
JAVASCRIPT

Dritan Nace

• JavaScript
– General aspects
– JavaScript programming basics
– JavaScript for the web.

• DHTML
– DOM versus JavaScript

• JavaScript : an event-oriented langage
– Event manager,

• JavaScript and CSS
• AJAX

Concepts covered in this course

Context

• JavaScript is a script programming language mainly used
in interactive web pages, client side.

• It is integrated into HTML pages; it is an interpreted
language.

JavaScript
• JavaScript (object oriented script language) is a script programming

language mainly used in interactive web pages.
• The language was created in 1995 by Brendan Eich (then called LiveScript)

on behalf of Netscape.
– Subsequently, the Netscape-Java pairing gave birth to Javascript.

• A very similar language, Jscript, was proposed by Microsoft.

• The basic syntax is intentionally similar to Java and C + + to reduce the
amount of new concepts required to learn the language.

• ECMA proposed the "ECMAScript“ standard, the latest standard (ISO):
ECMA 262 (5th edition - December 2009). JavaScript, currently at version
1.8.1, is an implementation of ECMA-262.

JavaScript
• A somewhat rudimentary object oriented language (known as a

prototype)

• It is a relatively un-typed language:
– The same variable can have several type successively.

• It offers basic types,
– a syntax which is similar to the programming languages like C and Java,

• For experienced programmers, it also works as an object-oriented
language and as a procedural language.

• The code can be read by anyone;

• The links are dynamic, therefore the reference of the objects is not
verified during loading.

JavaScript : an object-oriented
language

• An object is an encapsulation of variables called properties and functions
called methods.

• The properties are boxes containing primitive values, methods and / or
objects.

• The primitive values can be taken in the following primitive types:
Undefined, Null, Boolean, Number or String.

• A method is simply a function associated to an object.

• JavaScript does not support the concept of usual class object-oriented
languages .

– The objects are not instances of classes, but are each equipped with
constructors to generate their properties, including a prototype property that
allows users to generate custom objects inheritors.

Primitive types
• JavaScript recognises the following primitive types:

– numbers: 42 ou 3.1415
– booleans: true or false
– strings: "Bonjour !"
– null

• There is no distinction between integers and real values.

• Real numbers use "." for the decimal point and e or E for the
exponent.

• Strings
– " or ’ can be used to demarcate a string.
– Special characters can be used inside :

– \ b for a backspace,
– \ f for a page break,
– \ n for a line break,
– \ r for a line return,
– \ t for a tabulation.

The primitive types
• JavaScript is weakly typed : the variables are not

associated to a particular type.
– Example :

• var i = 4.25
• i = "Hello"

In an expression involving numbers and strings, numbers
are converted to a string.
– message = " There are" + 79 + "students in SR" + 03

Range of variables
• Range of variables

– Global : the variable is visible from any point.
– Local: the variable is visible only in the current

function. To declare a variable which is local to a
function the var keyword must be used.

<script language = "JavaScript">
Function test_visibilite() {
var test = 5;
}
test = 2;
test_visibilite();
alert (test);
</script >

Operators
• Assignment operators

=, +=, -=, *=, etc.
• Arithmetic operators

– +, -, /, *, %, --, ++
• Logical operators

– &&, || and!
• Comparison operators

– ==, != >, <,>=, <=,
• String operators

– +, +=.

Special operators
• new creates a new object.
• typeof determines the type of an operand.

– Syntax : typeof expression or typeof (expression).

• Void
• Conditional expressions « ? : »

– The form is condition? val1 : val2.
– Example : m=(age>=18) ? "major" : "minor"

Language elements
• Comments : two possible forms:

– // comment until end of line
– /* comment until */

• Variable declaration
– Syntax : var name1 [= value1] [..., nameN [= valueN]].

• examples : var i = 0, j = 2

• Function declaration
– function name() { instructions }
– function name(param1,...,paramN) { instructions }

• The return instruction (exit from a function)
– return, return expression

Loops and branches
• The do ... while loop is :

– do instruction-or-block while (condition).
• The while loop:

– while (condition) instruction-or-block
• The for loop :

– for (initialisation ;condition ;incrementation) instruction-or-block.
• The for ... in loop:

– for (variable in objet) instruction-or-block
• The if ... Else test
• The multiple switch branching

switch(i) {
case 1:
// something
break
case 2:
// something else
break
default:
// yet again something else
break
}

Objects
• All objects have a set of properties

– <object>.<property>
• To define a property :

– Associate a value to it (student.name = " Lutton");
– It can also be seen as an element of an array (student["name"]= " Lutton");

• A property can also be an object.

• A method is a function which is associated to an object
– <object>.<methode> = <function>
– this is used to reference the current object
– with is used when we want to carry out several instructions with an

object.
with(document)

{ open();
write("The title of this page is " + title);
close(); }

Object creation

• New objects can be created in JavaScript :
– Define a type of object by creating a function
– Create an instance using the new operator

• An example :
function student(surname, firstname) {
this.surname = surname;
this.firstname = firstname;
}
P = new student ("Goldman", "Jean-Jacques");

It is possible to add properties dynamically.

JavaScript : procedural and object
oriented

• Let r be an object defined with two properties :
r.width and r.height.
– To determine the surface of the rectangle :

function calculateAreaOfRectangle (r) {return r.width*r.length;}
Or otherwise:
function Rectangle(w,h) {

this.width= w;
this.height = h;
this.area= function () {return r.width*r.height;}
}

None of these solutions is optimal!!

Prototype and inheritancee
A special property prototype

function Rectangle(w,h) {
this.width = w;
this.height= h;
}

The object prototype is designed to contained the methods and properties
which can be shared by all the instances.

Rectangle.prototype.area= function () {return r.width*r.height;}

The prototype object is associated with the constructor and any object that
it initialises inherits the same set of properties of the prototype.

Objects and predefined functions
• Some predefined objects : Array, Boolean, Date, Math,

Number, Object, String…
– For each object there are constructors, predefined properties

and methods, eg. for Array :
• ConstructorArray(n), Array(el1,el2,..,eln-1),
• Properties: index, input, length..
• Methods : concat, join, pop, push, sort, toString…

– The Math object is a non-instantiable object, which has
properties and methods

– …
– DOM objects…

• Predefined functions
– eval(), escape()/unescape(), etc.

JavaScript for the web
• At first, JavaScript was used for animation, graphic

effects …,

• Since JavaScript is mainly used in interactive web
pages, making life easier for the user but also providing
added value to web pages providers.

• Different uses of JavaScript :
– Html form control;
– Audience measurement tools;
– Advert managing;
– Ajax: help with automatic form completion…

JavaScript for the web
• JavaScript and security

– JavaScript cannot access files stored on the client site;
– JavaScript cannot access html pages from other sites.
– JavaScript does not allow installation of executables on the client

site;

• Limits of JavaScript
– Navigator and platform compatibility;
– JavaScript is not visible with referencing motors;

Integration of a script in an HTML
page

• Use of the <script> tag;
<script language="JavaScript">
alert("my first JavaScript text !!!!")
</script>

• Including an external file;
<script language="JavaScript« src=« myfile.js">

• Directly between the tags by associating JavaScript to
the events;

<INPUT TYPE="button" VALUE="this paragraph contains an important sentence"
onClick='alert("We are all equal")' >

Avoid the latter!!

Use of the <script> tag

Including an external file;

JavaScript et les cookies

• No methods which are native to JavaScript to manage cookies.
• The cookie property of document are used.
• SetCookie() and getCookie() functions are written.

function setCookie(name, value, expires, path, domain, secure) {
document.cookie=name+"="+escape(value)+

((expires==undefined) ? "" : ("; expires="+expires.toGMTString()))+
((path==undefined) ? "" : ("; path="+path))+
((domain==undefined) ? "" : ("; domain="+domain))+
((secure==true) ? "; secure" : "");

}
function getCookie(name) {

if (document.cookie.length==0) { return null; }
var regCookies=new RegExp("(;)","g");
var cookies=document.cookie.split(regCookies);
for (var i=0; i<cookies.length ; i++) {

var regInfo=new RegExp("=","g");
var infos=cookies[i].split(regInfo);
if (infos[0]==name) {

return unescape(infos[1]);
}

}
return null;

}

Cookies managed by JavaScript

The « cookie.js » file
contains the two
setCokkie et
getCookie functions,
talked about
previously.

Example taken from « JavaScript le guide complet », by O. Hondermarck, MicroApplication 2009 editions.

DHTML
• JavaScript is designed for making dynamic HTML,

(Dynamic HTML, or DHTML) !

• DHTML is a generic name given to all techniques used by
the author of a web page so that it is able to modify itself
while being viewed in the web browser :

DHTML presentation

• The technologies which que DHTML implements
are :
– HTML, necessary in order to present the document;
– Style Sheets (CSS) to define a style for multiple

objects and positioning them on the page ;
– The Document Object Model (DOM), providing a

hierarchy of objects, to facilitate their handling ;
– The JavaScript scripting language, which is essential

to define user events ;

DHTML – how it works

• Animation of elements:
– Animation = property modification (position, height,

width, visibility, color ...) or using their methods
(functions associated with an element).

– This can only be achieved with the help of :
• a JavaScript code to modify the properties of elements in

response to user events (mouse click, mouse movement, ...),
• + structuring of elements in the page defined by the DOM

(Document Object Model).

Document Object Model
• The Document Object Model (or DOM) corresponds to an interface

independent of any programming language and any platform,
allowing computer programs and scripts to access or update the
content, structure or style of Documents.

• DOM is often identified by a tree structure of a document and its
elements.
– eg. each element generated from the tags as in the case of HTML, a

paragraph, a title or a form button, forms a node.

• DOM is used to easily alter or access content from web pages.

• From a given DOM tree, it is also possible to generate documents in
the desired tag language;

Dom versus JavaScript
• While JavaScript is the programming language that can operate and

manipulate the DOM objects, the DOM provides methods and
properties required to read, modify, update and remove items from the
examined document.

• The Document interface is the first to be defined in the DOM Level 1
Core specification, and document is a host object implementing this
interface. This document object contains everything that appears in a
web page.

• An HTMLDocument interface is derived from the main interface,
document. The HTMLDocument interface defines the operations and
queries that may occur on an HTML document ;

HTML et DOM objects
• Window is an object which corresponds to the window in which a web page

is displayed.

• Location is a subobject of Windows. It is a client-side object (ie created by
the browser). Location is currently an interface which is integrated to DOM
and also an attribute of HTMLDocument.

• The Document object defined in the DOM specification provides access to
the content of an HTML page. The most widely used methods of the object
are getElementByTagName and getElementById, open, write ...

• History is a subobject of Windows that provides an interface with the
browser history stored by the browser.

• The Node interface is defined in the DOM 2 specification. It provides access
to the structure of an HTML document viewed as a tree item, and allows
modification of this structure..

• The NodeList interface is a DOM 2 object , which provides access to
elements of a Web page or an XML file. It is a dynamic element, all
structural changes to the page content modify the content of NodeList.

Window (I)
• Window est un objet qui correspond à la fenêtre dans

laquelle s'affiche une page Web. Une telle fenêtre peut
être créée dynamiquement.

• Attributs de window
– frames[] The frames in a window. Read only.
– length The number of frames. Read only.
– name Name of the window.
– status State bar text.
– parent The parent window of a given window.
– …

• Window creation properties
– scrollbars, statusbar, toolbar, menubar, resizable, directories.

Window (II)

The window object and some of its components

Window (III)
• Objects contained in window

– Document : Corresponds to a page, which contains a window.
– History : List of the pages which were previously viewed in the same

window.
– Location : Corresponds to the URL of a page, which contains the

window.
– Screen : Corresponds to the screen and contains the following

properties: width, height, availWidth, availHeight, colorDepth.
– Navigator…

• Window methods
– open(url, nom [, property list]) Opens a new window. The URL and

name are given as parameters as well as the list of options.
– close() Closes the window. Example: x.close(); window.close();
– alert(message) Displays a message.
– …

Document
• Attributes of Document (these are read-only attributes,

defined during the page creation)
– DocumentType doctype (The doctype defined in the page header.)
– DOMImplementation implementation
– Element documentElement An Element is an object which represents

a tag and possesses methods.
– …

• Attributs de HTMLDocument
– DOMString title, DOMString URL, HTMLElement body,

HTMLCollection anchors, HTMLCollection links,
HTMLCollection forms, DOMString cookies …

Document
• Methods of Document. DOM methods can take a DOMString

paramater, which is usually a simple string in JavaScript.
– Element createElement(DOMString)

Creates an element, a tag, whose name is given, and returns an Element
objectt.

– Element getElementById(DOMString)
Returns an element of a given.…

– ..

• Methods of HTMLDocument
– void open() Creates a new document.
– void close() Closes the current document.
– void write(DOMString) Writes to the document.
– void writeln(DOMString) Writes the parameter string and adds a line

break.

Location
Take the following like:
http://www.xul.fr:80/ecmascript/tutoriel/window-location.php#content?name=value
[http:]//[www.xul.fr]:[80][/ecmacript/tutoriel/windows-location.php]#[content]?[name=value]

[protocol][host][port][pathname][hash][search]
protocol http:
host www.xul.fr:80
hostname www.xul.fr
port 80
pathname ecmascript/tutoriel/windowecmascript/tutoriel/window--location.phplocation.php
hash content
search name=value href corresonds to the complete URL.

Use of location
The properties of location can be read or modified.

For example, display the path of the page as follows:
document.write(location.pathname)

Change the page as follows:
location.href = "url"

and other possibilities with replace(), reload()…

History
• History Methods: They allow movement from a page to

the preceding or following one, or to a given page.

– back() Load the preceding page.
– forward() Load the next page, after going back once.
– go(x) Load a page whose number in the list or URL is given.

Example: history.go(-2) to reverse the last tpour annuler les deux
derniers clics.

Node
• The Node interface is defined in the DOM 2 specification. It provides access

to the structure of an HTML document, viewed as a tree of elements, and
modify this structure.

• Properties
– DOMString nodeName The name of the tag, like <table>, <pre> etc.
– DOMString nodeType Node category: element, comments, text, etc.
– DOMString nodeValue The value of node, when this is meaningful. All nodes which do not

have values, are equal to null.
– NamedNodeMap attributes List of the node attributes. Read only.

• Méthodes
– Node appendChild(Node added) Adds a node to the list of child nodes.
– Node cloneNode(Boolean)
– Boolean hasAttributes() Returns true or false, depending on whether it has any attributes or

not.
– Boolean hasChildNodes() Returns true or false depending on whether it has any other

nodes or not.
– Node removeChild(Node deleted) Deletes a node or a branch. Returns the deleted element.
– Node replaceChild(Node new, Node old) Replaces the second argument with the first.

NodeList
• The NodeList interface is a DOM 2 object, which provides access to

elements of a Web page or an XML file.
– It is a dynamic element, all structural changes to the page content

change the contentNodeList.
– NodeList has a unique attribute (int length Number of Nodes in the list), and one

Méthode Node item(int) which returns the Node whose index is given as an
argument.

Example:

var dnl = document.getElementsByTagName("a");
for(i = 0; i < dnl.length; i++)

var lien = dnl.item(i);

The code above provides a list of links on a page, since they are introduced by the <a>. Each link
is then obtained using the item() method of Nodelist

JavaScript : an event oriented
language

• An event is an action generated by the user.

• Each tag can handle an event : on the occurrence of an
event JavaScript code can be executed.
– Syntax <balise EventHandler= "code JavaScript")

<input type= "button" value "Click here"
onclick = "alert (‘Thanks !’);">

<form name "f1" >
<input name= "b1" type= "button" value "Click here" >
</form>

Document.f1.b1.onclick = function(){alert (‘Thanks !’); };

Events
• Page and window events

– onabort – if there is an interruption while loading
– onerror – if there is an error while loading a page
– onload – after the end of page loading
– onbeforeunload ; onunload ; onresize ;

• Mouse event
– onclick – a single click
– ondblclick – a double click
– onmousedown – when the mouse button is pressed, without necessarily being released
– onmousemove - onmouseout - onmouseover – onmouseup;

• Keyboard events
– onkeydown – when a key is pressed
– onkeypress - when a key is pressed and released
– onkeyup – when a pressed key is released

• Form events
– onsubmit – when the form is validated (via a button of the "submit" type or a submit()

function)
– onreset – during the resetting of the form (via a "reset" button or a reset() function)
– Onselect; onblur; onchange; onfocus;

Associating Javascript with events
<html>
<head>
<title>Exemple JavaScript</title>
</head>
<body>
<h1>Exemple JavaScript</h1>
<INPUT TYPE="button" VALUE="this paragraph contains an important

sentence"
onClick='alert("We are all equal")' >

</BODY>

</HTML>

Associating Javascript with events : form
control(I)

• Associating javascript functions to
control how the fields are filled :
– Test if the Title is entered,
– Test the E-mail field,
– Test if the (code postal, téléphone,

fax) fields have integer values,
– Test the date…
– Test the agreement to the general

conditions

– Create a testSaisie() function to
associate to onSubmit().

Associating Javascript with events : form
control(II)

function testNumerique(valeur)
{
 if (valeur == parseFloat(valeur)) return true;
 else return false;
}

<BODY>
<FORM name="form1" onSubmit="return testSaisie()">
 <P>Veuillez remplir les champs suivants :</P>
 <P>Civilité* :
 <INPUT type="radio" name="civ" value="Mr">Mr
 <INPUT type="radio" name="civ" value="Mme">Mme
 <INPUT type="radio" name="civ" value="Mlle">Mlle

…
<P>(*) Champs obligatoires</P>
 <P>
 <INPUT type="submit" name="Submit" value="Envoyer">
 <INPUT type="reset" name="Submit2" value="Rétablir">

 </P>
</FORM>

function testMail(email)
{
 var posArobase;
 posArobase = email.indexOf("@");
 if (posArobase == -1) return false;
 var posPoint;
 posPoint = email.lastIndexOf(".");
 if ((posPoint == -1) || (posPoint < posArobase)) return false;
 return true;
}

function testRadio(nomForm,nomGroupe)
{
 var compteur;
 compteur = 0;
 while (compteur < nomForm.elements[nomGroupe].length)
 {
 if (nomForm.elements[nomGroupe][compteur].checked)
 return true;
 compteur++;
 }
 return false;
}

JavaScript and CSS
• JavaScript allows modification of CSS styles:

– on-line modifying of element styles :
• ex. changing the colour of an element…

– An item can be accessed via document.getElementById …
– Modifying the class of an element :

• The class of an element can be accessed via the className
attribute of any html element…

• Any CSS element is accessible via JavaScript and DOM
depending on the rule:

– The name does not change if there is no indent. Otherwise delete
the hyphen and capitalize the first letter that follows.

– Manipulating the page styles themselves:
• This corresponds to activating and deactivating the style pages

– Use the disabled property for the <link> and <style> elements

Review

– HTML allows text encapsulation between the tags, in
order to continue to formating;

– CSS can define the format of the tags ... they can be
conditional (eg depending on the media);

– JavaScript is a language which is integrated into
HTML.

– DHTML is the union of HTML, CSS and Javascript.
Using the DOM, it allows rewriting of the HTML page
without reloading;

AJAX

Ajax: motivation and operation
principle

• Ajax (Asynchronous JavaScript + XML) is the joint use of several
technologies like XHTML, CSS, DOM, XML and / or JSON, all linked by
JavaScript that uses the XMLHttpRequest mechanism.

• Ajax permet l’échange d’informations entre le navigateur et le serveur web
sans recharger la totalité de la page.

– Il permet de garder des pages web affichées et avoir des performances accrues;
– analyser et travailler avec des documents XML.

• Principe: l’exécution du code JavaScript continue en parallèle du traitement
de la requête Ajax (asynchrone).

– Une requête est envoyée au serveur (grâce à XMLHttpRequest),
– Le serveur envoie la réponse;
– le JavaScript (et non le navigateur) réceptionnera et traitera la réponse.

Synchrone versus asynchrone
Take the example of the management of a shopping cart on e-commerce site.

In synchronous mode, the user adds an article to the basket.
· A request is sent to the 4D server
· The navigator is waiting a response from the server
· The server validates the addition
· The server sends the content of the new basket back
· The navigator refreshes the display zone of the basket
· The user continues the purchase

In asynchronous mode the user adds an article to the basket.

· A request is sent to the 4D server
· The navigator continues its execution
· The user continues his purchases
· The server validates the addition
· The server calls the navigator again and sends the content of the new basket
· The navigator refreshes the display zone of the basket

In this case, it is preferable to wait for the validation of the addition of the article (and therefore the
synchronous mode).

Propose applications which use the asynchronous mode.

Ajax : how it works(I)
The object XMLHttpRequest is the cornerstone of Ajax.

Properties
Onreadystatechange (a function is assigned to it with the response processing

instructions);
readyState: state of completion of the request from 0 (uninitialised) to 4 (complete).
responseText / responseXML: the server response to the request in text (ie objects

recognised by JavaScript) or formatted as an XML object.
Status: status of the HTTP server response. (200 OK)

Methods
open(method, url, bool) : (if asynchronous mode, bool is true, otherwise false)
send(data) : Sends the HTTP request (when there is no more data, the value is null)
setTimeouts(timeout)
…

if (window.XMLHttpRequest) {
xhr_obj = new XMLHttpRequest(); }
else if (window.ActiveXObject) {
xhr_obj = new ActiveXObject("Microsoft.XMLHTTP");
xhr_obj.open("GET", location.href, false);
xhr_obj.send(null);
if(xhr_obj.readyState == 4)
alert("Request finished!");

Ajax : how it works(II)
Launching of an (asynchronous) HTTP
if (window.XMLHttpRequest) {
xhr_obj = new XMLHttpRequest(); }
else if (window.ActiveXObject) {
xhr_obj = new ActiveXObject("Microsoft.XMLHTTP");}
…
xhr_obj.onreadystatechange = function() {

// response processing instructions};
…
xhr_obj.open('GET', 'http://url….', true);
xhr_obj.send(null);

Managing the server’s response

if (xhr_obj.readyState == 4) { // answer received
}
else { // n
}
…

if (xhr_obj.status == 200) { // OK !
}
else { // there was a problem with the HTTP request
}

Data formats
XML versus JSON

• JSON (JavaScript Object Notation) is a recursive format compatible with JavaScript, which is
structured as a JavaScript object saved in a JSON (JavaScript Object Notation) file.

<?xml version="1.0" ?>
<root>
<menu>File</menu>
<commands>
<item>

<title>Nouveau</value>
<action>CreateDoc</action></item>

<item>
<title>Ouvrir</value>
<action>OpenDoc</action> </item>

<item>
<title>Close</value>
<action>CloseDoc</action> </item>

</commands>
</root>

{
"menu": "File",
"is": [

{
"title": "New",
"action":"CreateDoc"
},
{ "title": "Open",

"action": "OpenDoc"
},
{
"title": "Close",
"action": "CloseDoc"

}
]

}

To use a JSON file:
Load the file as text (method XMLHttpRequest.responseText). use the
JavaScript eval ():
var jtxt = eval('(' + xhr_obj.responseText + ')');

The data.txt file contains :
alert(‘Request finished!');

Result of the request :

Example of a simple AJAX request

• Bibliography :

– Michel Vayssade « poly SR03 »;
– « HTML et JavaScript », S. Maccari et S. Martin, ed. MicroApplication, 2004.
– « JavaScript: La référence » D. Flanagan, ED. O’Reilly, 5eme édition, 2007.
– « AJAX : le guide complet »B. Catteau N. Faugout, édition Micro Applications, 2009.
– « JAVASCRIPT : le guide complet », O. Hondermarck, édition Micro Applications,

2009.

Additionally, many useful websites:
• http://www.w3.org/
• http://developer.mozilla.org/en/docs/Gecko_DOM_Reference Traduction

française: Référence du DOM Gecko
• http://www.commentcamarche.net/
• http://www.developpez.com/
• http://pagesperso-orange.fr/arsene.perez-mas/javascript/cours/document.htm

