
Shortest paths

Shortest path problems

• Let G=(X,U,v) with:

– X={x0, x1, x2,…, xn-1} et v : U

• Length of a path: number of arcs composing the path

• Weight(value) of a path : sum of weights of its arcs

• Some path from xi to xk is of minimal weight if its weight is the
smallest one (<= to all others paths from xi to xk.)
– We call this the shortest path

Ps. all paths and cycles are assumed directed.

The shortest path problems

Three types of problems:

• Given two vertices xi and xk, find the shortest path (when
such a path exists);

• Given a vertex xs, find all shortest paths (if they exist) from
xs to any other vertex xi;

• Find the shortest paths for all couples of vertices in the
graph.

Applications

• Subproblem for numerous optimisation problems.

• Applications to transport:

– Vehicle routing problem;

• Applications in telecommunications, ATM…

• etc.

Some properties of shortest paths (I)

• Lemma 1. Any subpath of a shortest path is as well a shortest
path.

We assume below that there exists at least a path from x0 to xi for any i.

• Lemma 2. A necessary and sufficient condition such that, for
any i, there exists a shortest path from x0 to xi is that graph G
doesn’t contain a negative cycle.

Some properties of shortest paths (II)
• Theorem 1. Let G be a graph without negative cycles and i values of paths

from x0 to xi. A necessary and sufficient condition such that {i / 0  i  n-
1} be the set of shortest paths values from x0 is that:

1- 0 = 0;

2- j - i  vij , for all arc (xi, xj)  U.

Proof (hint):

NC. If for some arc (xi, xj)  U. j - i > vij, we have a shorter path than j to xj.

SC: Let m be a shortest path to xj, then we write down the eq. for all arcs
composing it and sum on them, we obtain j  value(m).

Corollary. The set of arcs (xi, xj) such that j - i = vij is the set of arcs involved
in shortest paths.

Shortest path algorithms
• FORD (or Bellman-Ford) algorithm:

– Works for all weights given to arcs

– O(n m)

– Label correcting algorithm

• DIJKSTRA algorithm:
– Works for all non negative weights given to arcs

– O(n²)

– Label setting algorithm

• BELLMAN algorithm:
– Works in acyclic graphs

– O(m)

– Label setting algorithm

FORD Algorithm

Algorithm:
(i) Initialization

Poser 0 = 0 et i = + pour i > 0.

(ii) Edges examination

for each vertex xi, check all (xi,xj) from xi

and substitute j with i + vij when i +vij

< j.

(iii) Stop Test

Iterate (ii) until some j is updated in (ii).

x

x

xx

x

0

1

2

3 4

2

5

7

4

1

1

An example

FORD Algorithm
an example

End of first iteration

FORD Algorithm
an example

End of second iteration

FORD Algorithm
an example

Last iteration

Validity et complexity
of Ford algorithm

Theorem 2: Ford algorithm computes values of the shortest path
from x0 when the graph is without negative circuits.

Proof by recurrence (hint):
– Set i

k*, the min value of a path from x0 to xi containing at most k arcs.

– Set i
k, the value i after k steps in the loop while.

Invariant:

At the end of kth step, i
k gives the value of a path from x0 to xi s.t. i

k ≤ i
k*.

Theorem 3: The complexity of Ford algorithm is in O(nm) where n
= |X| and m = |U|.

DIJKSTRA Algorithm

Algorithm

(i) Set S ={x0}, 0 = 0, i =v0i, if (x0, xi)U, and i=+, otherwise.

(ii) While S  X do:

choose xi  X - S of i minimum.

set S = S +{ xi }.

For any xj(X - S), successor of xi,

set: j = min(i + vij, j).

DIJKSTRA Algorithm

an example

x

x

xx

x

0

1

2

3 4

2

5

7

4

1

1

DIJKSTRA Algorithm

an example

End of the first iteration

DIJKSTRA Algorithm

an example

End of the second iteration

DIJKSTRA Algorithm

an example

End of the third iteration

DIJKSTRA Algorithm

an example

End of the forth iteration

DIJKSTRA Algorithm

an example

End of the last iteration

Validity and complexity
of Dijkstra algorithm

Theorem 4. i obtained at the end of the algorithm are
the shortest path values from x0.

(valuations  0 : there are no negative cycles)

Proof by recurrence :

Invariant:

At the end of step k,

1- if xi  S :  i = *i.

2- if xi  S :  i = minzU-(i)S  z+vzi

Lemma 3. Dijkstra algorithm is of complexity O(n2).

Exercise

We wish to find the values of the minimal paths from x0.

Apply DIJKSTRA algorithm. Write down the successive values of λi (if DIJKSTRA
may be used), as well as a tree of minimal paths from x0.

Are the minimal paths unique? Justify your answer.

x
1

x
2

x
0

x
3

x
4

x
5

x
6

x
7

x
8

1 2

4 6

2
0

10

46

0

120

10 4

PROBLEM: SECOND SHORTEST (I)
Second shortest algorithm:

Begin
1) Apply the Dijkstra algorithm to obtain the tree A of the shortest
paths from 0 to i and the potentials λ (i) from 0 to i for all the vertices i of G.

(Note: We shall note γ (r, s) the path, if it exists, from r to s in A)
2) Determine γ (0, n-1) = (y0 = 0, y1, ..., yp = n-1).
3) Set value: = +∞;

For j: = 1 to p do
for all k  (U-(yj) - (yj-1)) do
Begin

α: = λ (k) + v (k, yj) + (λ(n-1) - λ(yj));
if α < value then
value: = α; pivot1: = k; pivot2: = yj;

end;
4) Second: = γ (0, pivot1) + (pivot1, pivot2) + γ (pivot2, n-1).

end.

PROBLEM: SECOND SHORTEST (II)
1) Apply the algorithm to the following graph G:

2) Analysis of the complexity function of n and m:

It is assumed that the graph is coded by the queue of predecessors and successors.
2.1) What are the complexities of the phases 1, 2, 3 and 4 of the algorithm?
Conclude as to the total complexity.
2.2) What improvements could be proposed to reduce this complexity?

3) Proof of the algorithm:
We note first γ = (0, n-1) = (y0 = 0, y1, ..., yp = n-1) the shortest path obtained in
the phase 1) of the algorithm and second = (z0 = 0, z1, ..., zq = n-1) a second
shortest path from 0 to n-1.
3.1) Show that there is an integer r such that yq = zp, yp-1 = 1 ,..., yp-r = zq-r and
yp-r-1 ≠ zq-r-1.
3.2) What is the remarkable property of the path (0 = z0, z1, ..., zq-r-1) ?
3.3) Deduce the validity of the algorithm.

0

1 2

3 4 5

6

1

1

1

74
3

2

1 5

1

1

Bellman algorithm

Algorithm:

(i) enumerate all vertex of the graph, set 0= 0.

(ii) for j = 1 to n – 1 set : j = min (k + vkj) over the set of
predecessors xk of xj.

Ps. Vertex numeration is a function f : {V}->N s.t. for any arc (xi,xj) f(xj) < f(xj).

Proof by recurrence…

Theorem 5: Bellman algorithm computes the shortest
path values i from x0 in O(m).

Some path problems

• The longest path computation problem;

• The maximum probability path;

• The maximum capacity path value;

– Exercise : compute the shortest path among these of
maximum capacity.

Exercise: The itinerary of Michel Strogoff

Leaving from Moscow, Michel STROGOFF, courier of the tsar, was supposed to reach
IRKUTSK. Before leaving, he had consulted a fortune teller who told him, amongst
other things : "After KAZAN beware of the sky, in OMSK beware of the tartars, in
TOMSK beware of the eyes, after TOMSK beware of water and, above all, always be
careful of a large brown-haired person with black boots. " STROGOFF had therefore
written on a map his "chances" of success for each route between two towns : these
chances were represented by a number between 1 and 10 (measuring the number of
chances of success out of 10). Ignoring probability calculation, he had therefore
chosen his route by maximising the total sum of the chances.

The numbers of the cities are: MOSCOW (1), KAZAN (2), PENZA(3), PERM (4), OUFA
(5), TOBOLSK (6), NOVO-SAIMSK (7), TARA (8), OMSK (9), TOMSK (10),
SEMIPALATINSK(11), IRKOUTSK (12).

Exercise: The itinerary of Michel
Strogoff

1

2 4 6 8 10

12

119753

9

7 3 1 2

6

8

8 6 1 9

1

7
5

59
4

1. Determine the route of Michel Strogoff.

2. What was the probability, with the assumption of the independence
of the random variables, that Strogoff would succeed?

3. What would have been his route if he had known the principles of
probability calculation?

Matrix method (I)
for i1 à n do {

for j1 à n do {

if (jU+(i)) then V0[i][j]  vij otherwise V0[i][j] ;

}

}

for k1 à n do {

for i1 à n do {

for j1 à n do {

Vk[i][j] min(Vk-1[i][j] , Vk-1[i][k]+Vk-1[k][j])

}

}

} Proof of validity of the algorithm by recurrence :

Hint : at the end of iteration k, Vk[j][j] gives the value of the shortest path

from i to j going through vertices {1, 2, é, k}+{i, j}.

Complexity : O(n3)

1 2 3 4

1 0 0 9 

2 6 0 8 0

3 0 7 0 5

4  4 0 0

x1 x4

6

x3

x2

0

9
0

0
4

05

7 8

1 2 3 4

1 0 0 9 

2 6 0 8 0

3 0 0 0 5

4  4 0 0

1 2 3 4

1 0 0 8 0

2 6 0 8 0

3 0 0 0 0

4 10 4 0 0

1 2 3 4

1 0 0 8 0

2 6 0 8 0

3 0 0 0 0

4 0 0 0 0

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

for i1 à n do {

for j1 à n do {

if (jU+(i)) then V0[i][j]  vij
otherwise V0[i][j] ;

}

}

for k1 à n do {

for i1 à n do {

for j1 à n do {

Vk[i][j]  min(Vk-1[i][j] ,
Vk-1[i][k]+Vk-1[k][j])

}

}

}

Matrix method (II)

END.

