; the local-agent-list. When (net-broadcast *omas*) is on, we also
;;; broadcast on the net Argument:
;;; message: message to send (unchecked)
;;; locally? (opt): if T do not send through the network (default is
;;; nil).
;;;
;;; SEND-MESSAGE (message &key (locally? nil)) [FUNCTION]
;;; send a message to other agents.
;;; - If the target is nil then we assume that the agent is the user.
;;; We currently print the answer in the lisp listener (debugging
;;; mode) and show it in the control panel
;;; - if the target is :all then we send the message to all local
;;; agents - if the target is :all-and-me we do the same as for :all
;;; including ourselves - if the target is a list of agents, it must
;;; be a list of agent names, then we send to each agent of the
;;; list - if the target is a single agent name, then we send the
;;; message to the target. In practice we send the message to all
;;; agents, but draw only what was intended in order to keep a
;;; legible graph. In addition we note the current state of the
;;; agents, since posting will be done asynchronously, and thus the agent
;;; state cannot be recovered at that time. Arguments:
;;; message: message to send (either structure or key)
;;; locally? (opt): if true does not send the message through the

Jean-Paul A. Barthès©UTC, 2010 N260/Page 167

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; network Return:
;;; :message-sent
;;;
;;; SEND-SUBTASK (agent &key to action args (repeat-count 0) [FUNCTION]
;;; task-id delay timeout time-limit
;;; (protocol :basic-protocol)
;;; (strategy :take-first-answer) ack type)
;;; prepares a message containing the parameters for issueing a subtask
;;; to another agent. Builds a subtask-frame and adds it to the
;;; subtask-list slot. Checks the :protocol variable and determines
;;; the output message accordingly. Function is executed by a skill
;;; (usually), i.e. by a task process, but it can also be called
;;; from a timeout process (when relaunching a subtask). Arguments
;;; agent: agent sending the subtask
;;; to: (key) agent name
;;; action: (key) name of the skill required
;;; args: (key) arguments for the skill
;;; repeat-count: (key) number of times the task has been repeated
;;; after timeout, default is 0 (first time around)
;;; subtask-id: (key) specific id to identify the task. It should be
;;; unique. by default it is created by OMAS
;;; timeout: (key) timeout delay allowed for executing the subtask
;;; default is none protocol: (key) protocol for the message, default
;;; is :basic-protocol. ack: wants an acknowledgement message
;;; Return:
;;; :done
;;;
;;; SENDING-AGENT ((message message)) [METHOD]
;;; getting the key of the sender of the message.
;;; Argument:
;;; message: shoulc be a message object
;;; Return:
;;; the key of the sender or nil if message is not a message.
;;;
;;; SPEAK (text) [FUNCTION]
;;; when the voice interface is activated, voice the argument text. The
;;; text must not be too long.
;;; Arguments:
;;; text: a string
;;; Return:
;;; nil
;;;
;;; STATIC-EXIT (agent arg) [FUNCTION]
;;; amounts to a noop so far
;;;
;;; SLOW (delay) [FUNCTION]
;;; put the process in a wait state during delay time.
;;; Arguments:
;;; delay: time to wait in second.
;;;

Jean-Paul A. Barthès©UTC, 2010 N260/Page 168

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

;;; SYSTEM-MESSAGE? (message) [FUNCTION]
;;; test if message is a system message, i.e. type is :sys-XXX.
;;; Arguments:
;;; message: to test
;;; Return:
;;; message or nil.
;;;
;;; TIME-STRING (time) [FUNCTION]
;;; get an integer representing universal time and extracts a string
;;; giving hour:minutes:seconds
;;;
;;; DATE-STRING (time) [FUNCTION]
;;; get an integer representing universal time and extracts a string
;;; giving year:month:day
;;;
;;; DATE-TIME-STRING (time) [FUNCTION]
;;; get an integer representing universal time and extracts a string
;;; giving year/month/day hour:minute:second
;;;
;;; AGENT-TRACE (agent-ref text &rest args) [FUNCTION]
;;; function used to trace agent’s behavior.
;;; Arguments:
;;; agent-ref: agent object, agent name or agent-key
;;; text: text for string format
;;; args: arguments for the format variables.
;;;
;;; TRACE-AGENT (agent) [FUNCTION]
;;; set the agent traced property.
;;; Arguments:
;;; agent: agent to trace.
;;;
;;; TEXT-TRACE (&rest ll) [FUNCTION]
;;; used for tracing agents. Used by ACL to trace into a special text
;;; trace window.
;;;
;;; UNTRACE-AGENT (agent) [FUNCTION]
;;; reset the agent traced property.
;;; Arguments:
;;; agent: agent to untrace.
;;;
;;; UPDATE-ENVIRONMENT (agent env) [FUNCTION]
;;; replace the agent environment with env.
;;; Must be called from a task process executing the right task.
;;; Arguments:
;;; agent: agent
;;; env: environment part of the agent.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 169

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 170

Chapter 10

Persistency

Contents

10.1 Introduction . 171

10.2 Overall Approach . 172

10.2.1 Agent Features . 172

10.2.2 Programmer’s View Point . 173

10.3 Implementation Version 0 . 173

10.3.1 Overall Approach . 173

10.3.2 Agent Specifics and Relation to Persistent MOSS Ontologies 174

10.3.3 Non-Persistent Agents . 175

10.3.4 Persistent Agents . 176

10.3.5 Creating or Modifying Ontology or KB Objects 176

10.3.6 Saving Objects . 177

10.3.7 Objects Not to Be Saved . 177

10.3.8 First Time Saving . 177

10.3.9 Implementation for Next Versions . 177

10.4 Changes to the OMAS Code . 177

10.4.1 Creating an Agent . 177

10.4.2 Loading an Agent . 178

10.4.3 Creating or Modifying Ontology Concepts or Individuals 181

10.4.4 Accessing the Ontology and KB objects . 181

10.5 Changes to the MOSS Code . 181

10.5.1 Creating a MOSS object . 181

10.6 Loading a Persistent Agent . 182

10.6.1 First Time . 182

10.6.2 After the First Time . 183

10.1 Introduction

The OMAS (Open Multi-Agent System) platform has been developed over many years to let appli-
cation designers build applications involving cognitive agents easily. It offers several models of agents
and a middleware taking care of the traditional agent machinery like sending messages and applying

171

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

skills. The goal was to develop a tool in which an application could be programmed by adding a
minimum of code in a plugin style.

In order to develop long term applications, one needs persistency. Persistency can be achieved in
different ways:

• saving everything into a flat file from time to time and reloading the file after restarting an
agent;

• saving objects into a relational database like MYSQL;

• saving objects into an object database.

The first solution is valid when the knowledge base of an agent is small. The agent can then have
a goal that saves the world from time to time. However, it does not scale up to large knowledge bases
in particular when they change slowly.

The second solution requires an (easy to do) interface to the relational database. However, a rela-
tional database is a rigid environment that cannot be modified easily. It cannot cope with dynamically
changing classes or objects.

The third solution is ideally suited to save an agent ontology and knowledge base as was demon-
strated by the MLF object base that led to the commercial MATISSE product. Lisp environments offer
the possibility to save objects in an object store (the Wood’s persistent store for MCL, AllegroCache
for ACL).

We use the MOSS persistent store mechanism, adapted to the OMAS environment.

10.2 Overall Approach

OMAS agents are defined in their own name space (Lisp package). We use a single store for all the
agents of an application executing in the same Lisp environment. The database is partitioned in
different spaces, one space per agent.

10.2.1 Agent Features

In addition to the MOSS requirements for each particular space (see N252L-MOSS-8-Persistency),
agents have specific requirements related to the way they are loaded. Indeed, an agent is loaded from
several files:

• the agent file defining the agent and containing skills and goals

• the agent ontology and knowledge base file

• the task file (PAs)

• the dialog file (PAs)

As a consequence, an agent environment contains a number of objects, namely:

• agents (self and others)

• ontology and KB objects

• objects describing skills

• PA conversations (a MOSS object)

• PA conversation states

Jean-Paul A. Barthès©UTC, 2010 N260/Page 172

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• PA task objects

Adding persistency to the agent world raises some problems:
Some objects are created by OMAS while the agent is loaded, e.g. the object representing the agent

(an instance of omas-object), the object describing the skills (instances of omas-skills), conversation and
conversation states. The question is: should we treat such objects as we treat system objects? Another
point concerns the ontology. Currently an agent ontology is defined in the AGENT-ONTOLOGY file.
Should we save it onto disk? If we do so, then we loose all the comments contained in the ontology
file. In addition all changes will occur through the editor, which is OK for small changes, but not for
volume changes.

Another problem with some objects is that they are linked to KB objects. E.g. the object describing
ALBERT is linked an individual person, the owner of the PA. Thus, if we store persons in the KB
and recreate agent objects while loading the agent file, we end up with an inconsistency. The newly
recreated ALBERT object will not have a link onto the person individual and the person individual
may have a link onto a no longer existing object or, worse, onto an object different from the object
linked in the past. A possible solution would be to list all possible conflicts and resolve such conflicts
in a reconciliation phase after an agent is reloaded.

In practice, the problem is more difficult for a PA. Service agents tend to be simpler. Thus, we’d
like to store KB objects and do not mind if the others are recreated when the agent is loaded. Anyway,
if we want to save only the otology and related KB, we should have a more sophisticated stripping
function when saving and restoring entry-points, or reloading agents and skills.

Editing objects conveniently: an important point to consider when saving objects into an object
base is that we loose the commented representation we have in the original text files (comments are
not kept after an object has been loaded into core). Hence, the question is: do we actually want to
keep the task and dialog files or do we store the object into the object base. In the latter case it might
be more difficult to debug the corresponding dialogs.

10.2.2 Programmer’s View Point

From the programmer’s point of view, we want the persistency mechanism to be relatively transparent.
I.e., if an agent has persistent features that apply to its ontology and knowledge base, this must be
transparent to the programmer. The programmer should safely assume that once the agent has been
loaded, all objects are available in memory. However, if objects or concepts are modified, then the
programmer must let the user decide whether they must be saved or not.

10.3 Implementation Version 0

10.3.1 Overall Approach

Several implementations are possible. We shall start with a simple one. The trade off is between what
we want to save in the database and what we want to keep in text files. In practice we have two cases:

• when creating an application, it is easier to work with text files, because we keep updating the
skills, goals. However, if we have a large knowledge base, it is better to keep it on disk.

• when the application is well defined and running, it is more convenient to store everything in
the database, since there will be few modifications to the behavior of the agent.

This leads to the following assumptions:

1. A PA or an XA agent is not persistent; its ontology and KB are recreated each time the PA or
the XA is restarted.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 173

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

2. Only SAs may have a persistent object base, containing ontology and KB.

3. Skill objects (classes: omas-skill, counter, instances, entry-points, attached methods) are created
anew each time one reloads an agent. They are not saved, thus should not be persistently
modified by the application.

4. Ontology concepts, KB objects and related functions (methods) are saved into the object base.

5. When the agent is created the first time around, the KB files are created and the ontology
and associated KB objects are saved in a bulk mode, with the exception of objects related to
ontologies.

6. All new concepts and KB instances are created by program, i.e. they are not defined in the files
being loaded (like AGENT-ONTOLOGY.lisp) or created or modified through the MOSS editor.

7. Objects are loaded as needed1 by the QUERY mechanism, or by some kernel methods2.

This has the following consequences:

1. entry-points should be stripped of the system items (including omas-skills).

2. After reloading the system, system entry points should be augmented with application data.

3. Saving a method should save the corresponding function.

4. Loading a method should load the corresponding function.

5. Saving a property should save the generic property.

6. Loading a property should load the generic property.

10.3.2 Agent Specifics and Relation to Persistent MOSS Ontologies

MOSS has already a mechanism to keep persistent ontologies and knowledge bases. The mechanism
can be used for agents. However, an agent has additional objects in addition to ontologies, namely:

• the concept of agent and the individual representing itself

• the concept of skills and the individual skills

• the concept of goal and the individual goals

The concepts of agent, skill, and goal are independent of the changes that can occur when modifying
an agent. Hence, the corresponding classes and properties can be saved onto disk. However, instances
may change whenever the agent is modified. Since it is easier to modify an agent in a text file than in
the object editor, we do not save the instances of agent, skill and goal, but recreate them each time an
agent id reloaded. Consequently, the counters of the agent, skill and goal classes must be reset when
saved into the database.

In addition, during the lifetime of the agent information could be attached to the instance of agent
or to the instances of skills or goals. We assume that this is not the case, i.e. the instance of agent and
the instances of skills and goals do not change during the lifetime of an agent. Note that the lifetime
of an agent is limited to a session3. The major consequence is that we rebuild the instances whenever
we reload the agent. Now, if we want to describe an acquaintance or an external skill or goal we could

1When they are not in core.
2In practice by service functions called by the kernel methods.
3A sesion can last several months.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 174

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

use specific concepts like EXTERNAL-AGENT, EXTERNAL-SKILL or EXTERNAL-GOAL, which
is not done in this implementation.

Summarizing, we have two cases: (i) ”non persistent” agents, among which PAs, XAs, and some
SAs, and ”persistent” agents, saving ontology and knowledge base. We detail both cases.

10.3.3 Non-Persistent Agents

Such agents do not save anything on disk. However, they must initialize their name space with the
relevant concepts, connected to the MOSS representation system. This uses the MOSS ontology
mechanism, extending it to include Agent, Skill, and Goal concepts. Several cases must be examined:
(i) loading an agent; (ii) leaving the system.

Loading a Non-Persistent Agent

An agent defines its ontology in its own namespace. In addition to the concepts of its ontology defined
in the relevant files (ontology, task files), it has the concept of agent, with an instance of itself, the
concept of skill with the corresponding instances (created by defskill or make-skill), the concept of
goal with the corresponding instances (created by defgoal or make-goal). Those specific classes must
be created before the skills and goals are defined, thus when executing the defagent macro or the
make-agent function.

Thus, when a new agent is loaded in its own package we call the moss::%create-new-package-
environment function to create an ontology stub. Assuming the agent is called ADDRESS, the function
creates the following objects in the agent package:

• a proxy for the MOSS system: $E-SYS, system ID

• a local system name ADDRESS-MOSS-SYSTEM (entry point)

• an instance hosting the local environment: $E-SYS.1

• a local name for the instance: ADDRESS-MOSS

• a local class proxy for methods: $E-FN

• a local version of *none* and *any* classes and counters (for *none*)

• variables *moss-system* and *ontology* (synonym) with value $E-SYS.1

Now, in addition to that, we must create specific agent classes and instances. To do so, we call
the omas::%create-moss-agent-classes agent method that adds:

• a class AGENT

• a class SKILL

• a class GOAL

• =summary methods for agent, skill and goal

Killing the Agent

When the agent is killed or crashes or commits suicide, nothing special happens. Next time around,
all data structures are created anew when loading the agent.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 175

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

10.3.4 Persistent Agents

A service agent with a persistent database is defined as:

(defagent :test :redefined t :persistency t)

This initializes the persistency slot of the agent structure to a non NIL value. While loading the rest of
the agent files, the system checks if the database exists prior to loading the ontology. If the database
does not exists the system issues a warning, creates it4 and initializes the agent partition. It then
reads the ontology files and uploads all object definitions into the database. The database stays open
and the global entry

(OMAS-DATABASE *OMAS*)

is set to the pathname of the file OMAS-AGENTS.odb.
We have then two cases: (i) the agent is loaded for the first time and its partition in the database

has not yet been created; and (ii) the agent was created, and is reloaded for some reason.
Determining whether the agent is loaded for the first time consists in checking: (i) if the OMAS-

AGENTS.odb file exists and if the partition corresponding to the agent key exists. This is done by
the moss::db-ready? function. If it exists, then we concluded that we are not loading the agent for the
first time. Example:

(moss::db-ready? "OMAS-AGENTS" :ADDRESS *database-pathname*)

Loading an Agent for the first time

After creating the MOSS stub and agent classes like in the non persistent case, we must create the
partition in the OMAS-AGENTS database, and save a minimal amount of data. Ontology and KB
will be later saved after loading the corresponding files. When the OMAS-AGENT.odb file does not
exit in the application folder, we create it, issuing a warning.

When saving the ontology, a special care must be taken concerning macros or service functions
related to the ontology or the KB.

Loading a Recorded Persistent Agent

In that case, we simply bring the minimal number of objects into core from the database. When
restarting an agent, e.g. after a crash, then we reload the agent5, recreate all system objects, and
then we must reconciliate such objects with the ontology concepts and KB objects on disk, regarding
omas-agent and omas-skills classes and individuals, and entry-points.

Exiting the Agent Environment

If for some reason, we leave the agent environment (quit or crash), we must save some objects into
the database.

10.3.5 Creating or Modifying Ontology or KB Objects

When creating or modifying objects of the ontology or the KB, the object base should be updated.
The simplest way to do it is to keep a list of the objects that have been modified, and when the creation
or modification is finished, to update the object base by overwriting existing objects. A specific slot

4Remember that it is a global database containing information for all the agents of an application executing in the
same Lisp environment.

5Done by the load-agent function in the omas-W-init.lisp file.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 176

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

of the agent structure indicates if a transaction in on-going or if each created or modified object must
be saved without delay.

In practice, the list of modified objects may be stored in a particular property of the agent structure
(to-save), and emptied when the saving is completed. To be safe, the objects to be modified should
be saved first into a temporary flat file in case of crash during the operation (not done currently).

10.3.6 Saving Objects

An object is saved by sending it a =save message that does the adequate thing for each type of objects,
namely:

- concepts are saved normally

- properties, entry points are saved normally, generic properties are checked for existence (this is
probably not necessary)

- methods are saved together with corresponding functions

- nothing special for individuals, except that individual agents, skills or goals are not saved

- macros and functions, must be saved as text

10.3.7 Objects Not to Be Saved

Objects that we want not to save are marked with a (:no-save t) property on their p-list. For example,
we do not want to save objects representing skills since they are recreated each time an agent is
loaded6.

10.3.8 First Time Saving

When saving for the first time, objects to be saved are obtained from the local *moss-system* object.
All system objects are removed as well as system back pointers in entry points. Then, the whole lot
is saved onto disk one object at a time.

10.3.9 Implementation for Next Versions

Next versions could be more sophisticated, e.g. working on text files, loading them and rebuilding
them for concepts, and storing only the KB individuals.

10.4 Changes to the OMAS Code

10.4.1 Creating an Agent

defagent takes one more parameter: persistent

(defMacro defagent (name &key redefine hide learning package language context
version-graph master persistent)

"creates an agent, puts it onto the *agents* list, name must be an unused symbol ~
unless the agent is to be redefined with the option (:redefine t).Arguments:

name: name given to the agent (e.g. MUL-3 or keyword :MUL-3)
redefine: (key) if t allows the agent to be redefined

6One must be careful to cook up unique entry points for such objects. Otherwise the entry point is shared and saved,
which will introduce an inconsistency in the database.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 177

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

hide: (key) if true, hide the agent from the user (defaul is nil)
learning: (key) if t, allows the agent to remember results of tasks (default ~

is nil)
package (key): a keyword specifying the package for the agent name

(if the agent name is a keyword).
language (key): unused
context (key): unused
version-graph (key): unused
master (key): applies to staff agents to specify the master PA
persistent (key): specify that the agent has an object store for ontology and KB"

This has consequence onto the make-agent function:

(defun MAKE-AGENT (name &key redefine hide master learning (package *package*)
(language (or *language* :en))
(context (or moss::*context* 0))
(version-graph (or moss::*version-graph* ’((0))))
persistency)

The agent structure must have one more slot: persistency. We add it to the self part of the structure.

10.4.2 Loading an Agent

To load an agent (AAA) we click on the LOAD button of the init window menu, which triggers the oi-
load-on-click function that in turn calls the load-agent function7. The steps in the load-agent function
are the following:

1. We load the agent file (e.g. :ADDRESS). At that time, the agent package is created and the
make-agent function is called to create the agent structure. Here we have two cases: (i) the agent
is created for the first time and the database does not exist; or (ii) the agent is being reloaded
(e.g. after a crash or for a new session) and the database already exists. When the database
does not exist, one must create it and create the agent MOSS environment. When the database
exists, we must reinitialize the environment8.

When executing make-agent, the following actions are taken:

• the agent name and key are created; the agent structure is created, initializing key, name,
and persistency slots; the agent-being-loaded slot of the *omas* global parameters is initial-
ized with a pointer to the agent structure;

• the moss-make-agent function is called, which leads to the following steps:

– an agent name (e.g. ADDRESS-AGENT) is created as well as the *moss-system* local
variable i.e. in the agent package.

– if the agent is not persistent, the %create-moss-classes-and-proxies is called. The follow-
ing objects are created:
(a) the MOSS-SYSTEM local class;
(b) an instance of MOSS-SYSTEM;
(c) the associated objects are recorded into the *moss-system* local object;
(d) a counter for orphans, recorded into the *moss-system* local object;

7Defined in the W-init file).
8A possible approach would be to download the whole database at that stage, so that we have the ontology and KB

in core, which simplifies the following processing. However, this approach has not been followed.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 178

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(e) a local class for methods linked to the moss::$FN class;
(f) a class for skills;
(g) a class for agents;
(h) summary methods for agents and skills;
(i) the agent object is created. The MOSS id of the agent is then inserted onto the

p-list of the agent key (property :id) and returned.
– if the agent is persistent and its database exists, then and we open the database, load

the agent MOSS object and the agent MOSS environment (*moss-system* defined in
the agent package); initialize the base slot of the agent; let the base open; put the agent
object id onto the p-list of the agent key; return the id. Because the set of skill may
have been changed, we must re-create the skill concept; but we must not save the skill
concept nor the skill instances, since they are reloaded each time the agent is re-loaded.
The =summary method for the skills must not be saved. We can do that by putting
the object ids onto the *objects-not-to-be-saved* list (see Section 10.4.2).

– if the agent is persistent and the database does not exist, we do like in the non persistent
case.

When exiting the moss-make-agent function, the *moss-system* environment has been de-
fined, and contains the minimal set of objects. Indeed, when loaded from disk the MOSS
system entry-points have been stripped, since they are recreated each time OMAS is loaded.

• then, returning to the make-agent function, the agent structure is filled with the name of
the ontology-package, language, context, version-graph, name of the agent is associated
with the CLOS structure.

• Then the default skills are added, creating a new MOSS object for each skill, and linking
it to the agent object.

• then the agent is inserted into the list of local agents, the main and scan processes are
created, the agent window is refreshed and the make-agent function returns.
At the end of the make-agent function, the agent CLOS structure has been initialized, the
local *moss-system* contains either a minimal environment or the set of all local references
including ontology and knowledge base (when loaded from the existing database), but still
not the MOSS system entry-points.

• After executing the make-agent function, the rest of the agent file contains macros, functions,
and user-defined skills that are added to the local *moss-system* environment.

After the agent file has been loaded, in case of a persistent agent being loaded for the first time,
the database has not been created yet. This is done in the following steps of the load-agent
function.

2. Once the agent file loaded, we must load the ontology file, unless we have a persistent agent
with an existing database (in which case the database is opened and the base slot of the agent
contains the handle to the database). When the database was already created, we need only
add the MOSS system entry-points.

In case of persistency9 we face several cases:

• If the database already exists, then open it and initialize the base slot of the agent structure
by calling the load-initialize-environment function. The function does the following:

9To recognize if the agent is persistent or not, we use the agent-being-loaded slot of the *omas* global parameters
that contains a pointer to the agent structure that has just been created. Thus, we can check the base slot of the agent
structure.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 179

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

– loads and compiles variables;
– loads and compiles macros;
– loads and compiles methods;
– loads and compiles service functions
– merges the entry point list with MOSS entry points. Here the choice is to record all

accessible entry points into the local *moss-system* environment.
• if the agent is persistent but the database does not exist, we must create it, load the ontology

file, and save the world10.
– we create the database with the load-agent-create-database function;
– we load the ontology file with the moss::m-load function that allows forward references;
– we save the world by using the moss =save-application-ojects-in-package method.

• if the agent is not persistent, we simply load the ontology file.
• finally, we merge the MOSS system entry points into the *moss-system* local environ-

ment using the load-agent-fuse-moss-entry-points function that adds the MOSS system entry
points to the local environment entry points, updating the *moss-system* variable. It does
not seem to matter that the resulting entry-point list in *moss-system* contains entries that
are not accessible from the agent package.

3. Then for service agents we have no task nor dialog files.

One must realize that entry points contain references to all objects in the Lisp environment, regardless
of their package.

Possible Problems

When loading an agent, we recreate the agent class, the agent instance, the model of skills and the
instances of skills. However, in previous sessions the instance of the agent may have been modified,
e.g. by adding more information concerning the agent acquired dynamically. On the other hand the
newly create instance of agent is linked with the newly created skills. In addition the counter attached
to the model of skills may not be right.

A possible way around this problem would be:

• to load the instance of agent, e.g. ADDRESS-AGENT in make-agent;

• not to save the skills nor the skill class and skill counter;

• to remove the skills from the instance of the agent when saving it.

This sounds a little complex. One could also:

• not save the skills nor the skill class and skill counter;

• use a profile object for storing all additional features of the agent;

• not save the agent, nor the moss-agent class.

An agent MOSS representation and associated skills should be recreated each time the agent is loaded.
Thus, they should not be saved into the database...

Not saving objects into the database can be done by defining =save own-methods that do nothing.
But we cannot save the =save method...

A better solution is to define a global *objects-not-to-be-saved* list and record the objects that we
want to recreate each time (SKILL concept, SKILL counter, agent instance...).

10When saving the world at that stage, the *moss-system* local environment does not contain yet the system entry
points.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 180

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Algorithm for saving ontology and KB

One first filters the application objects obtained from the local *moss-system* (by checking the package)
and sends a =save message to all of them.

Algorithm for reconciliation

One gets all the entry-points from moss::*moss-system* and merge application information as read
from the object base.

10.4.3 Creating or Modifying Ontology Concepts or Individuals

Creating or modifying ontology concepts can be done by MOSS functions or through the MOSS
editor. We must tell MOSS to save the objects. When creating a class this could be done by adding
a persistency option to the creation functions.

10.4.4 Accessing the Ontology and KB objects

When referring to the Ontology or KB objects (e.g. through get functions), they could be on disk.
Thus, if an object key (ID) is unbound, one must try to load the corresponding object from disk before
declaring an error. Such a check must be done in many functions and methods of the MOSS system.

10.5 Changes to the MOSS Code

10.5.1 Creating a MOSS object

A number of MOSS functions are creating new objects, namely:

- %make-concept

- %make-generic-tp

- %make-ep-from-mln

- %make-inverse-property

- %create-entry-point-method

- %make-prop-get-accessor

- %make-prop-set-accessor

- %%make-tp-from-ids

- %make-generic-sp

- %make-global-sp

- %%make-sp-from-ids

- %make-sp-raw

- %make-concept

- %make-virtual-concept

- %make-method

Jean-Paul A. Barthès©UTC, 2010 N260/Page 181

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

- %make-ep

- %build-method

- %make-ownmethod

- %make-universal

- %%make-instance-from-class-id

- %make-object

- %create-basic-new-object

- %create-basic-orphan

- =new methods (should not create objects directly, but use service functions)

- =new-version

We can do either one of two things;

- create a new object through a function that will take care of saving the object if needed

- add a function to save the newly created object.

The second option is easier to implement and requires only a key and object value to be saved on the
edit list.

10.6 Loading a Persistent Agent

This section details the main function calls when a persistent agent is loaded.

10.6.1 First Time

The first time around the database (OMAS-AGENTS.odb) is not initialized. Either it does not exist,
or the agent area does not exist. Remember the database is located in the application folder.

load-agent /cl-user

• get agent filename path

• set (agent-being-loaded *omas*)

• load agent file (e.g. AAA.lisp)

– call make-agent /agent-package

– create CLOS agent structure

– call agent-set-moss-environment

∗ set (persistency agent) to t

∗ compute database pathname (OMAS-AGENTS.odb in application folder)
∗ if database does not exist

· create database if does not exist
· record database pathname into (omas-database *omas*)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 182

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

· call moss::%create-new-package-environment, creating the MOSS stub in the agent
package

· call agent-create-moss-classes
create OMAS-SKILL, OMAS-GOAL, OMAS-AGENT concepts
mark concepts for not saving instances
mark counters to be saved with value 1
create instance of agent
save MOSS instance id into (moss-ref agent)

∗ if database exists
· open database
· if area does not exist

create it
record database pathname into (omas-database *omas*)
call moss::%create-new-package-environment, creating the MOSS stub in the agent
call agent-create-moss-classes (same as above)
return

· if area exists... (this does not happen the first time an agent is loaded)

• first time around: (persistency agent) is not :installed

• get agent-package from (ontology-package agent)

• compute ontology filename path

• load ontology using m-load, catching MOSS errors

• set package to agent package

• initialize moss::*database-pathname* from (omas-database *omas*)

• initialize moss::*application -package* from agent-package

• send a =save message to the *moss-system* local variable

• ... should insert a commit here

• reset (agent-being-loaded *omas*)

10.6.2 After the First Time

When the agent data have been saved into the database, loading the agent is done somewhat differently.

load-agent /cl-user

• get agent filename path

• set (agent-being-loaded *omas*)

• load agent file (e.g. AAA.lisp)

– call make-agent /agent-package

– create CLOS agent structure

– call agent-set-moss-environment

∗ set (persistency agent) to t

Jean-Paul A. Barthès©UTC, 2010 N260/Page 183

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

∗ compute database pathname (OMAS-AGENTS.odb in application folder)
∗ open database, area exists

· reload MOSS environment, calling moss::db-init-app

· recreate instance of agent being loaded: $E-OMAS-AGENT.1
· record database pathname into (omas-database *omas*)
· set (moss-ref agent) to $E-OMAS-AGENT.1
· set (persistency agent) to :installed (to avoid loading ontology again)
· return

• reset (agent-being-loaded *omas*)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 184

Chapter 11

Representation Language

OMAS uses the MOSS representation language. MOSS implements PDM (Property Driven Model).
It is a frame-based representation language based upon the idea of default rather than prescription.
MOSS allows defining ontologies and is used by the agents in a seamless way, in their ontologies, tasks,
or dialogs.

MOSS is described in a number of documents (that will be eventually regrouped into a user’s
manual) that can be found at:

http://www.utc.fr/~barthes/MOSS

185

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 186

Chapter 12

OMAS vs JADE

Contents

12.1 Introduction . 188

12.1.1 Main Purpose of the Comparison . 188
12.1.2 Problem 0 . 188
12.1.3 Global Remarks . 188
12.1.4 Content of the Chapter . 188

12.2 Simple Approach to Problem 0 . 189

12.2.1 Overall Approach . 189
12.2.2 Programming the Multiply Agent . 189
12.2.3 Programming the Factorial Agent . 193
12.2.4 Launching the Platform . 198
12.2.5 Loading New Agents . 200
12.2.6 Executing Agents . 201
12.2.7 Debugging Agents . 202

12.3 Handling Messages . 202

12.3.1 Receiving Messages . 203
12.3.2 Recovering the Message Content (simple case) 204

12.4 Discovering Services . 204

12.4.1 Service Registration . 205
12.4.2 Broadcast . 206

12.5 Content Language . 206

12.6 Goals and Skills vs. Behaviours . 208

12.6.1 Comparing JADE and OMAS . 210
12.7 Contract-Net . 210

12.7.1 JADE Contract-Net . 210
12.7.2 OMAS Contract-Net . 211
12.7.3 Comparison JADE/OMAS . 212

12.8 Handling Time . 212

12.8.1 JADE Delays . 212
12.8.2 OMAS Delays . 212
12.8.3 JADE Timeouts . 213
12.8.4 OMAS Timeouts . 213
12.8.5 JADE Time Limits . 214

187

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.8.6 OMAS Time Limits . 214

12.8.7 JADE/OMAS Comparison . 214

12.9 Executing Several Tasks Concurrently . 214

12.9.1 JADE Concurrency . 214

12.9.2 OMAS Concurrency . 215

12.10Ontologies . 216

12.10.1 JADE Ontologies . 216

12.10.2OMAS Ontologies . 216

This chapter describes contains a comparison between the JADE and the OMAS platform. It uses
the JADE 3.1 platform as available in 2005 and should be updated with the new releases of the JASE
platform.

12.1 Introduction

12.1.1 Main Purpose of the Comparison

JADE is an interesting test platform since it implements the FIPA standards. As such it is intended
to develop web-oriented applications. OMAS on the other hand is a non-standard platform developed
for implementing complex intelligent agents. It is therefore interesting to compare the two approaches,
starting with a simple problem like Problem 0, and then comparing various features.

12.1.2 Problem 0

Problem 0 was proposed to test the basic mechanisms of the different multi-agent platforms. It gives
information about how agents are programmed, how messages are sent, and how agents are organized
in the platform.

Problem 0 is defined very easily. An agent named Factorial offers a service, namely computing
factorials when given an integer. However, the agent does not know how to multiply two numbers and
must subcontract such multiplications to multiplying agents.

12.1.3 Global Remarks

The global approach in JADE is to develop classes of the agents one wants to use. Such classes are
then compiled and the JADE environment instantiates agent classes as needed (e.g., by means of the
GUI). An instance of a class in JADE has some goal(s) referred to as behaviours, and once the goals
are achieved the agent is terminated. Thus, an agent usually lives only until achieving some result.

The global approach in OMAS is different. Each agent is a separate entity. It is not an instance
of a class. An agent, when created lives until it commits suicide, or somebody kills it. An agent has
skills allowing it to perform services when asked. An agent may also have goals. However, when the
goals are achieved, the agent does not terminate; it stays there, waiting for something else to do.

12.1.4 Content of the Chapter

The document contains several parts, each describing a particular approach to the problem of factorial.
It starts with the simplest implementation, considering approaches progressively more complex.

• Section 2 describes one of the simplest configurations: we have a single FACTORIAL agent
and 2 MULTIPLIER agents. Whenever FACTORIAL requires computing a new factorial, it
subcontracts multiply operations to one of the two agents randomly, until the result is obtained.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 188

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• Section 3 studies the question of message handling, i.e., how messages are selected and processed
when received by an agent.

• Section 4 studies the problem of registering and discovering services.

• Section 5 studies the problem of content language.

• Section 6 studies the problem of goals and behaviours.

• Section 7 studies the Contract-Net protocol.

• Section 8 studies the problem of handling time.

• Section 9 studies the problem of concurrency

• Section 10 studies the problem of ontologies and how they are used in each platform.

• Section 11 compares the platform execution environment and the debugging tools.

12.2 Simple Approach to Problem 0

12.2.1 Overall Approach

In the simplest approach, we develop a single FACTORIAL agent and two MULTIPLY agents. When-
ever FACTORIAL requires computing a new factorial, it subcontracts multiply operations to one of
the two MULTIPLY agents randomly, until the result is obtained.

The following sections detail the global approach for each platform.

JADE

We create two classes: one for FACTORIAL agents, one for MULTIPLY agents. Each class will
contain the proper behaviours. The FACTORIAL agent will take its argument from the initialization
command line (or from the creation menu).

Each class is developed as a Java file and compiled with the JADE library. The resulting xxx.class
files will be used by the JADE platform. Compilation produces a number of class files, one for each
class and embedded classes.

OMAS

We create three separate agents, each with its own behavior. The resulting files are put into an
application folder, called THOR-FAC where THOR is the name of the local coterie (local platform),
and FAC is the name of the application. Each agent file contains all the required functions for the
agent to execute. In addition, the THOR-FAC folder contains a file names agents.lisp that contains
the list of the agents we want to load, and optionally a file named Z-MESSAGES.lisp containing
predefined messages that will be available in the debugging environment.

Compiled files are put into a folder named cfsl for MCL (Macintosh) or fasl for ACL (Windows).
Such folders are also contained in the THOR-FAC folder.

12.2.2 Programming the Multiply Agent

JADE

The Java code for the MULTIPLY agent class (named here MulAgentv0) is shown Figure 1. The class
is an extension of the Agent class and contains several parts.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 189

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

A setup function initializes the agent by adding a specific behaviour named MultiplyServer defined
thereafter. A takeDown function is defined to be executed when the agent terminates.

The MultiplyServer inner class defines the MULTIPLY agent behaviour as cyclic. Whenever a
message comes in, the agent reads it [myAgent.receive()] and assumes it contains a string representing
two integers separated by a semicolon. It then converts that into two integers, multiply them and
returns an answer as a string representing the product, using an INFORM performative.

import jade.core.Agent;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

import java.util.*;

public class MulAgentV0 extends Agent {
// Agent Multiply receives 2 numbers, multiplies them and returns the result

// Put agent initializations here
protected void setup() {
// Add the behaviour serving queries from Fac agents
addBehaviour(new MultiplyServer());
}

// Agent clean-up operations here
protected void takeDown() {
// Printout a dismissal message
System.out.println("Mul1-agent"+getAID().getName()+" terminating.");
}

/**
Inner class MultiplyServer.
This is the behaviour used by Mul agents to serve incoming requests
Tales the incoming numbers and return an INFORM message with the answer.

*/
private class MultiplyServer extends CyclicBehaviour {
public void action() {
ACLMessage msg = myAgent.receive();

if (msg != null) {
// REQUEST Message received. Process it
String argString = msg.getContent();
ACLMessage reply = msg.createReply();

int arg1,arg2;
// recover args from string "arg1;arg2"
arg1 = Integer.parseInt(argString.substring(0,argString.indexOf(";")));
arg2 = Integer.parseInt(argString.substring(1 + argString.indexOf(";"),argString.length()));
System.out.println("Mul-Agent; arg1: "+arg1+" ; arg2: "+arg2);

reply.setPerformative(ACLMessage.INFORM);
reply.setContent(Integer.toString(arg1 * arg2));

myAgent.send(reply);

Jean-Paul A. Barthès©UTC, 2010 N260/Page 190

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

}
else {

block();
} // end message test

} // end action
} // End of inner class MultiplyServer

OMAS

The OMAS Lisp code contains several parts.
A first part defines a name space (:mul-1) for the agent, so that each agent can use its own

code without fearing to interfere with other functions of other agents. This requires some obscure
programming for compiling and loading properly (use of eval-when function).

The agent is defined by the omas::defagent macro. Its skills are defined in skill sections by means of
the defskill macro. The only skill section specifies a :multiply skill, implemented by the static-multiply
function. A static function corresponds to an atomic action. It does not involve subcontracting as
will be the case for FACTORIAL.

Auxiliary lines involving the defparameter form are not necessary. They are used by a manager
agent to maintain this file automatically if needed.

;;;===
;;;04/04/04
;;; AGENT MUL-1
;;;
;;;===

(eval-when (compile load eval)
(unless (find-package :mul-1) (make-package :mul-1)))

;;; define name in the loading environment, so that it can be used without
;;; prefix, export it to the agent package

(in-package :mul-1)

(eval-when (compile load eval)
(use-package :omas)
(export ’(mul-1))) ; reexport it for use in other packages

(omas::defagent mul-1)

;;; =============================== skill section ==============================

(defParameter *mul-1-multiply-functions*
’((:functions static-multiply)))

(defskill :multiply mul-1
:static-fcn static-multiply)

(defun static-multiply (agent environment n1 n2)
(declare (ignore environment))
(sleep (1+ (random 2))) ; slow down execution so that we can see something

Jean-Paul A. Barthès©UTC, 2010 N260/Page 191

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(static-exit agent (* n1 n2))) ; return result to caller

:ENV

#+MCL (in-package "COMMON-LISP-USER")
#+ACL (in-package "COMMON-GRAPHICS-USER")

(eval-when (compile load eval)
(use-package :MUL-1))

;;; ================================= environment ==============================

(defParameter *mul-1-environment*
’((:skills :multiply)))

Comparing JADE and OMAS

On this simple agent several points may be compared:

• Nature of the Agent File

The JADE file defines a class. JADE agents are instances of this class. The OMAS file defines
a single agent. Thus OMAS will require another file for the second MULTIPLY agent that may
be similar or completely different from the first one.

JADE agents are transient by default, unless a specific behaviour keeps them alive. OMAS
agents are persistent until something kills them.

• Behaviours and skills

The JADE agent declares a behaviour, the OMAS agent declares a skill. The behaviour of the
Jade agent needs to be cyclic so that it can serve repeated requests. The skill of the OMAS
agent is persistent until explicitly removed.

JADE behaviours are implemented by classes, OMAS skills are implemented by functions.

• Messages

The JADE agent explicitly retrieves the message [myAgent.receive()]. Retrieving messages in
OMAS is done automatically.

The JADE agent extraction process returns any message addressed to the agent1, thus we assume
that the messages are MULTIPLY requests and are well formatted. The OMAS system handles
the selection process, calling the skill only when needed. All other messages are ignored.

The JADE agent constructs an explicit INFORM message for returning the answer to the calling
agent. The OMAS agent uses the static-exit API function and the answer message is built
automatically and returned to the caller.

• Message Content

In the simple approach the JADE agent must decode the content of the message, i.e. the string
obtained by [msg.getContent()]2. The OMAS agent gets the arguments of the message as the
last arguments of the skill.

1We will see later that a message pattern can be used to retrieve only selected types of messages.
2We will see that an ontology can be used to transform the content into a Java object.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 192

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

• Processing the Message

The JADE agent executes the behaviour in the single agent thread. Thus, it is necessary for the
agent to let other behaviours work by executing a [block()] instruction. However, the following
incoming message will wake up all behaviours. The OMAS agent does not have this problem in
the sense that the skill is executed in a separate thread. In addition a timer will kill the thread
after one hour by default to prevent unfinished processes to clutter the environment.

• Name Space

The JADE agent operates by default in its own object space using private variables, the OMAS
agent operates in its own package, which makes programming somewhat more obscure to people
not familiar with packages.

12.2.3 Programming the Factorial Agent

The FACTORIAL agent is more complex than the MULTIPLY agent.

JADE

The Java code for the FAC agent is given Figure 3. It differs from the code for the MULTIPLY agent
as follows.

We set up a list of known MULTIPLY agents in the mulAgent Table.
The setup function gets the FACTORIAL argument from the command line. We thus need to

decode it, and if nothing is there, we quit.
The most important change is in the Behaviour. The function is called initially and then again,

whenever the agent receives a message. The first time we call the function, we check if nn (the target
factorial to compute) is less than or equal to 2. If so we are finished and quit. Otherwise we send
a REQUEST message to one of the MULTIPLY agents picked randomly. We update nn. When the
answer comes back, unless nn is 1, we send a REQUEST to multiply the returned result with nn to
one of the MULTIPLY agents picked randomly. When we are finished, we print the result and set
step=2, which terminates the FACTORIAL agent (through the done() function that returns true).

import jade.core.Agent;
import jade.core.AID;
import jade.core.behaviours.*;
import jade.lang.acl.ACLMessage;

public class FacAgentV0 extends Agent {
/* Fac agent reads a number from the input and then tries to compute its factorial

by subcontracting multiplies to the multiplying agents */

// The list of known multiplying agents
// This means that fac must be loaded after mul1 has been installed...
private AID[] mulAgents = {new AID("mul0", AID.ISLOCALNAME),

new AID("mul1", AID.ISLOCALNAME)};
int nn;

// Put agent initializations here
protected void setup() {
// Printout a welcome message
System.out.println("Hello! Fac-agent "+getAID().getName()+" is ready.");

Jean-Paul A. Barthès©UTC, 2010 N260/Page 193

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

// Get the factorial number as a start-up argument
Object[] args = getArguments();
if (args != null) {

nn = Integer.parseInt((String)args[0]);
System.out.println("Fac; factorial to compute is: "+nn);

// Perform the request
this.addBehaviour(new RequestPerformer());

}
else {

// Make the agent terminate
System.out.println("No number was specified");
doDelete();

} // end test of the initial argument
} // end setup

// Put agent clean-up operations here
protected void takeDown() {
// Printout a dismissal message
System.out.println("Fac-agent "+getAID().getName()+" terminating.");
}

/**
Inner class RequestPerformer.
This is the behaviour used by Fac agents to compute factorials.

When nn <= 2 return nn;
Otherwise, send nn and nn-1 to be multiplied by the first MulAgent
and set nn to nn-2.
Wait for answer.
When result comes back if nn <= 1, then pront the result,

Otherwise, send result and nn to be multiplied, and set nn to nn-1.
*/

private class RequestPerformer extends Behaviour {
private int result; // The result returned by mulAgent
private int step = 0;
private int agentNb = 0; // random index of agent to be called
private String contentString;

public void action() {
switch (step) {
case 0:

// test the value of nn; when 2 or less, return
if (nn <= 2) {

System.out.println("Result is: "+nn);
// give up
myAgent.doDelete();

}
else {

Jean-Paul A. Barthès©UTC, 2010 N260/Page 194

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

// Ask first agent to multiply
ACLMessage request = new ACLMessage(ACLMessage.REQUEST);

// Prepare message content
contentString = new String(Integer.toString(nn--)+";"+Integer.toString(nn--));
agentNb = (int) Math.floor(Math.random() + 0.5);
System.out.println("Factorial; sending: "+contentString+" to mul"+agentNb);

request.setContent(contentString);
request.addReceiver(mulAgents[agentNb]); // send to first agent of the list

request.setConversationId("factorial");
request.setReplyWith("request"+System.currentTimeMillis()); // Unique value
myAgent.send(request);
step = 1; // second time around we go to next block

}
break;

case 1:
// Receive result from multiply agent
ACLMessage reply = myAgent.receive();
if (reply != null) {

// Reply received
System.out.println("Factorial; received a result: "+reply.getContent());
// check whether we are through

if (nn <= 1) {
// We are through print fimal result and quit
System.out.println("Final result: "+reply.getContent());
myAgent.doDelete();
step = 2;

}
else { // not finished yet

ACLMessage newRequest = new ACLMessage(ACLMessage.REQUEST);

contentString = new String(reply.getContent()+";"+Integer.toString(nn--));
agentNb = (int) Math.floor(Math.random() + 0.5);
System.out.println("Factorial; sending: "+contentString+" to mul"+agentNb);

newRequest.setContent(contentString);
newRequest.addReceiver(mulAgents[agentNb]); // send to first agent of the list

newRequest.setConversationId("factorial");
newRequest.setReplyWith("request"+System.currentTimeMillis()); // Unique value
myAgent.send(newRequest);
} // end if

} // message test
else {

block();
} // end of message test

break;

} // end of switch

Jean-Paul A. Barthès©UTC, 2010 N260/Page 195

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

} // end of action

public boolean done() {
return (step == 2);

}

} // End of inner class RequestPerformer
}

OMAS

The OMAS agent does the same thing as the JADE agent. The difference with the MULTIPLY skill
is now that the :dumb-fac skill has two parts (a static part and a dynamic part. The static part is
executed the first time around and the dynamic part is executed whenever the agent gets an answer
to a subtask.

The static part of the skill sends a subtask to one of the MULTIPLY agent chosen randomly.
It then keeps the updated value of nn in its environment (a user-formatted area to be used while
executing a skill).

When the final result is obtained, the skill exits through the API dynamic-exit function, which
returns the result to whoever asked for it.

;;;===
;;;04/07/22
;;; AGENT FAC
;;;
;;;===

(eval-when (compile load eval)
(unless (find-package :fac) (make-package :fac)))

;;; define name in the loading environment, so that it can be used without
;;; prefix, export it to the agent package

(in-package :fac)

(eval-when (compile load eval)
(use-package :OMAS) ; use keyword to avoid creating OMAS symbol in package FAC
(export ’(fac))) ; reexport it for use in other packages

(omas::defagent FAC :redefine t)

;;; =============================== skill section ==============================

(defParameter *fac-dumb-fac-functions*
’((:functions static-dumb-fac

dynamic-dumb-fac)))

(omas::defskill :dumb-fac FAC
:static-fcn static-dumb-fac
:dynamic-fcn dynamic-dumb-fac

Jean-Paul A. Barthès©UTC, 2010 N260/Page 196

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

)

(defun static-dumb-fac (agent environment nn)
;; if nn is less than or equal to 1, then return 1 immediately
(if (< nn 2) (static-exit agent 1)

;; otherwise, create a subtask for computing the product of the first
;; two top values
(let (env)

;; ship subtask to agent MUL-1 to compute
(send-subtask agent :to (nth (random 2) ’(:MUL-1 :MUL-2))

:action :multiply
:args (list nn (1- nn)))

;; define a tag (:n) in the environment to record the value of the next
;; products to compute. e.g., nn-2 -> (nn - 2)!
(setq env (append (list :n (- nn 2)) environment))
;; record environment
(update-environment agent env)
;; quit
(static-exit agent :done))))

(defun dynamic-dumb-fac (agent environment answer)
"this function is called whenever we get a result from a subtask. This ~

approach is not particularly clever, since the computation is linear ~
and uses the same multiplying agent, i.e., MUL-1."

(let ((nn (cadr (member :n environment))))
;; if the recorded value is 1 or less, then we are through
(if (< nn 2)

;; thus we do a final exit (in fact we should never go there ??
(dynamic-exit agent answer)
;; otherwise we multiply the answer with the next high number
;; creating a subtask
(progn

(send-subtask agent
:to (nth (random 2) ’(:MUL-1 :MUL-2))
:action :multiply
:args (list answer nn))

;; update environment
(setf (cadr (member :n environment)) (1- nn))
(update-environment agent environment)
;; then return an answer
answer
))))

#+MCL (in-package "COMMON-LISP-USER")
#+ACL (in-package "COMMON-GRAPHICS-USER")
(eval-when (compile load eval)
(use-package :FAC))

;;; ================================= environment ==============================

Jean-Paul A. Barthès©UTC, 2010 N260/Page 197

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(defParameter *fac-environment*
’((:skills :dumb-fac)

))

:EOF

Comparing JADE and OMAS

The same remarks that were made for the MULTIPLY agent apply here. We can add the following.

• Initial Argument

The number specifying the factorial to compute is given in the command line in the case of the
JADE agent. For the Lisp agent this number will have to be provided by a message, which can
also be done with JADE by using the Dummy Agent of the debugging interface.

• Agent Life Cycle

Once it has computed the requested factorial, the JADE agent terminates. The Lisp agent
remains alive and waits for another factorial to compute. Of course the same behaviour could be
imposed to the JADE agent by setting up a cyclic behaviour, as was done for the MULTIPLY
agents.

• Program values

Keeping the value of nn between calls to behaviour or skill is done through the private space of
the FACTORIAL agent for the JADE approach and could be declared as a global variable in
the agent unique package for OMAS. However, for OMAS, it was thought that a specific area
attached to a specific skill (task) and called the environment was more suitable for doing this.
The environment is passed as an argument to the skill functions.

• Processes

The JADE agent has a single thread of execution. The OMAS agent has a thread for executing
the specific skill whenever the skill is requested. Thus, an OMAS agent can process several
messages requiring the same skill in parallel. For each message a new thread is created. The
dynamic-exit function cleans up the corresponding process. A timer attached to each process
kills the process after one hour (default), in case the process is hanging.

12.2.4 Launching the Platform

First one must launch the corresponding platform before loading the agents.

JADE

For example on a Macintosh OSX one first specifies the path where the system can find the Jade
library of classes, e.g. by setting a global variable:

set CLASSPATH = ’:/Library/Home:/Library/Java/Home/lib:.:lib/jade.jar:lib/jade
Tools.jar:lib/Base64.jar:lib/iiop.jar’

Then one launches the GUI as follows:

java -cp $CLASSPATH jade.Boot {gui

Something like the following lines is printed on the terminal.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 198

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

[1] 398
[Ordinateur-de-Jean-Paul-Barth-s:~/Applications/jade] barthes% This is JADE 3.1 - 2003/12/17 13:40:15

downloaded in Open Source, under LGPL restrictions,
at http://jade.cselt.it/

IOR:000000000000001149444C3A464950412F4D54533A312E3000000000000000010000000000000054000101000000000A3132372E302E302E3100C02300000019AFABCAFF00000002B87579A7000000080000000000000000010000000000000100000001000000140000000000010020000000000001010000000000
Agent container Main-Container@JADE-IMTP://Ordinateur-de-Jean-Paul-Barth-s.local. is ready.

. . . and the Jade GUI appears (Figure 12.1).

Figure 12.1: The JADE GUI

OMAS

The OMAS platform is launched by starting the Lisp environment and loading the load-omas-moss.lisp
file for the Macintosh or load-omas-moss.fasl for Windows.

Some lengthy text appears in the Lisp listener or CommonGraphics window and the initial window
pops up on the screen (Fig. 12.2).

Figure 12.2: The OMAS Initial Window

IP address and port number are the local broadcast address and the port used by the platform.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 199

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.2.5 Loading New Agents

JADE

Jade agents are created one by one using the create agent button of the interface (Fig. 12.3). They
can also be loaded using a batch file.

Figure 12.3: Creating a new MULTIPLY agent named mul1

Fig. 12.4 shows the state of the container when two Multiply agents have been created.

Figure 12.4: Main container with two multiply agents

OMAS

In OMAS the agents are loaded by specifying the name of the application file, here FAC. As soon as
the agents are loaded, a control panel appears in the top left corner of the screen (Fig. 12.5).

Comparing JADE and OMAS

The main difference is that JADE agents are created as instances of a particular class, and the OMAS
agents are loaded as individual entities.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 200

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 12.5: OMAS Control Panel for the FAC application

Another point is that if a Jade class file does not exist, an exception is raised and the program
quits.

12.2.6 Executing Agents

JADE

In the Jade environment, as soon as an agent is loaded, it executed its behaviours. Thus, when we load
the Multiply agents, they execute a cyclic behaviour, waiting for a message containing a multiplication
to do. When we load the Factorial agent, then it executes the behaviour for which it is programmed,
prints the result and quits.

OMAS

OMAS agents become active as soon as they are loaded. However, they do not do anything, waiting
for a message. Thus, the Factorial agent will not do anything until it gets a request asking it to
compute a factorial. Such a message may be composed with the “new message” button, or preloaded
in the Z-MESSAGES.lisp application file, using the defmessage macro.

(defmessage :DF-4 :from :<user> :to :FAC :type :request :action :dumb-fac :args (4))

Figure 12.6: Message composition window

Once the message is sent and the factorial is computed, the Factorial agent stays active, waiting
for another message or something else to do.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 201

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.2.7 Debugging Agents

Sending Messages Manually

In both platforms it is possible to send messages manually. The Jade GUI has a message button for
sending messages. The resulting message composition window can be seen Fig. 12.7 to be compared
with that of Fig. 12.6 for OMAS

Figure 12.7: Message composition window

Comparing JADE and OMAS

It can be seen that JADE messages are more complex than OMAS messages, but do not contain any
field for specifying timeouts or time-limits.

JADE users can also specify an envelope through a second page (Fig. 12.8).

Tracing Messages

Both platforms have elaborate mechanisms for tracing messages sent to agents. JADE uses a Sniffer
agent, OMAS uses the Control Panel to do so.

12.3 Handling Messages

The next point to be studied is how the two platforms handle the messages, i.e. how an agent recovers
and processes a message.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 202

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 12.8: JADE message envelope specification window

12.3.1 Receiving Messages

JADE

Recovering messages for a JADE agent is accomplished very simply by invoking the myAgent.receive()
function inside a behaviour.

One problem is that each JADE agent has a single thread of execution. Consequently, a behaviour
executes until it relinquished control willingly. Thus, to avoid locks by polling constantly, JADE agents
can use the block() function to block a given behavior and let others take control of the execution. All
blocked behaviours go to sleep and will be awaken when a new message comes in. The order in which
messages are processed must then be specified.

JADE Message Patterns In order for a specific behaviour to extract the proper message, the
JADE programmer can use a system of patterns called templates.

private class MultiplyServer extends CyclicBehaviour {

public void action() {

MessageTemplate mt = MessageTemplate.MatchPerformative(ACLMessage.REQUEST);

ACLMessage msg = myAgent.receive(mt);

The above code (from the CyclicBehaviour of the Multiply agents) defines a template to retrieve
only REQUEST messages, ignoring all others.

...

// Prepare the template to get results

Jean-Paul A. Barthès©UTC, 2010 N260/Page 203

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

mt = MessageTemplate.and(MessageTemplate.MatchConversationId("factorial"),

MessageTemplate.MatchInReplyTo(request.getReplyWith()));

The above code is extracted from the Factorial agent behavior. The program constructs a template
for retrieving just the answers to the message being sent, using a global conversation id and the
particular tag of the message being sent [request.getReplyWith()].

Using templates a Jade programmer can retrieve the exact messages or answers needed for a correct
execution of the corresponding behaviour.

OMAS

OMAS agents work differently. Whenever a message comes in, a specific thread (scan process) scans it
to detect whether it should be processed immediately, or whether it must be scheduled for processing
with the other tasks. Typical messages that are processed immediately are abort, cancel, inform
messages. Typical messages that are scheduled for later processing are request, answer, bid messages.
Deferred messages are put into an agenda and processed by a special thread (main process). When
the agent decides to execute a new task, a new thread is created for this task. The number of tasks
(and corresponding threads) that an agent can execute is not limited. Additional threads are created
to accommodate various timers associated with a task.

An OMAS agent can execute several tasks in parallel, as many as its local computer can accom-
modate.

Regarding message extraction or selection. The incoming messages are automatically routed to
the proper task (skill function) and task thread. It is not necessary to specify templates as in the
JADE context.

A specific feature of the OMAS platform is that all agents receive all messages. Thus, an agent
has the possibility to process messages for which it is not a receiver. This feature is a special feature
of the coterie approach and is useful for knowledge management applications.

12.3.2 Recovering the Message Content (simple case)

JADE

In the simplest case, a JADE agent can recover a message by using the getContent() function on the
received message. It then has a simple string of data to be processed within the behaviour.

A JADE agent can use more elaborate mechanisms to handle messages as will be shown later.

OMAS

The content of a message is transferred to an OMAS agent as additional arguments of the skill
functions. The transformation between string format and Lisp s-expression is done automatically.
Thus, the processing appears more like a method call as in an OO language. However, this can be
more complex.

12.4 Discovering Services

Agents are entities providing services implemented by behaviours or skills. An agent may also require
services from other agents. When requiring an unknown service, there are two possible options: either
consult a yellow page to find what agents are providing the service, which is the JADE approach, or
sending a broadcast message, which is the OMAS approach.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 204

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.4.1 Service Registration

Registering services is provided by the JADE platform, following the FIPA standards. Thus, an agent
usually registers the services it can offer to the platform Directory Facilitator.

For example, a Multiply agent registers its services during the setup phase as follows.

protected void setup() {

// Register the multiplying service in the yellow pages

DFAgentDescription dfd = new DFAgentDescription();
dfd.setName(getAID());
ServiceDescription sd = new ServiceDescription();
sd.setType("multiplying");
sd.setName("JADE-multiplying");
dfd.addServices(sd);

try {
DFService.register(this, dfd);

}

catch (FIPAException fe) {
fe.printStackTrace();

}
...

The type of the service is indicated by the “multiplying” string, the name of the service is “JADE-
multiplying”. Any agent from the platform or from another platform can then use the service, and in
particular the Factorial agent by asking the DF platform service.

// Get the list of multiplying agents
DFAgentDescription template = new DFAgentDescription();
ServiceDescription sd = new ServiceDescription();
sd.setType("multiplying");
template.addServices(sd);

try {

//DFAgentDescription[] result = DFService.search(myAgent, template);
// cannot use myAgent if not inside a behaviour ??

DFAgentDescription[] result = DFService.search(this, template);
System.out.println("Found the following multiplying agents:");

mulAgents = new AID[result.length];
for (int i = 0; i < result.length; ++i) {

mulAgents[i] = result[i].getName();
System.out.println(" "+mulAgents[i].getName());

}
}

Jean-Paul A. Barthès©UTC, 2010 N260/Page 205

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

catch (FIPAException fe) {
fe.printStackTrace();

}
...

12.4.2 Broadcast

Broadcast is another way of requesting services by sending a message to all agents. Then only the
agents capable of providing the service will answer.

JADE

JADE has no particular mechanism for sending a broadcast, other than sending the message to all
agents after obtaining the names of the agents from the DF service. However, this is not adapted to
the JADE approach. In the JADE approach the programmer will typically select a few agents capable
of providing the service and send a message to each agent in turn, waiting for their answer.

OMAS

In the case of OMAS, it is very simple to send a broadcast message to all agents of the platform as
follows.

(send-subtask agent :to :ALL :action :multiply :args (list nn (decf nn)))

The agent will then wait for a given time for possible answers and process them using two possible
strategies :take-first-answer, :take-first-n-answers or :collect-answers. In the first case (default strategy)
the agent processes the first answer that comes back, in the second case answers are collected until a
timeout occurs or until we have the number of specified answers, in the last case answers are collected
until a given time elapses, and then analyzed according to the agent strategy. If no message is collected
during the allowed time, a timeout error occurs. And by default the waiting task is aborted.

It could be objected that sending a broadcast message is expensive. However, OMAS uses UDP,
which means that broadcasting requires but a single message.

The broadcast mechanism implies that OMAS agents are gathered locally on the same physical
loop or on adjacent loops. The OMAS platform has thus physical boundaries rather than logical
boundaries. JADE agents can be located anywhere in the world. To be able to talk to distant agent
OMAS uses a special transfer agent that may be viewed as a gateway.

12.5 Content Language

The content language is the language specifying the action to be undertaken or the information to be
transferred. JADE agents use several languages for exchanging information. OMAS agents use Lisp
or natural language.

One of the problems concerns the impedance mismatch between the format of the content of the
message and the way it can be processed by the agent. JADE agents live in a Java environment.
OMAS agents live in a Lisp environment.

JADE

JADE agents live in a Java environment. Thus, everything must be expressed in terms of objects.
However, messages use a string format for network exchange. Consequently, the string format repre-
senting the message content must be transformed into Java objects. The Java object must have been

Jean-Paul A. Barthès©UTC, 2010 N260/Page 206

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

predefined in order to be instantiated. Hence, a JADE agent must know a priori all the classes of
objects that can be mentioned in a message. This is done by defining an ontology.

However, the problem is even worse in the sense that all information about the name of the classes
and the names of the properties of the classes is lost after compilation . Thus, it is necessary to build
special structures that will contain the names at run time. In other words, it is necessary to define
classes as instances of meta-classes, and to keep the names somewhere.

If a class is unknown, then it is not possible to build an object that would have been an instance
of that class.

Finally, the message content obeys a syntax corresponding to the content language syntax, namely,
SL or LEAP. Transforming the content into objects requires modeling the possible performative struc-
tures as a set of objects. In JADE this is done by specifying a piece of code known as a codex.

For example, the information that there is a person whose name is Giovanni and who is 33 years
old in a ACL content expression can be represented as3 :

(Person :name Giovanni :age 33)

JADE needs to transform the input string into an instance of a person class:

class Person {
String name;
int age;

public String getName() {return name;}
public void setName(String n) {name = n;}
public int getAge() {return age;}
public void setAge(int a) {age = a;}
...

}

The instance should be initialized with:

name = \Giovanni";
age = 33;

Thus, each time a JADE agent receives some piece of information, it needs to convert the content
of the message into Java objects. At the same time it can verify that the values associated with
properties are of the correct type. The conversion is done by the “JADE support for content languages
and ontologies” package.

OMAS

OMAS agents accept all contents either as a string or as a list. Conversion from the string to the list
is done by the read-from-string Lisp primitive. OMAS agents do not require a class/instance format.
Thus, the JADE problem does not happen.

Most content languages specify performatives as lists. Thus, the translation into a Lisp structure is
trivial and does not require any special mechanism. However, there is the need of a specific interpreter
to process the resulting list structure.

For example, if we consider the previous example, the list structure is converted automatically and
used as such, regardless of the existence of a class person.

3In fact this is not true and JADE agents could use introspection to recover the names of the existing classes. This
does not seem to be used by the JADE developers.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 207

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.6 Goals and Skills vs. Behaviours

What agents do must be coded somewhere. OMAS uses goals and skills and JADE uses behaviours.

JADE Behaviours

Citing JADE Tutorial (Section 4):
“. . . the actual job an agent has to do is typically carried out within “behaviours”. A behaviour

represents a task that an agent can carry out and is represented as an object of a class that extends
jade.core.behaviors.Behaviour. [. . .]

Three types of behaviours are available: (i) “One-Shot behaviours that complete immediately;
(ii) “Cyclic” behaviours that never complete and execute the same operations each time they are
called; and (iii) “Generic” behaviours that can execute different operations according to a status. The
last behaviours include special cases like “Sequential,” “Parallel,” or “FSM (Finite State Machine)”
behaviours.

Each class extending Behaviour must implement the action() method, that actually defined the
operations to be performed when the behaviour is in execution and the done() method (returns a
boolean value that specifies whether or not a behaviour has completed and has to be removed from
the pool of behaviours an agent is carrying out.”

Thus, one can see the strong influence of the object approach.
A JADE agent can execute several behaviours concurrently. However, since there is a single

thread, the programmer has to handle all concurrency problems, blocking and unblocking processes,
and answering system events.

A behaviour is usually declared in the setup function although it can be added at any time. E.g.,
for the factorial agent:

// Put agent initializations here
protected void setup() {
// Printout a welcome message
System.out.println("Hello! Fac-agent "+getAID().getName()+" is ready.");

// Get the factorial number as a start-up argument
Object[] args = getArguments();
if (args != null) {

nn = Integer.parseInt((String)args[0]);
System.out.println("Fac; factorial to compute is: "+nn);

// Perform the request
this.addBehaviour(new RequestPerformer());

}
else {

// Make the agent terminate
System.out.println("No number was specified");
doDelete();

} // end test of the initial argument
} // end setup

The code for RequestPerformer is shown later.

OMAS Skills and Goals

The OMAS approach is quite different and relies on two concept: skills and goals.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 208

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Skills implement code allowing agents to do something, and may be thought as methods for objects
(although the activating mechanism is quite different). Skills allow an agent to be reactive, i.e. react
to messages requiring a task corresponding to one of their skills. Note however that an agent may
ignore a request message altogether.

Goals correspond to preset tasks or tasks that will be triggered according to some conditions. They
correspond to the proactive behavior of the agent. Goals can be one-shot, or cyclic.

Skills can be added to an agent (and not to an agent class) at any time by using the defskill macro.
E.g. for the factorial agent:

(omas::defskill :dumb-fac FAC
:static-fcn static-dumb-fac
:dynamic-fcn dynamic-dumb-fac
)

Of course one must write the functions. Note that for skills requiring to subcontract part of the task,
that a dynamic function must be specified. This separates the setup part of the task with the part
reacting to the reception of partial results. Atomic skills do not have dynamic parts.

Once a skill has been given to an agent, the agent can react to any message requiring this skill.
Currently, it will answer a request if it has the corresponding skill, displaying a reactive behavior.

A goal has a different syntax:

(defgoal BUY-BOOK BOOK-BUYER
:type :cyclic
:period 10 ; seconds
:goal-enable-fcn enable-buy-book
:script goal-buy-book)

The goal is defined as a cyclic goal with a 10s period. Every 10 seconds the goal-enable function
(enable-buy-book) is run to see if the conditions are met to take action. If so the goal-buy-book function
is executed.

;;; return T to enable the goal, NIL to inhibit it

(defun enable-buy-book (agent script)
"goal is enable each time there is something in the books-to-buy"
(declare (ignore script))
(recall agent :books-to-buy)
)

The enable-buy-book simply checks if the agent has a book to buy in its memory.

(defun goal-buy-book (agent)
(list (make-instance ’omas::message :type :request

:from (omas::key agent) :to (omas::key agent)
:action :request-performer
:args (list (car (recall agent :books-to-buy)))
:task-id :BUY-BOOK
)))

Thegoal-buy-book makes the agent send a message to itself. The message will be transferred to its
agenda and processed as any other task.

A goal may have additional properties like:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 209

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

expiration-date: date at which the goal dies
expiration-delay: time to wait until we kill the goal
activation-date: date at which the goal should fire (default is now)
activation-delay: time to wait before activating the goal
status: waiting, active, dead,...

The type of goals mentioned this far is called rigid goals because they are triggered on hard events
like a specific date or after some delay. OMAS has a second type of goals, flexible goals, that have
a different triggering mechanism. Flexible goals have an energy level. They are triggered when the
energy level reaches a threshold value. When they are triggered a change function resets their energy
level. This kind of goal is useful to model human feelings like anger.

activation-level: on a 1-100 scale (default 50)
activation-threshold: on a 1-100 scale (default 50)
activation-change-fcn: optional function called at each cycle

12.6.1 Comparing JADE and OMAS

Except for flexible goals not available in JADE, one could say that JADE goals are similar to OMAS
goals to implement proactive behaviors. JADE does not make a distinction between reactive and
proactive behaviors, since JADE agents are created and live only for the duration of a goal, which is
not the case for OMAS agents.

Triggering conditions (activation on a specific date or waiting delays) seem to be easier to specify
in the OMAS syntax.

12.7 Contract-Net

Contract-Net is a standard moderately complex protocol working as follows:
A specific agent, designated hereafter as the manager (its temporary role), wants to subcontract

a task. It sends a call for bids either as a broadcast or as a multicast, and waits for answers. Two
strategies can be used: (i) to take the first bid (proposal) that is received and grant the task to the
corresponding agent; or (ii) better, to wait for several bids (proposals) and select one or several offers
that are considered interesting. When no bids or proposals have been received, then usually the task
is canceled. When tasks have been granted, then one waits for the answer as usual.

12.7.1 JADE Contract-Net

JADE implements the contract-net as a standard interaction protocol (JADE Programmer’s GUIDE,
Section 3.5). JADE defines the concept of conversation distinguishing the Initiator role and the
Responder role. Initiator behaviours are usually 1:N.

The ContractNetInitiator/responder protocol is described in Section 3.5.2 of the JADE Program-
mer’s GUIDE.

The initiator agent (manager) solicits proposals from other agents by sending a CFP (Call For
Proposals) message. Responders can reply with a PROPOSE message, or a REFUSE message, or
a NOT-UNDERSTOOD message. The initiator agent (manager) evaluates the answers and sends
ACCEPT-PROPOSAL messages to the agents that are granted the job. Such agents will return an
INFORM message with the result, or a FAILURE message after a while.

When the initiator uses the JADE specific behaviour, timeouts can be specified in the reply-by
slot of the messages. By default the reply-by is infinite. All messages after the timeout will remain in
the private queue of incoming ACL messages of the initiator agent.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 210

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

The protocol provide callback methods among which handleAllResponses called after the replies to
the CFP, and handleAllResultNotifications called after the replies to the ACCEPT-PROPOSAL have
been received.

The answer of a Responder agent to the CFP message is built by the ContractNet ResponderBe-
haviour class. Ir has a method called prepareResponse that builds a PROPOSE message. When the
ACCEPT PROPOSAL has been received the prepareResultNotification is called instead, in order to
prepare the answer (INFORM/DONE) message.

The Behaviour object implementing the protocol contains a dataStore area that can be used to
store messages.

12.7.2 OMAS Contract-Net

The Contract-Net protocol is implemented by OMAS by specifying the protocol parameter in the
send-subtask API function. E.g.

;; if a multiply agent is timed out, then reallocate to another one
;; by simply doing another broadcast
(send-subtask agent :to :ALL :action :multiply

:args (omas::args message)
:protocol :contract-net)

If nothing else is done, then the system will automatically broadcast a message to all agents of the
platform and take the first returned bid, granting the job to the fastest agent (the default strategy is
:take-first-answer). The programmer has nothing else to do.

For a better selection the manager should wait before selecting a “good” offer. The programmer
has then to specify several things: set the strategy to :collect-answers or :take-first-n-answers in the
send-subtask call, add a callback function to the defskill to select-best-answer-fcn parameter. E.g.

;; if a multiply agent is timed out, then reallocate to another one
;; by simply doing another broadcast
(send-subtask agent :to :ALL :action :multiply

:args (omas::args message)
:protocol :contract-net
:strategy :collect-answers)

For example the BOOK example application of the JADE manual could use the following code:

(defskill :REQUEST-PERFORMER BOOK-BUYER
:static-fcn static-REQUEST-PERFORMER
:dynamic-fcn dynamic-REQUEST-PERFORMER
:select-best-answer-fcn select-best-answer-REQUEST-PERFORMER
)

(defun select-best-answer-request-performer
(agent environment answer-message-list)

"keep the cheapest offer"
(declare (ignore agent environment))
;; order the collected answer messages by increasing prices
;; we do that only when there is more tan one answer
(when (cdr answer-message-list)

(setq answer-message-list

Jean-Paul A. Barthès©UTC, 2010 N260/Page 211

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

(sort answer-message-list #’<= :key #’omas::content)))
;; select the message corresponding to the lowest price
(omas::contents (car answer-message-list))

12.7.3 Comparison JADE/OMAS

Both platforms implement the Contract-Net protocol with the same possibilities. The OMAS approach
seems to be much simpler to implement, the system performing all the bookkeeping automatically.

Another difference is that the OMAS manager does not have to know what are the other agents
on the platform.

12.8 Handling Time

In a complex multi-agent platform one needs to handle time. Time can be delays (i.e. to launch
a particular action), timeouts (e.g., time an agent is willing to wait for an answer), or time-limits
(e.g., allocated time for an agent to produce an answer). Various time delays are usually implemented
by timers as separate threads. When the timer fires, then a handler is waken up to deal with the
particular condition. Such situations are better handled in multi-threaded environments like OMAS,
less easily in single thread environments like JADE.

12.8.1 JADE Delays

JADE implements delays in different ways.

Scheduling Delays

This is implemented by the WakerBehaviour behaviour. The following example from the JADE Tutorial
shows has to program a 10 second delay after the agent has been created:

Public class MyAgent extends Agent {
protected void setup() {

addBehaviour(new.WakerBehaviour(this, 10000);
protected void handleElapsedTimeout() {

// perform operation, e.g. go buy a book
myAgent.addBehavior(new RequestPerformer());

}
});

}
// make the agent terminate
doDelete

The operation to be performed consists in adding the RequestPerformer behaviour.
If the WakerBehaviour behaviour is replaced by the TickerBehaviour behaviour, then the operation

is performed periodically every 10 seconds.
One should be careful about using a waiting function inside a behaviour, since there is a single

thread of execution. This in essence will block every other behaviour.

12.8.2 OMAS Delays

OMAS delays are specified at the goal level using the activation-delay parameter, although this could
be used on very special occasions.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 212

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Delays are normally specified by using the delay parameter of the send-subtask API function and
more generally are a parameter of any type of message. The result is that the message is sent only
after the delay has expired.

Within any function delays are the result of executing the Lisp sleep function, which does not pose
any problem since each task executes in its own thread.

Delays are expressed in seconds using integer or floating point arguments (i.e. 0.010 means 10
milliseconds).

12.8.3 JADE Timeouts

A timeout may be set up on the reception of a message by using the class ReceiverBehaviour. Quoting
from JADE Programmer’s GUIDE (Section 3.4.10):

“Encapsulates an atomic operation which realizes the “receive” action. Its action terminates when
a message is received. [. . .] Two more constructors take a timeout value as argument, expressed in
milliseconds; a ReceiverBehaviour created using one of these two constructors will terminate after the
timeout has expired, whether a suitable message has been received or not. A Handle object is used
to access the received ACL message; when trying to receive the message suitable exceptions can be
thrown if no message is available or the timeout expired without any useful reception.”

12.8.4 OMAS Timeouts

A timeout delay on a subtask (corresponding to the waiting time for the answer message) is specified
as a parameter of the send-subtask API function, e.g.,

;; ask about the prices of the book
(send-subtask agent :to :all

:action :offer-request
:args (list title)
:timeout 10 ; allow 10 seconds to answer
)

In practice any message can take a timeout parameter. The default behavior is to send the subtask
two more times and quit, aborting the main task if nothing return after the last sent message.

The user can however specify a timeout handler for a given skill by using the timeout-handler
parameter of the defskill macro, e.g.

(defskill :fast-fac-with-timeout fac
:static-fcn static-fast-fac-with-timeout
:dynamic-fcn dynamic-fast-fac-with-timeout
:timeout-handler timeout-fast-fac-with-timeout)

Of course one needs to write the corresponding function:

(defun timeout-fast-fac-with-timeout (agent message)
"function for handling timeout errors, rescheduling multiply subtask as a ~

subtask using a contract-net protocol."
(case (omas::action message)

(:multiply
;; if a multiply agent is timed out, then reallocate to another one
;; by simply doing another broadcast
(send-subtask agent :to :ALL :action :multiply

:args (omas::args message)

Jean-Paul A. Barthès©UTC, 2010 N260/Page 213

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

:protocol :contract-net
:timeout *multiply-timeout*)

;; exit
:done)

;; for any other subtask type we let the system process the timeout condition
(otherwise
:unprocessed)))

Here the handler must process all types of subtasks that could be used by the skill, hence the check
on the action part of the message.

12.8.5 JADE Time Limits

JADE does not seem to have time-limits in the OMAS sense, i.e. a limit given to a subcontracting
agent to do the job. This would have to be implemented by the programmer. In practice it would not
be very useful for most agents, since they die after having executed their behaviours.

12.8.6 OMAS Time Limits

A time-limit is associated with each OMAS message to limit the time a subcontracted task will take
to execute. A default value is 1 hour, meaning that if the agent cannot do the job within one hour,
then it will abort the task. This is done to avoid orphan tasks in the system, since our agents never
die.

The time-limit can be specified through the time-limit parameter of the API send-subtask function.

12.8.7 JADE/OMAS Comparison

OMAS has a richer set of available features concerning time handling situations. This comes probably
from the fact that OMAS agents are permanent and have to handle time constraints. JADE agents
on the other hand are transient and live only to accomplish a specific goal.

12.9 Executing Several Tasks Concurrently

The execution mechanism is quite different for JADE and for OMAS.

12.9.1 JADE Concurrency

For different reasons including easy migration to another machine, JADE agents execute within a
single thread. The programmer has to handle all concurrency problems.

A JADE agent executes a set of behaviours in a round-robin fashion non preemptively, meaning
that a specific behaviour executes until the end before another one can execute. The programmer
however can introduce functions relinquishing control so that another behavior can be started.

An agent is a finite state machine that can be in different states as shown Fig. 12.9.
When an agent is created its setup function installs one or more behaviours. The first one is

automatically executed and the agent becomes active. Normally, the behaviour is carried out until it
finishes.

Each behaviour waits for an incoming message. Thus, a behaviour could prevent other behaviors
from running while in a loop for an incoming message. To avoid such a situation the programmer
can use the block() function inside the action() method of a behavior, blocking it until a new message
arrives.this is done as follows:

Jean-Paul A. Barthès©UTC, 2010 N260/Page 214

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

Figure 12.9: Different states of a JADE agent

public void action() {
ACLMessage msg = myAgent.receive();
if (msg != null) {

// Message received. Process it.
...

}
else {

block();
}

}

Using this approach, when a message comes in all behaviours are called in turn until one is found
that can process the message, in which case its action() method is executed until it returns.

Another method can be used to wait for a message, namely blockingReceive(). However, this
method blocks the agent thread preventing other behaviours to run until a message is received.

12.9.2 OMAS Concurrency

OMAS concurrency is built in since each task executes in its own thread. When an agent receives a
message, if the message is urgent or is a quick message (e.g. abort, inform, error, call for bides), then it
is executed immediately by the agent scan process. All other messages are copied into an agenda and
are processed by the agent main process. Each request message triggers two processes: (i) a process
to execute the corresponding skill; and (ii) a timer process to limit the duration of the corresponding
task (by default 1 hour). Thus, if a task needs to wait, it does so in its own process and does not block
any other task being active at the same time. Currently there is no limit on the number of processes
an agent can have, that is on the number of task it can execute in parallel.

Globally, one can consider that an agent has three possible states: (i) idle, waiting for something
to do; (ii) active, doing something; or (iii) dead.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 215

UTC/GI/DI/CNRS UMR HEUDIASYC OMAS v8 - User Manual(November 2010)

12.10 Ontologies

Ontologies are used to define domain concepts and vocabulary. Domain concepts are used to represent
situations or to construct messages. Thus, in order to understand the content of a message, an agent
must have the ontology that contain the concept definitions corresponding to the vocabulary used in
the message.

12.10.1 JADE Ontologies

A JADE ontology must contain a definition of all the objects and properties that can be handled by
the agents. However, since the JADE agents deal with Java classes, but exchange data as strings,
the system will use the ontology to restructure the content of a message as a set of objects. This of
course also requires to know which language was used to do the transfer. Thus, JADE ontologies have
a complex role and are not disconnected from the programming problems. The result is an intricate
machinery that requires some space to be explained and understood.

12.10.2 OMAS Ontologies

OMAS ontologies are defined as a set of frames using the MOSS frame representation language.
Marshalling and demarshalling (i.e. transformation between structured representation and linear
strings and back) is done by the corresponding Lisp basic functions.

Jean-Paul A. Barthès©UTC, 2010 N260/Page 216

