
Shortest paths



Shortest path problems

• Let G=(X,U,v) with:

– X={x0, x1, x2,…, xn-1} et v : U

• Length of a path: number of arcs composing the path

• Weight(value) of a path : sum of weights of its arcs

• Some path from xi to xk is of minimal weight if its weight is the 
smallest one (<= to all others paths from xi to xk.)
– We call this the shortest path

Ps. all paths and cycles are assumed directed.



The shortest path problems

Three types of problems:

• Given two vertices xi and xk, find the shortest path (when 
such a path exists);

• Given a vertex xs, find all shortest paths (if they exist) from 
xs to any other vertex xi;

• Find the shortest paths for all couples of vertices in the 
graph. 



Applications

• Subproblem for numerous optimisation problems.

• Applications to transport:

– Vehicle routing problem;

• Applications in telecommunications, ATM…

• etc.



Some properties of shortest paths (I)

• Lemma 1. Any subpath of a shortest path is as well a shortest 
path.

We assume below that there exists at least a path from x0 to xi for any i.

• Lemma 2. A necessary and sufficient condition such that, for 
any i, there exists a shortest path from x0 to xi is that graph G 
doesn’t contain a negative cycle. 



Some properties of shortest paths (II)
• Theorem 1. Let G be a graph without negative cycles and i values of paths 

from x0 to xi. A necessary and sufficient condition such that {i / 0  i  n-
1} be the set of shortest paths values from x0 is that:

1- 0 = 0;

2- j - i  vij , for all arc (xi, xj)  U.

Proof (hint):

NC. If for some arc (xi, xj)  U. j - i > vij, we have a shorter path than j to xj.

SC: Let m be a shortest path to xj, then we write down the eq. for all arcs 
composing it and sum on them, we obtain j  value(m).

Corollary. The set of arcs (xi, xj) such that j - i = vij is the set of arcs involved 
in shortest paths.



Shortest path algorithms
• FORD (or Bellman-Ford) algorithm:

– Works for all weights given to arcs

– O(n m)

– Label correcting algorithm

• DIJKSTRA algorithm:
– Works for all non negative weights given to arcs

– O(n²)

– Label setting algorithm

• BELLMAN algorithm:
– Works in acyclic graphs

– O(m)

– Label setting algorithm



FORD Algorithm

Algorithm: 
(i)  Initialization

Poser 0 = 0 et i = + pour i > 0.

(ii) Edges examination

for each vertex xi, check all (xi,xj) from xi

and substitute j with i + vij when i +vij

< j.

(iii) Stop Test

Iterate (ii) until some j is updated in (ii).
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FORD Algorithm 
an example

End of first iteration



FORD Algorithm 
an example

End of second iteration



FORD Algorithm 
an example

Last iteration



Validity et complexity 
of Ford algorithm 

Theorem 2:  Ford algorithm computes values of the shortest path 
from x0 when the graph is without negative circuits.

Proof by recurrence (hint): 
– Set i

k*, the min value of a path from x0 to xi containing at most k arcs.

– Set i
k, the value i after k steps in the loop while.

Invariant:

At the end of kth step, i
k gives the value of a path from x0 to xi s.t. i

k ≤ i
k*.

Theorem 3:  The complexity of Ford algorithm is in O(nm) where n 
= |X| and m = |U|.



DIJKSTRA Algorithm

Algorithm

(i) Set S ={x0}, 0 = 0, i =v0i, if (x0, xi )U, and i=+, otherwise.

(ii) While S  X do: 

choose xi  X - S of i minimum.

set S = S +{ xi }.

For any xj( X - S ), successor of xi, 

set: j = min( i + vij, j ).



DIJKSTRA Algorithm 

an example
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DIJKSTRA Algorithm 

an example

End of the first iteration



DIJKSTRA Algorithm 

an example

End of the second iteration



DIJKSTRA Algorithm 

an example

End of the third iteration



DIJKSTRA Algorithm 

an example

End of the forth iteration



DIJKSTRA Algorithm 

an example

End of the last iteration



Validity and complexity 
of Dijkstra algorithm

Theorem 4. i obtained at the end of the algorithm are 
the shortest path values from x0.

(valuations  0 : there are no negative cycles)

Proof by recurrence :

Invariant:

At the end of step k, 

1- if xi  S :  i = *i.

2- if xi  S :  i = minzU-(i)S  z+vzi

Lemma 3. Dijkstra algorithm is of complexity O(n2).



Exercise

We wish to find the values of the minimal paths from x0. 

Apply DIJKSTRA algorithm. Write down the successive values of λi (if DIJKSTRA 
may be used), as well as a tree of minimal paths from x0. 

Are the minimal paths unique? Justify your answer. 

x
1

x
2

x
0

x
3

x
4

x
5

x
6

x
7

x
8

1 2

4 6

2
0

10

46

0

120

10 4



PROBLEM: SECOND SHORTEST (I) 
Second shortest algorithm: 

Begin
1) Apply the Dijkstra algorithm to obtain the tree A of the shortest 
paths from 0 to i and the potentials λ (i) from 0 to i for all the vertices i of G. 

(Note: We shall note γ (r, s) the path, if it exists, from r to s in A) 
2) Determine γ (0, n-1) = (y0 = 0, y1, ..., yp = n-1). 
3) Set value: = +∞; 

For j: = 1 to p do 
for all k  (U-(yj) - (yj-1)) do 
Begin

α: = λ (k) + v (k, yj) + (λ(n-1) - λ(yj)); 
if α < value then 
value: = α; pivot1: = k; pivot2: = yj; 

end; 
4) Second: = γ (0, pivot1) + (pivot1, pivot2) + γ (pivot2, n-1). 

end. 



PROBLEM: SECOND SHORTEST (II)
1) Apply the algorithm to the following graph G: 

2) Analysis of the complexity function of n and m: 

It is assumed that the graph is coded by the queue of predecessors and successors. 
2.1) What are the complexities of the phases 1, 2, 3 and 4 of the algorithm? 
Conclude as to the total complexity.
2.2) What improvements could be proposed to reduce this complexity? 

3) Proof of the algorithm:
We note first γ = (0, n-1) = (y0 = 0, y1, ..., yp = n-1) the shortest path obtained in 
the phase 1) of the algorithm and second = (z0 = 0, z1, ..., zq = n-1) a second 
shortest path from 0 to n-1. 
3.1) Show that there is an integer r such that yq = zp, yp-1 = 1 ,...,  yp-r = zq-r and 
yp-r-1 ≠ zq-r-1. 
3.2) What is the remarkable property of the path (0 = z0, z1, ..., zq-r-1) ?
3.3) Deduce the validity of the algorithm. 
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Bellman algorithm

Algorithm: 

(i) enumerate all vertex of the graph, set 0= 0.

(ii) for j = 1 to n – 1 set : j = min (k + vkj ) over the set of 
predecessors xk of xj.

Ps. Vertex numeration is a function f : {V}->N s.t. for any arc (xi,xj) f(xj) < f(xj).

Proof by recurrence…

Theorem 5: Bellman algorithm computes the shortest 
path values i from x0 in O(m).



Some path problems

• The longest path computation problem;

• The maximum probability path;

• The maximum capacity path value;

– Exercise : compute the shortest path among these of 
maximum capacity.



Exercise: The itinerary of Michel Strogoff

Leaving from Moscow, Michel STROGOFF, courier of the tsar, was supposed to reach 
IRKUTSK. Before leaving, he had consulted a fortune teller who told him, amongst 
other things : "After KAZAN beware of the sky, in OMSK beware of the tartars, in 
TOMSK beware of the eyes, after TOMSK beware of water and, above all, always be 
careful of a large brown-haired person with black boots. " STROGOFF had therefore 
written on a map his "chances" of success for each route between two towns : these 
chances were represented by a number between 1 and 10 (measuring the number of 
chances of success out of 10). Ignoring probability calculation, he had therefore 
chosen his route by maximising the total sum of the chances. 

The numbers of the cities are: MOSCOW (1), KAZAN (2), PENZA(3), PERM (4), OUFA 
(5), TOBOLSK (6), NOVO-SAIMSK (7), TARA (8), OMSK (9), TOMSK (10), 
SEMIPALATINSK(11), IRKOUTSK (12). 



Exercise: The itinerary of Michel 
Strogoff
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1. Determine the route of Michel Strogoff. 

2. What was the probability, with the assumption of the independence 
of the random variables, that Strogoff would succeed? 

3. What would have been his route if he had known the principles of 
probability calculation?



Matrix method (I)
for i1 à n do {

for j1 à n do {

if (jU+(i)) then V0[i][j]  vij otherwise V0[i][j] ;

}

}

for k1 à n do {

for i1 à n do {

for j1 à n do {

Vk[i][j] min(Vk-1[i][j]  , Vk-1[i][k]+Vk-1[k][j])

}

}

} Proof of validity of the algorithm by recurrence :

Hint : at the end of iteration k, Vk[j][j] gives the value of the shortest path 

from i to j going through vertices {1, 2, é, k}+{i, j}.

Complexity : O(n3)
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for i1 à n do {

for j1 à n do {

if (jU+(i)) then V0[i][j]  vij
otherwise V0[i][j] ;

}

}

for k1 à n do {

for i1 à n do {

for j1 à n do {

Vk[i][j]  min(Vk-1[i][j]  , 
Vk-1[i][k]+Vk-1[k][j])

}

}

}

Matrix method (II)



END.


