
1

OPERATIONAL RESEARCH:

Combinatorial Optimization
Keywords:

optimization, combinatorial, algorithms, graphs, computer science,

 data structures, complexity.

Jacques Carlier

Dritan Nace

 April 2023

2

0. INTRODUCTION : What is Operational Research ?

The mathematics components of operational research are frequently minimized. But from the

beginning, its main focus has been on finding solutions to real-world issues that pose difficulties for

common sense. That is why it seemed necessary to us, in this introduction, to define Operational

Research. For this purpose, we rely on the writings of Robert FAURE.

Combinatorial problems are challenges in the common sense. Therefore, they are studied, but they

remain unknown even to many computer scientists. Indeed, some believe in the absolute power of

the computer and do not worry about issues of data size or algorithmic complexity. Others make a

mountain out of so-called NP-hard problems. However, my already long struggle against

combinatorial problems has taught me that the real situation is much more complex, especially from

a practical point of view. Some of them are indeed simple and rely on a heuristic, such as simulated

annealing or genetic method. Others, on the contrary, require detailed studies and specific programs.

But, in any case, human intervention is crucial. It is necessary to know how to exploit the specificities

of a problem and it is a mistake to believe in the automaticity of its resolution.

0.1. Operational research :

Let's start by quoting Robert FAURE who was one of the main initiators of Operational Research in

France...

0.1.1. The practical nature of Opeartional Research :

"Operational Research has been, remains, and will continue to be the art of quickly intervening on

behalf of a specific economic entity (individual or community) in a difficult situation in order to try

to improve its outcome".

0.1.2. Heuristics and Interactive Processing:

" Since its inception, operational research has developed heuristic techniques that, while not able to

produce the formal optimum, can nonetheless produce useful results.".

0.1.3. Principles of Operational Research:

"The Operational Research team, especially the coordinator, must absolutely avoid considering that

it is up to them to conclude their study with a decision"... to arrive at Bernard Roy, one of its current

most prominent personalities, who proposes the term "Decision Analysis".

0.2. Some Operational Research Problems:

0.2.1. Discrete Combinatorial Problems:

We illustrate this with two examples: the traveling salesman problem and the minimum spanning tree

problem. In the traveling salesman problem, a VRP must visit a certain number of cities while

minimizing the distance traveled. In the figure below, the traveler must visit 18 cities starting from

Paris. This problem is modeled by a valued graph whose vertices are the cities and edges are the

connections between these cities. These edges are valued by the kilometric distances.

We must search for a Hamiltonian cycle of minimum value in this graph. There are 17! possible

circuits. More generally, if there are N cities, there are N-1! circuits. It is generally impossible to

3

enumerate them. That is why this problem is a challenge to common sense. We will see during this

course that the traveling salesman problem is probably of exponential complexity (it is NP-hard).

Figure 0.1 Map of cities in the TSP

In the minimal spanning tree problem, N sites must be connected at minimum cost so that each site

can communicate with all the others. We will see that we need to search for a minimal spanning tree,

and that this problem is an easy one because it can be solved by a polynomial algorithm. An example

of a graph is shown in Figure 0.2, along with its minimal spanning tree in Figure 0.3. It was obtained

by successively retaining the edges with the smallest costs, provided that they are "useful".

Lille

Brest

Paris

Caen

Amiens

Compiègne

Strasbourg

Orléans

Nancy

Tours
Nantes

Limoges

Lyon

Bordeaux

Toulouse
Pau

Montpellier
Marseille

4

Figure 0.2 : Graph

Figure 0.3 : Minimal tree

0.2.2. Continuous combinatorial problems:

A country wants to buy weapons and approaches an international arms dealer who has stolen or

purchased stocks. The dealer offers 2 types of lots. The first type of lot contains 100 machine guns,

200 bulletproof vests, 5 light armored vehicles, and 50 bazookas. The second type of lot contains 50

machine guns, 100 bulletproof vests, 10 light armored vehicles, and 100 bazookas. A type 1 lot costs

p1 francs and a type 2 lot costs p2 francs. The country wants to buy at least 1000 machine guns, 2500

bulletproof vests, 30 light armored vehicles, and 250 bazookas. If x1 is the number of type 1 lots and

x2 is the number of type 2 lots that it buys, then it must be solve by the following linear program:

Minimise p1 x1 + p2 x2

Under the constraints :

100x1 + 50x2  1000

200x1 + 100 x2  2500

5x1 + 10x2  30

50x1 + 100 x2  250

x10 and x20 where x1 and x2 integers

We talk about a linear program because the constraints and the objective function are linear. This

program is discrete because the variables are assumed to be integers. This integrality of variables

makes the resolution difficult. That is why we relax the integrality constraint and assume the variables

A

B

C

D

E
F

G

I
J

K

L

H

3

3
4

5

2

1

1

4

6

5

85

6

4

7

8

9
3

7

8

9

A

B

C

D

E
F

G

I
J

K

L

H

3

3
4

5

2

1

1

4

6

5

8

5

to be real, which makes the problem easy. It is therefore easy (polynomial) in the continuous case

and difficult (NP-hard) in the discrete case. To obtain an integer solution, we can, for example, retain

the integer parts of the continuous solution. But we will not have the optimal solution.

In general, for functional optimization under constraints, we talk about mathematical programming.

An example is provided by the problem that Queen Dido had to solve during the foundation of

Carthage, which is: what is the geometric shape with a given perimeter that has the largest surface

area? The answer is a circle. However, it should be noted that most mathematical programming

problems are difficult. These problems are studied in the course RO04, where the simplex method is

presented, which allows for the treatment of large continuous linear programs.

0.2.3. Random problems:

A random phenomenon occurs at the checkouts of a supermarket. An observer was able to measure

the frequency of the number of customers who arrive per minute for 30 minutes.

Number of customers per minute 0 1 2 3 4 5 6

Observation frequency 4 8 8 6 3 1 0

He also observed the distribution of service times:

Service times Number of customers

Less than 1 mn 24

1 to 2 mn 14

2 to 3 mn 8

3 to 4 mn 5

4 to 5 mn 3

5 to 6 mn 2

6 to 7 mn 1

7 to 8 mn 1

8 to 9 mn 1

These statistics allow for estimating arrival and service laws. Here, for example, we have Poisson

arrivals and exponential services. It is necessary to find a compromise between customer waiting

time and the number of open checkouts. Other random problems concern inventory, equipment

renewal, and reliability. These problems are studied in UV RO05, where Markov chains and queuing

theory are presented in particular.

6

0.2.4. Work scheme of an operational research team:

We have three steps. The first step aims to model the problem and determine the criteria. The second

step is the solution, that is, the determination of a solution that appears good (we will say abusively

optimal). The third step is a discussion with the decision maker and, if necessary, a return to the first

step.

Figure 0.4 : Operating scheme of a team.

0.3. Summary:

The Operations Research:

• deals with a practical problem;

• has a limited objective (this application);

• requires a toolbox (algorithms and data structures, combinatorial optimization, graphs,

complexity, linear and mathematical programming, stochastic processes, probability and

statistics, multicriteria methods...);

• is multidisciplinary (Mathematics, Computer Science, Economics);

• is common (Linear Programming, PERT, ...);

• helps in decision making.

0.4. Combinatorial problems :

Among the challenges to common sense, there are therefore combinatorial problems for which it is,

a priori, impossible to enumerate. However, easy problems are distinguished from difficult problems.

0.4.1. Easy problems :

It is the case for problems of very small size (you need to enumerate!), for strongly constrained

problems (enumeration is sufficient!), for weakly constrained problems (a heuristic), and finally for

problems solved polynomially!

7

0.4.2. Difficult problems :

My practical experience allows me to assert that difficult problems are frequent and that to solve

them, multiple tools must be used (serial methods, simulated annealing, tree methods, dynamic

programming, A* algorithm...). It should be added that for some of them, the most effective current

method is to replicate human expertise.

0.4.3. Automatic methods :

It doesn't exist yet!) 40 years ago, GOMORY discovered his famous cuts for Integer Linear

Programming (ILP). However, many combinatorial problems can be modeled as an ILP. At the time,

it was believed that combinatorial problems could be solved. Hope was disappointed! 40 years later,

we still don't know how to automatically solve combinatorial problems. But theoretically, it is not

excluded that this could be possible in the future. This means that NP-hard problems could be solved

"practically" in polynomial time. A great algorithmic breakthrough would be needed.

0.4.4. Semi-Automatic methods:

It is meaningless to model a combinatorial problem without additionally describing its resolution

procedure, more precisely excellent evaluations or reasonable constraints. Hence the idea of creating

programming languages adapted to combinatorics and including tree traversal with automatic

choices.

The advantage is being able to program very quickly, at least for the specialist of such a language. In

my opinion, such a tool remains ambitious because of the additional costs related to the rigidity of

such a system and the weakness of their data structures.

0.4.5. Specific programs :

I will mention tree-based methods, polyhedral methods, dynamic programming, but also heuristics.

The experience of solving combinatorial problems shows the crucial importance of the following

points to build an effective method:

• an appropriate modeling;

• the complexity of algorithms and data structures;

• proximity to the machine (procedural language, for example);

• proximity to the problem (if we do not have excellent evaluations, they are useless).

(1) In fact, every model is a simplification of reality, and when modeling, one should seek to

obtain the most representative model that can be solved satisfactorily!

0.5. Conclusions :

It would be a joke to claim to teach all of combinatorial optimization in just sixty hours (including

lectures and exercises). We will not make such a claim. We will focus on the main ideas and

presentation of the most fundamental algorithms. Indeed, these algorithms are the basic tools for

more advanced methods. Our objectives are to raise awareness of the complexity of problems, the

danger of combinatorics, and the usefulness of graphs for modeling. Hopefully, this will prevent you

from designing beautiful models that are perfect for small school examples but unusable for real

problems in the field.

8

BIBLIOGRAPHY

[1] A. ALJ, R. FAURE, Guide de la Recherche Opérationnelle, 2 tomes, MASSON, 1990.

[2] R. PENROSE, L'esprit, l'ordinateur et les lois de la physique, INTEREDITIONS, 1992.

[3] B. ROY, "Recherche Opérationnelle et Aide à la Décision", Discours de remerciements à l'occasion de la remise du diplôme de

Docteur Honoris Causa de l'Université de POZNAN, 1992.

[4] M. GONDRAN; M. MINOUX “Graphes et Algorithmes” Eyrolles 1985.

[5] ROSEAUX. “Exercices corrigés de Recherche Opérationnelle” 3 Tomes. MASSON, 1982.

[6] M.R. GAREY, D.S JOHNSON, “Computers and Intractability” W. H. FREEMAN, San Francisco, 1979.

3

1. GRAPHS:

1.1. Why graphs? :

Graphs are invaluable tools for modeling and solving numerous real-world problems. Indeed, they

allow, on the one hand, to guide intuition during reasoning, and on the other hand, to connect with

known results from graph theory. We define them briefly below and illustrate their usefulness with

some examples.

A directed graph is a pair G = (X, U), where X is a set whose elements are called vertices, and

U is a subset of X x X whose elements are called arcs.

Figure 1-1 Directed graph

Example 1 :

A first example of a graph is illustrated in Figure 1.1. It is given by: X = {A, B, C,

D , E} and U = {(A , C) (C ,A) (C ,D) (B ,D) (D ,D) (E , E)}.

Example 2 :

We have 3 jars with respective capacities of 8, 5, and 3 liters. Initially, the largest

jar is full, and the other two are empty. We want to reach the situation where the

two largest jars contain 4 liters each, under the constraint that when we pour from

one jar to another, we either fill the receiving jar completely or empty the pouring

jar completely.

To this problem, we associate a graph whose vertices represent the states of the system. A vertex

is a triplet (i, j, k) where i, j, and k are the contents of the 3 jars. The edges correspond to the

possibilities of transition between states (see Figure 1.2).

An undirected graph is a pair G = (X, E), where X is a set of vertices and E is a set of pairs of

vertices called edges. We have a multigraph when we allow the simultaneous existence of multiple

identical pairs.

A

D

C

E
B

4

8,0,0

3,5,0

3,2,3

0,5,3

6,2,0

5,0,3

5,3,0

2,3,3

2,5,1

7,0,1

7,1,0

4,1,3

6,0,2

1,5,2

1,4,3

4,4,0

Figure 1-2 Graph of the Three Jars

Example 3 :

The Königsberg Bridge (Kaliningrad) spans the Pregel River. In the middle of this

river, there is the island of Kneiphoff (see Figure 1.3).

Figure 1-3 The Königsberg Bridge

Can a pedestrian cross each bridge exactly once? In 1736, Euler proved that this is impossible. To

demonstrate this, he associated the problem with the multigraph shown in Figure 1.4.

b

a

c

d

5

Figure 1-4 Euler's Graph

To each landmass corresponds a vertex, and to each bridge corresponds an edge. The problem can

then be formulated as follows: is there a path that passes exactly once through each edge of the

multigraph (referred to as an Eulerian path)? The answer is given by the following theorem, which

we will not prove:

Euler's Theorem: A simple multigraph (without loops) G has an Eulerian path if and only if it is

connected (i.e., "in one piece") and the number of vertices with odd degree is either 0 or 2.

In the case of the Königsberg bridges problem, the 4 vertices in the graph of Figure 1.4 have odd

degrees, so there is no solution.

1.2. Vocabulary of Graph Theory:

The purpose of this paragraph is to provide the basic definitions of graph theory. These definitions

are numerous but very intuitive, which makes them easy to learn!

1.2.1. Directed and undirected graph, weighted graph:

directed graph: A directed graph is a pair G = (X, U), where X is a set whose elements are called

vertices, and U is a subset of X x X whose elements are called arcs.

undirected graph: An undirected graph is a pair G=(X, E), where X is a set whose elements are

called vertices, and E is a subset of X choose 2 (i.e., all possible pairs of vertices) whose elements

are called edges.

Note: We will denote n as the number of vertices in a graph and m as the number of arcs (or edges).

An undirected graph can be associated with a directed graph by "dropping the orientation."

Similarly, an undirected graph can be associated with a directed graph by either introducing two

arcs corresponding to each edge or choosing only one of the two arcs (see Figure 1.5).

Figure 1-5 Directed graphs and undirected graphs

Weighted graph:

A weighted graph is a triplet G = (X, U, v), where (X, U) is a graph and v

is a mapping from U to ℝ (set of real numbers).

a

b

c

d

A B

CD

E

A B

CD

E

A B

CD

E

6

1.2.1 Initial endpoint, terminal endpoint, successor, predecessor:

Initial and terminal (successor and predecessor) ends:

Consider an arc (i, j); i is called the initial end of the arc (i, j), and j is

the terminal end. It is also said that j is a successor of i, and i is a

predecessor of j. The arc (i, j) is said to be incident outward at i and

inward at j.

We denote U+(i) as the set of successors of i, U-(i) as the set of predecessors of i, d+(i) as the half

out-degree of i, which is the cardinality of U+(i), and d-(i) as the half in-degree of i, which is the

cardinality of U-(i) (refer to Figure 1.6).

1.2.2. Degree :

Vertex degree:

The degree of a vertex is the number of arcs incident to that vertex.

When there are no loops on a vertex, meaning there are no arcs where the initial and terminal ends

coincide, its degree is the sum of its half in-degree and half out-degree (refer to Figure 1.6).

Figure 1-6 Directed graph

In Figure 1.6, we have:

U-(E) = {A ,D } d-(E) = 2 d-(A) = 0 d (C) = 4

U+(E) = {C} d+(E) = 1 d+(A) = 3 d (B) = 4

1.2.3. Paths, circuits:

Path:

A path is a sequence of vertices [x0, x1, ..., xp] such that the arcs (x0, x1), (x1, x2), ..., (xp-1, xp)

belong to the graph. The value of a path is the sum of the weights/valuations of the arcs along this

path. The length of a path is the number of arcs it contains.

The vertex x0 is called the initial vertex of the path, and the vertex xp is called the terminal

vertex.

A

B C

D

E

boucle

7

Figure 1-7 Weighted graph

For example, in the weighted graph shown in Figure 1.7, the value of the path {s, 1, 2, 4, p} is 26

and its length is 4.

Circuit :

A circuit is a path in which the initial vertex coincides with the

terminal vertex.

Elementary and simple paths:

A path is said to be elementary (or simple) if it does not pass through

the same vertex (or arc) more than once.

Figure 1-8 Directed graph

On figure 1.8: The paths [E, D, C, F] and [E, D, A, B, C, F] are elementary, whereas the path [E,

D, A, B, A, B, C, F] is not elementary.

Eulerian and Hamiltonian paths:

A path is said to be Eulerian (resp. Hamiltonian) if it traverses each

Descendant, ascendant:

A vertex j is a descendant of a vertex i if there exists a path going

from i to j, or if i = j; in this case, i is called an ancestor of j.

Source, sink :

A source is a vertex that is an ascending point to all other vertices,

while a sink is a vertex that is a descending point from all other

vertices.

Note A synonym for source (respectively, sink) is root (respectively, anti-root).

s

1 3

2
4

5

p

2

3
7

108

11

6

9

4

0

B

D C FE

A

8

1.2.4. Chains, cycles:

Figure 1-9 Directed graph

Chain :

A chain is a sequence of arcs u1, u2, ..., up such that one endpoint of

the arc ui (2 ≤ i ≤ p-1) is common with the arc ui+1, while the other

endpoint is common with the arc ui-1. The length of a chain is the

number of arcs it contains.

In Figure 1.9, (A B) (B C) (G C) (F G) (E F) (D E) is a chain.

A chain can be "seen" as a sequence of vertices such that two consecutive vertices are connected

by an arc, with some arcs being traversed in the direction of the chain (positive direction), and

others in the opposite direction (negative direction).

Cycle :

A cycle is a chain in which the initial endpoint coincides with the

terminal endpoint.

Similarly, we define a simple chain, Hamiltonian chain, elementary chain, Eulerian chain,

Hamiltonian cycle, and Eulerian cycle.

1.2.5. Partial graph, subgraph:

Subgraph :

Let G = (X, U) be a graph.

The subgraph associated with the subset A of X is defined by the

graph GA as follows:

GA = (A, U  A x A).

A

B C

D E F

G

2

1

3

5
4

1

5
4

1

5
4

1

5
4

1

5
4

9

Figure 1-10 Directed Graph

Let's consider the example from Figure 1.10 where n = 5 and m = 8, the subgraph associated with

the set A = {1, 4, 5} is shown in Figure 1.11.

Figure 1-11 Subgraph

Partial graph:

A partial graph G' of G is a graph that has the same set of vertices as

G, and whose set of edges is a subset of the set of edges of G: G' = (X,

U') where U' is a subset of U.

On Figure 1.12, a partial graph of the graph shown in Figure 1.10 is depicted.

Figure 1-12 Partial graph

A partial subgraph is a subgraph of a partial graph.

1.2.6. Connectivity:

Simple Connectivity (Undirected):

The relation i C j (read as i connected to j) holds if i = j or if there exists

a chain from i to j. This is an equivalence relation whose classes are

called connected components.

Strong Connectivity (Directed):

The relation i FC j holds if i = j or if there exists a circuit passing through i

and j. This is an equivalence relation called strong connectivity. The classes

are referred to as strongly connected components.

1

5
4

2

1

3

4

5

10

Figure 1-13 Connected components

In the example of Figure 1.13, we have 4 connected components: {A}, {B, C, D, E, F}, {H, I, J},

{G, K, L, M, N}.

In the previous example, we have 7 strongly connected components: {A}, {B, C}, {D, E, F}, {H,

I, J}, {G, K}, {L}, {M, N}.

Reduced graph:

The reduced graph GR is the graph (X/FC,V) whose set of vertices is

the set of strongly connected components, and where every arc

connects two distinct components, each containing at least one pair

of vertices that are connected in G. The reduced graph is acyclic.

Figure 1-14 Reduced graph

On Figure 1.14, we have drawn the reduced graph of Figure 1.13.

1.2.7. Cocycle, cocircuit :

Cocycle :

A cocycle is a set of arcs that connect two complementary parts of a

graph. If Y is a subset of X, the associated cocycle is denoted by ω(Y),

and we have ω(Y) = ω(X - Y), where X - Y represents the complement

of Y in X.

Cocircuit :

A cocircuit is a cocycle in which all the arcs have the same direction.

A

H

I

J

B C D

E F

G K

L M N

A

L

B , C D , E , F

G , K

M , N

H , I , J

11

Figure 1-15

In figure 1.15, (4) = {(2,4),(3,4),(5,4)} is a cocircuit, whereas {(1,2)} = {(2,4), (2,3),

(1,3),(5,1)} is not a cocircuit.

1.2.8 Transitive closure:

Transitive closure :

The transitive closure of a graph G = (X,U) is the graph G" = (X,U")

with the same set of vertices as G, such that (i,j) ∈ U" if there exists a

path from i to j in G.

3

2 4 5

1 3

2 4 5

1

G = (X , U) G” = (X, U”)

Figure 1-16 : The transitive closure of a graph

1.2.9. Chromatic number and stability number:

Stability :

A subset S of X is stable if there is no edge connecting two vertices in

S. The stability number α(G) is the maximum cardinality of a stable

set.

1

32 5

4

12

Chromatic number:

A graph G is c-chromatic if it is possible to color its vertices with c

colors such that no two adjacent vertices have the same color. The

chromatic number γ(G) is the smallest c for which G is c-chromatic.

Example:

We consider a graph whose set of vertices is the set of exams for the second semester at U.T.C:

two vertices are connected by an arc if the same student must pass the two corresponding exams.

We want to determine a schedule in a minimum number of periods (one period being equal to half

a day). Each color will correspond to a period of time during which all the exams of this color will

take place.

Figure 1-17 Coloring

In Figure 1.17, vertices A, D, E, and G are colored red, while vertices B, C, F, H, and I are colored

green. The chromatic number γ(G) = 2.1.3.

Particular graphs:

1.3.1. Forest :

A forest is a graph without cycles.

Figure 1-18 Forest

A B

D C E

F G

H

I

R V

R V R

V R V

V

A

B

B

C

E

B

F H

GD

13

1.3.2. Tree :

A tree is a connected graph without cycles (with |X| ≥ 2).

On Figure 1.19, a tree with 9 vertices and 8 edges is drawn.

Figure 1-19 Tree

Characteristic properties (see tutorial):

A tree is connected and has n-1 edges.

A tree is acyclic and has n-1 edges.

A tree is connected, and if one edge is removed, it is no longer connected.

A tree is acyclic, and if one edge is added, it creates a cycle.

There exists a unique simple path between any pair of vertices in a tree.

1.3.3. Arborescence :

Arborescence :

An arborescence is a directed tree in which every vertex (except one)

has exactly one predecessor. The vertex without any predecessor is

called the root of the arborescence.

Figure 1-20 Arborescence

For every vertex, there exists a unique path connecting it to the root. Vertices without any

successors are called pendant vertices or terminal vertices.

1 2 3 4 5

7 6 8

9

1

2 3 4

5 6 7

14

1.3.4. Biparte graph :

A bipartite graph G = (X, U) is a graph in which the set X of vertices

can be partitioned into two disjoint sets Y and Y' such that every edge

has one endpoint in Y and the other in Y'.

Example: Battle of Britain.

In 1941, the British squadrons were composed of biplane aircraft, but some pilots could not team

up with certain mechanics due to language or habit reasons.

To address this issue, a graph can be associated where the set of vertices includes the pilots and

the mechanics. A pilot is "connected" to a mechanic if they can both embark on the same aircraft.

In Figure 1.21, the bold lines represent a matching between the set of pilots and the set of

mechanics.

Figure 1-21 Matching

Matching:

A matching is a set of edges such that no two edges in the set share

a common vertex.

Example: { (1, B), (2, D) } is a matching in the graph shown in figure 1.21, while { (1, B), (2, D),

(3, A), (4, C), (5, E) } is a maximal matching.

1.3.5. Planar graphs:

A graph is said to be planar if it can be represented in the plane in

such a way that the vertices are distinct points and the edges do not

intersect.

1

2

3

4

5

A

B

C

D

E

15

Figure 1-22 : example of planar graph

Figure 1-23 :graph of the 3 factories (non-planar)

Figure 1-24 : complete graph with 5 vertices(non-planar)

On figures 1.23 and 1.24, the two minimal non-planar graphs are drawn. Indeed, if we remove an

edge from either of these two graphs, the resulting graph becomes planar. Furthermore, any non-

planar graph contains a partial subgraph that can be matched with one of these two graphs by

associating a chain from the partial graph with an edge from the graph (Kuratowski's theorem).

Four-color conjecture (1875 Peterson):

"Every planar graph is 4-colorable" (the vertices can be colored with 4 colors). This conjecture

was "proved" with the help of a computer (1982).

Originally, this problem originated from the coloring of a geographical map: Can a geographical

map be colored with 4 colors?

1.3.5. Cliques:

A clique is a complete graph without loops (in directed and undirected cases). In the

directed case, a clique has n(n-1) arcs, and in the undirected case, it has n(n-1)/2 edges.

Only cliques of cardinality 1, 2, 3, and 4 are planar.

1

2 3

4

16

2. BASIC POLYNOMIAL ALGORITHMS FOR GRAPHS:

2.1. Introduction :

We will present in this chapter two polynomial graph algorithms: one algorithm for properly

numbering the vertices of a graph, and one algorithm for finding a maximum cardinality matching

in a bipartite graph. Before that, we will describe the different data structures for representing a

graph in a computer and define the notion of a polynomial algorithm. This notion is important

because it is basic for the efficiency of programs. We will see that the complexity of an algorithm

strongly depends on the data structure used and that some problems are inherently exponential.

Other graph algorithms will be studied in the rest of the course and in directed exercises.

2.2. Definition of polynomiality:

We say that a function f(x) is O(xp), if there is a polynom P(x) of

graph p such as x  , f(x)  P(x).

We distinguish between memory and computational time complexities for algorithms. The former

gives an upper bound on the number of memory words required to represent the parameters and

variables in a data structure. The latter gives an upper bound on the number of elementary

operations required to execute an algorithm. In both cases, x represents the size of the problem

data to be processed, or more precisely, the number of digits in the data.

 Note: For graphs, the complexity is expressed in terms of the number n of vertices and the number

m of edges.

2.3. Coding a graph :

There are 4 main data structures for coding a graph: the adjacency matrix, the incidence matrix,

the adjacency queue, and the inverse adjacency queue.

2.3.1. Adjacency Matrix :

Figure 2.1 : Example of a graph with its

adjacency matrix

2 3

1

4

1 1 1 0

0 0 1 1

0 0 0 1

0 0 1 0

17

The adjacency matrix of vertices-vertices is the square matrix of

order n denoted by A = (aij) such as : aij = 1 si (i, j)  U,

 aij = 0 sinon.

Note that the encoding using the associated matrix is in O(n2) (complexity of encoding) because

this encoding uses n2 memory words. This is therefore costly, but it is the simplest

way to encode a graph.

2.3.2. Vertex-Edge Incidence Matrix:

The vertex-edge incidence matrix N is defined by Nij:

Nij = 1 If vertex i is the initial endpoint of uj..

Nij = -1 if i is the terminal endpoint of uj.

Nij = 0 other.

Figure 2.2 : Graph and its incidence matrix

Note: The coding complexity in terms of n, the number of vertices, and m, the number of arcs is

O(n x m). This matrix is useful when we need to model graph problems using linear programming

(such as flow).

2.3.3. Successor queue :

The successor queue is composed of two arrays, ALPHA and

BETA. BETA is the queue of successors of the vertices arranged in

the order of their numbering, and ALPHA is the array that gives to

a given node number the location in the BETA array of its first

successor. This assumes that the vertices are numbered in the

interval [1..n] (where n is the number of nodes in the graph).

Remarks: Information about the successors of vertex I can be found in the BETA array between

the addresses ALPHA(I) and ALPHA(I+1)-1. The complexity of the coding is in O(n + m).

2
u

3
u

5
u

4
u

1
u

 0 1 1 -1 0

 1 0 -1 0 0

-1 0 0 0 1

 0 -1 0 1 -1

1

2

3

4

1 2

4 3

2u

3u

5u

4u
1

u

18

This structure is widely used because it is very memory-efficient for sparse graphs and efficient

in computation time when direct access to the successors of vertices is needed.

Figure 2.3 : Example of a graph and its successor

queue.

2.3.4. Predecessor queue:

This queue is defined in a similar way. It allows direct access to predecessors.

2.4. Algorithm for a good numbering of a graph:

Good numbering :

We say that numbering (x) (mapping from X -> [1..n]) is a good

numbering if, for all arcs (x,y) belonging to U, numbering (x) is

strictly smaller than numero(y).

We will show below that for there to exist a good numbering, it is necessary and sufficient that

the graph is acyclic. We also state a result that allows us to construct a linear complexity algorithm

to determine a good numbering of an acyclic graph.

 Proposition 1

A necessary and sufficient condition for a graph to be acyclic is that any non-empty subset of

vertices A has at least one element whose every predecessor is in the complement of A. That is,

the subgraph GA has at least one vertex without a predecessor.

Proof :

Suppose G has a circuit [x0, x1, ..., xr]. Let A = {x0, x1, ..., xr} and consider the subgraph GA: every

vertex of GA belonging to the circuit has at least one predecessor in A. Therefore, there exists a

set A for which the property is false. Conversely, suppose G is without a circuit and the property

is false. There is thus a subgraph GA in which all vertices have at least one predecessor in A.

Starting from xi0 in GA, xi0 has a predecessor xi1... xih-1 has a predecessor xih. We can thus construct

19

a path [xin, xin-1, ...xi0]. Since the graph has n distinct vertices, two vertices in this path are

identical. This graph thus has a circuit, which is absurd. (Q.E.D.).

Proposition 2 :

A necessary and sufficient condition for a graph to be without circuit is that there exists a good

numbering.

Proof :

If G has a circuit [xi0, xi1,...., xip, xi0], there cannot exist a good numbering because otherwise we

would have: number(xi0) < number(xi1) < ... < number(xip) < number(xi0). We prove the converse

by induction on the number of vertices in the graph. It is clear that if G has only one vertex and

no circuit (thus no loop), there exists a good numbering. Now suppose that the property, i.e. every

graph without a circuit with at most K vertices has a good numbering, is true for K = n-1, and

prove it for K = n. If G has n vertices and has no circuit, then there exists a vertex without a

predecessor, according to Proposition 1 by taking A = X. We number this vertex as 1 and reason

on the subgraph obtained by removing it. This subgraph has n-1 vertices. Therefore, according to

the induction hypothesis, it has a good numbering. We use this good numbering to number 2, ...,

n for these vertices, which results in a good overall numbering. (Q.E.D.).

Figure 2.4 : Example of good numeration.

The NUMEROTER algorithm below allows for properly numbering the vertices of a graph

without circuits. The graph initially has an arbitrary numbering and is encoded using the successor

queue.

 NUMBERING Algorithm :

(i) Initialization

Read N, M, ALPHA, BETA. {ALPHA is an array of size N+1 and BETA, of size M}

F

5

B

6

A

3

E

1

C

2

D

4

20

(ii) Calculation of the number of predecessors for each vertex

For I = 1 to N do NOMBRE(I) = 0

For K = 1 to M do

Begin

I = BETA(K)

NOMBRE(I) = NOMBRE(I) + 1

End

(iii) Initialization of the stack of vertices without predecessors

vertex = 0

For I = 1 to N do

Begin

If NOMBRE(I) = 0 then

Begin

vertex = vertex + 1

stack(vertex) = I

End

End

(iv) Numbering of the vertices

For J = 1 to N do

Begin

I = stack(vertex)

vertex = vertex - 1

NUMERO(I) = J

For H = ALPHA(I) to ALPHA(I+1) - 1 do

Begin

L = BETA(H)

NOMBRE(L) = NOMBRE(L) - 1

If NOMBRE(L) = 0 then

Begin

vertex = vertex + 1

stack(vertex) = L

End

End

End

21

Figure 2.5 : Starting graph with initialization of number and stack.

Numeric Application

Figure 2.6 Evolution of the stack and array after

the numbering of 5.

During the numbering of 5, we get:

I = 5

NUMERO(5) = 1

For H = 5 to 7

L = 3

Number(3) = Number(3) - 1

L = 4

Number (4) = 0 (Vertex 4 --> stack)

L = 6

Number (6) = 0 (Vertex 6 --> stack)

etc.

22

Complexity of the Algorithm:

(i) Initialization:

Reading N and M is in O(1). Reading BETA and ALPHA is in O(N + M).

(ii) Calculation of Number:

The first loop is in O(N) while the second loop is in O(M).

(iii) Stack:

The first instruction is in O(1) while the loop is in O(N).

(iv) Numbering:

The loop is in O(N) for the first three instructions. The other instructions are in O(M) because the

loop corresponding to H amounts to traversing the BETA array once.

Total Complexity:

The total complexity is O(M) because:

O(N) + O(M) = O(N+ M) and O(N) + O(1) = O(N).

In general, it is assumed that N-1 ≤ M, hence O(N) + O(M) = O(Max(N, M)) = O(M).

2.5. Finding a maximal matching:

In this paragraph, we will study the definitions and properties of matchings, in particular the notion

of augmenting path. We will see that a matching is maximal if and only if the graph does not

contain an augmenting path. Algorithms for finding a maximum matching are based on this result.

We present below such an algorithm for the particular case of bipartite graphs with a complexity

of O(n3). Note that there exist polynomial algorithms in the general case, but these algorithms are

too technical to be presented in this course.

2.5.1. Matching :

Definition :

A matching C is a set of edges (or arcs) that does not contain two

edges (or arcs) adjacent to the same vertex. The edges (or arcs) of

the matching are called thick, while the others are called thin.

23

A

H

C

B

E

D

F G

Figure 2.7 : A matching of size 3.

Transversal :

A transversal T of a graph is a subset of vertices that intersects every

edge of the graph at least once.

Saturated and unsaturated vertex:

For a matching C, a vertex is said to be saturated if an edge of the

matching is adjacent to this vertex, otherwise it is said to be

unsaturated.

Chain alternated, improving:

An alternated chain of a matching C is a chain in the graph whose

edges are alternately in the matching and not in the matching. An

improving chain is an alternated chain connecting two unsaturated

vertices.

Note: An improving chain has an odd length and contains h thick edges and h+1 thin edges. To

improve the matching, we remove the thick edges of this chain from C and replace them with its

thin edges.

 In Figure 2.7, C = {AC, BD, EF} is a matching of cardinality 3. The vertices A, B, C, D, E, F are

saturated and the vertices H and G are unsaturated.

Figure 2.8 : Alternating path and augmenting

path.

A C E F G

H A C E F G

24

On figure 2.8, [A, C, E, F, G] and [H, A, C, E, F, G] are alternating paths. [H, A, C, E, F, G] is an

augmenting path because it connects 2 unsaturated vertices. This path allows to move from the

cardinality-3 matching C = {AC, BD, EF} to the cardinality-4 matching C' = {HA, CE, FG, BD}.

C' is a maximum cardinality matching because all vertices in the graph are saturated (see figure

2.9).

Figure 2.9 : Maximal matching.

2.5.2. BERGE's theorem:

Definition :

A matching is of maximal cardinality if and only if the graph does

not contain any augmenting path for that matching.

Proof :

Necessary condition: If there exists an augmenting path, it contains p thick arcs and p+1 thin arcs,

so we can improve the matching by replacing the thick arcs in this path with the thin arcs.

Sufficient condition: Let G=(X,U) be a graph, C0 be a maximum cardinality matching of G, and

C1 be a matching of G with no augmenting path. Let D0 = C0 - C0 ∩ C1 and D1 = C1 - C0 ∩ C1.

We reason about the graph H=(X, D0 ∪ D1).

The vertices of the graph H have degree 0, 1 or 2, since at most two incident arcs belong to it: one

arc from D0 and one arc from D1. Consequently, the connected components of H are either isolated

vertices or chains alternating between arcs from D0 (thus from C0) and arcs from D1 (thus from

C1), that is, alternating paths for C0 and C1.

If one of these paths were of odd length, it would be an augmenting path for C0 or C1, which is

impossible by hypothesis. These paths are therefore of even lengths and contain the same number

of elements from D0 as from D1. Hence, the sets D0 and D1 have the same cardinality.

Consequently, the matchings C0 and C1 have the same cardinality. It follows that C1 is a maximum

cardinality matching.

A

H

C

B

E

D

F G

25

2.5.3. Algorithm in the case of a bipartite graph:

The BERGÉ theorem provides a method for finding a maximum matching. It suffices to search

for augmenting paths successively and to use them to improve the matching. The matching will

be maximum when there are no more augmenting paths. We present here an algorithm for bipartite

graphs.

2.5.3.1. MAXIMUM MATCHING algorithm:

Begin.

Step 0 : Initialization

Read the data - a bipartite graph G=(X,Y,U) and an initial matching C (possibly C

is empty);

Step 1 :Search for an augmenting path and improvment of the matching

Mark * every unsaturated vertex x in X;

While there exists an unexamined marked vertex i, do:

Begin

(a) If i = x  X then

For each edge [x, y] C incident to vertex x do:

If y is not marked, then mark y with x;

(b) Otherwise, (i = y  Y) do:

If y is unsaturated (it is an endpoint of an augmenting path):

Begin

Improve the matching C by reversing the augmenting path obtained;

Erase the marks;

Mark * every unsaturated vertex x in X;

End

Otherwise,

Begin

Determine the unique edge [x, y]  C ;

Mark x with y;

End;

End (While.)

Step 2 : End.

Write the maximum matching C.

End

26

2.5.3.2. Application of the algorithm:

Consider the bipartite graph G = (X, Y, U) with X = {a, b, c, d, e} and Y = {1, 2, 3, 4, 5) shown

in figure 2.10.

Figure 2.10 : Example.

a

b

c

d

e

1

2

3

4

5

a

b

c

d

e

1

2

3

4

5

a

b

c

d

e

1

2

3

4

5

a

b

c

d

e

1

2

3

4

5

*

*

*

*

*

a

*

*

*

*

b

1

2

*

*

*

c

d

a

a 1 b 2 c 1 a 3

a

b

c

d

e

1

2

3

4

5

a

b

c

d

e

1

2

3

4

5

2

1

*

*

d

d

b

d 2 b 4

1

2

*

d

e

a

a

b

b b

c

a

b

27

Figure 2.11 : Application of the algorithm.

We start with an empty matching and modify it using successive augmenting paths until we obtain

a matching without augmenting paths, which is maximal according to the Berge's theorem.

The successive steps of the algorithm are shown in Figure 2.11, using the following rule: first

marked vertex, first examined.

2.5.3.3. Data structures:

We assume that the bipartite graph and the matching are coded by an array TAB such that, for x

∈ X and y ∈ Y, TAB(x,y) = (0 if [x,y] ∉ U) or (1 if [x,y] ∉ C ∩ U) or (2 if [x,y] ∈ C ∩ U). If we

assume without loss of generality that Cardinal(X) = Cardinal(Y) = N/2, then the TAB array is of

dimension N2/4. The TAB array allows reading data and will serve as a working table for the

matching.

Let us list the other arrays that will be useful for this algorithm. A SATURE array (of size N) will

be used to note the saturated vertices. A MARQUE array of size N will be used to store the marks

of the vertices. It will be initialized to -1 (no mark), 0 will be put when a vertex is marked * by

the algorithm, otherwise it will contain the mark of the vertex. A FILE array will be used to store

the marked vertices not yet examined (rule: first marked, first examined). FILE allows direct

access. A CHAINE array will be used to reconstruct the augmenting path.

2.5.3.4. Complexity of the algorithm:

The complexity of the initialization step is O(N2) (reading a matrix).

Step 1. We first consider the iterations that do not include any augmenting path. The initial

marking costs O(N). One iteration of (a) in the while loop costs O(N) since we need to go through

a row of the TAB matrix. One iteration of (b) when y is saturated costs O(N) since we need to

read the x row of the TAB matrix. A step (b) when y is unsaturated costs O(N). Thus, obtaining

an augmenting path would cost O(N2), and there will be at most N/2 augmenting paths, giving a

complexity of O(N3) for step 1. The complexity of step 2 is O(N2) since we need to go through

the TAB structure to retrieve all the edges of the matching. Therefore, the complexity of the

algorithm is O(N3).

2.5.3.5. Algorithm Proof:

We will prove that this algorithm determines in step 1 an augmenting path if and only if one exists.

Then we improve the matching. Thus, starting from the empty matching and after at most N/2

operations, we will obtain a matching without augmenting path which will be optimal according

to Berge's theorem.

First, note that an augmenting path of odd length connects a vertex of X to a vertex of Y (bipartite

graph). Therefore, we can start from X and search for alternating paths starting from an unsaturated

vertex of X. An augmenting path will be such a path whose last vertex in Y is an unsaturated

vertex.

Let's make the following induction hypothesis: if y Y (resp. x X) is one of the first p marked

vertices, it is an endpoint of an alternating path starting from an unsaturated vertex x1  X of odd

(resp. even) length whose last edge is thin (resp. thick).

28

The property is initially true: only unsaturated vertices of X are marked and the corresponding

paths are of zero length. Let us show that if the property is true up to order p, it remains true at

order p+1. Let j be the p+1th marked vertex and i its mark. There are two cases to consider:

 • i = x X (j = y Y): then by the induction hypothesis, x is an endpoint of an alternating path

starting from an unsaturated vertex x1 in X of even length whose last edge is thick. By

concatenating this path with the edge (x,y), we obtain an alternating path starting from an

unsaturated vertex x1 in X of odd length whose last edge is thin and going to j = y (the edge (x,y)

is thin because y is marked in 1(a) of the algorithm).

 • i y in Y (j = x X): then by the induction hypothesis, y is an endpoint of an alternating path

starting from an unsaturated vertex x1 in X of odd length whose last edge is thin. By concatenating

this path with the edge (x,y), we obtain an alternating path starting from an unsaturated vertex x1

X of even length whose last edge is thick and going to j = x (the edge (x,y) is thick because x is

marked in 1(b) of the algorithm).

The property is therefore true in both cases, which is proven by induction. Let M be the set of

marked vertices at the end of step 1, and let us show that M is exactly the set of endpoints of an

alternating path starting from an unsaturated vertex x1 X. According to the property proven by

induction, all vertices in M have this property. We must show that conversely, a vertex having this

property is in M.

Before proving this, note that when we reach step 2, the vertices of M belonging to Y are saturated.

This reciprocal will show that there is no alternating path connecting an unsaturated vertex in X

to an unsaturated vertex in Y, which will prove the result, namely that there is no augmenting path

and that the matching is maximal.

 Let k be a vertex connected by an alternating path to an unsaturated vertex x1 X. We define j as

the first vertex of this path not belonging to M (such a vertex exists because by hypothesis, k 

M). There are two possibilities: either j = x X or j = y Y. Let us show that in both cases, we

arrive at a contradiction. We denote i the predecessor of j on this path.

Figure 2.12 : The two possible cases.

29

In the first case (see Figure 2.12), the chain up to y has an odd length. So when we examine x, we

mark y (the edge (x, y) is thin because the chain is alternating). This contradicts the fact that j = y

is not marked. In the second case (see Figure 2.12), the chain up to x has an even length.

 So when we examine y, we mark x (the edge (x, y) is thick because the chain is alternating). This

contradicts the fact that j = x is not marked. Therefore, when we reach step 2, we have marked all

vertices connected to an unsaturated vertex x1 ∈ X by an alternating chain.

We have also seen that the vertices in M ∩ Y with this property are saturated. It follows that there

is no augmenting path, that is, no alternating chain connecting an unsaturated vertex x1 ∈ X to an

unsaturated vertex y ∈ Y. The matching is therefore maximal. Q.E.D.

2.6. Other graph algorithms:

Tarjan proposed linear-time (O(M)) algorithms for finding connected components (see Section D)

and strongly connected components. He also developed a linear-time algorithm for recognizing a

planar graph.

 In the next chapter, we will discuss the complexity of finding a Hamiltonian circuit, coloring a

graph, and the stability number.

30

3. COMPLEXITY OF COMBINATORIAL PROBLEMS:

3.1. What is combinatorial optimization?:

Until the 19th century, the focus was on problems of existence. The question being addressed

was: Does an object with certain properties exist?

Then, combinatorial enumeration problems (combinatorial analysis) were solved. The question

being addressed was: How many objects have certain properties?

With the advent of computers, combinatorial optimization problems are now being tackled. The

goal is to determine an object with certain properties, and algorithms are developed to compute

such objects.

3.2. Different types of problems:

We present below a list of combinatorial problems:

Shortest path problem O(n3)

Given a weighted graph G and a root node x0, determine the minimum values of paths from x0 to

all vertices in the graph.

Smallest number problem O(n):

Determine the smallest number among n numbers.

Sorting problem O(nlogn):

Arrange n numbers a1, a2, ..., an in ascending order.

Minimum spanning tree problem O(n3)

Given a weighted, undirected graph G = (X, U), determine a connected graph with minimal total

cost.

Assignment problem O(n3) (Hungarian algorithm):

Given a matrix W(n, n) representing assignment costs for n individuals to n jobs, assign each

individual to a different job with minimal total cost.

 T1 T2 T3

P1 6 5 8

P2 15 20 14

P3 8 5 3

Figure 3.1 : Cost matrix.

For the cost matrix shown in Figure 3.1, the assignment (P1, T1) (P2, T2) (P3, T3) has a cost of

29. The assignment (P1, T2) (P2, T1) (P3, T3) is optimal and has a cost of 23.

31

Partition problem:

Given n numbers a1, a2, ..., an, is it possible to partition these n numbers into two subsets of equal

sum?

Example: For the set {8, 6, 15, 37, 42, 4}, the answer is yes, because 8 + 6 + 42 = 15 + 37 + 4 =

56.

Maximum stable set problem:

Given a graph G = (X, U), determine a stable set of G with the maximum cardinality.

Figure 3.2 : graph.

On the graph shown in Figure 3.2, {E, A, F} is a maximum cardinality stable set.

Traveling salesman problem:

Given a weighted graph G = (X, U), determine a Hamiltonian circuit with the minimum total

weight.

Figure 3.3 : a weighted graph.

On Figure 3.3, [A, D, E, C, B, A] is a Hamiltonian circuit with the minimum total weight.

Satisfiability problem:

Given a boolean function in conjunctive normal form (CNF), is there an assignment of variables

that makes this function true?

Example:

For the given function: (x1 + x2 + ¬x3) (¬x2) (x3 + x1) (x3 + x2) = 1, the answer is yes, because

x2 = 0, x3 = 1, x1 = 1 is a solution. Moreover, this solution is unique.

A

B

F

C

D

E

A

B D

C E

2
6

3

6

7 4
63

5

2

32

3.3. When is a problem considered solved?

For each problem, there is a finite number of solutions (1). It seems possible to enumerate all these

solutions to determine an optimal solution (or a feasible solution). For example, for the traveling

salesman problem: there are at most (n-1)! Hamiltonian circuits, for the satisfiability problem:

there are at most 2n assignments, for the partition problem: there are 2n-1 solutions.

It is unrealistic to rely on an enumeration method in the combinatorial field when the resulting

complexity is exponential.

The following table reports the durations of enumeration, assuming a computer can calculate each

solution in one microsecond (10-6 s).

 10 20 40 60

n 10-5s 2.10-5s 4.10-5s 6.10-5s

n2 10-4s 4.10-4s 16.10-4s 36.10-4s

n3 10-3s 8.10-3s 64.10-3s 216.10-3s

n5 0,1s 3,2s 1,7 mn 13 mn

2n 10-3s 1s 12,7 days 366 centuries

3n 0,059s 58 mn 3855 centuries 1,3.1013
centuries

n! 3,63s 100 centuries

Efficient algorithms are mainly those with polynomial complexity (2). We can say that a problem

is well solved if a polynomial algorithm (with low degree) has been found to solve it (3). We can

also study the variation of the maximum size that can be processed in 1000s when we multiply the

power of the machine by 10:

T(n) Maximum size for 1000s with the

first machine
Maximum size for 1000s with the

second machine
Increase

100n 10 100 x 10

10n2 10 32 x 3,2

n3 10 22 x 2,2

2n 10 13 x 1,3

(1) The finiteness of the number of solutions guarantees the existence of resolution algorithms,

i.e., programs that terminate. However, this is not always the case in computer science where some

problems are undecidable, meaning they cannot be solved by a program in finite time.

(2) The complexity of algorithms will be evaluated in this course by considering the worst case

scenario. However, when an algorithm is frequently used, it may be preferable to analyze its

average case. Unfortunately, such an analysis can be very difficult and even infeasible for

moderately complex programs.

(3) In a first approximation, the coefficients of the polynomial can be neglected, as experience

shows that most polynomial-time algorithms have small coefficients. However, there are

exceptions where even linear-time algorithms are impractical (e.g., Robertson and Seymour's

Theory).

33

3.4. NP-hard problems:

Polynomial-time algorithms have not been found for problems such as partition, maximum

stable set, traveling salesman problem, and satisfiability, among many others. It has not been

proven that there are no polynomial-time algorithms for these problems, but a result known as

"If one of these problems is polynomial, then all 'reasonable' problems considered difficult are

polynomial" holds. These problems are called NP-hard.

3.5. Branch and bound methods:

Branch and bound methods are used to solve NP-hard problems. However, it may not be

possible to evaluate the practical complexity of these methods, as it strongly depends on the

problem's input data. In fact, the complexity can be exponential for certain data, but

manageable for other data sets.

3.5.1. The Queens of Gauss :

Figure 3.4 : Gauss's tree of Queens.

At the root corresponds the set of all solutions. At node S1 corresponds the set of all solutions

where the queen on the first row is placed on square number 1. Each node corresponds to a set of

solutions.

The problem is to place n queens (here n = 4) on an n×n chessboard such that no two queens are

attacking each other. To solve this problem, an arborescence (tree) is constructed with the root

corresponding to the set of all solutions of the problem. The different possible cases are examined

by constructing an arborescence (see Figure 3.4), where one solution is shown and the other can

be obtained by symmetry.

l'autre partie de

l'arborescence est

obtenue par symétrie

1 2

5

3

6

4

7

9

8

10 11 12

13 14 15 16

seule la position

14 est libre

impossible de placer

4 dames

impossible de

placer 4 dames

car 10 et 15 sont

en prise

implication

implication

implication

S1

34

3.5.2. The LITTLE method for the Traveling Salesman Problem (TSP):

A traveling salesman must visit n cities. The goal is to choose an order of traversal that minimizes

the total distance traveled, i.e., finding a Hamiltonian circuit of minimal value. To solve this

problem, we construct a dichotomic tree, as shown in Figure 3.5.

Figure 3.5 : dichotomous tree

We will use an example whose data are shown in Figure 3.6 to explain Little's method. Note that

to each Hamiltonian circuit corresponds exactly one element per row and one element per column

of the adjacency matrix. Therefore, the problem is not modified if we subtract the minimum of

each row from each row, and then subtract the minimum of each column from each column.

 A B C D E F

A  6 7 3 1 3

B 7  8 2 9 7

C 5 10  10 1 7

D 8 6 5  5 1

E 7 7 6 7  4

F 9 8 8 5 3 

Figure 3.6 : Valued adjacency matrix

By subtracting row-wise, we obtain the middle table in Figure 3.7, and by subtracting column-

wise, we obtain the table on the right.

ensemble des circuits

hamiltoniens passant par

X1Y1 ... XpYp et ne passant

pas par Z1T1 ... ZnTn

ensemble des circuits

hamiltoniens passant par

X1Y1 ... XpYp

ensemble des circuits

hamiltoniens passant par

X1Y1

Ensemble des

circuits hamiltoniens

ensemble des circuits

hamiltoniens ne passant

pas parX1Y1

ensemble des circuits

hamiltoniens passant par

X1Y1 et ne passant pas

par X2Y2

35

 A B C D E F A B C D E F A B C D E F

A  6 7 3 1 3 1 A  5 6 2 0 2 A  2 4 2 0 2

B 7  8 2 9 7 2 B 5  6 0 7 5 B 2  4 0 7 5

C 5 10  10 1 7 1 C 4 9  9 0 6 C 1 6  9 0 6

D 8 6 5  5 1 1 D 7 5 4  4 0 D 4 2 2  4 0

E 7 7 6 7  4 4 E 3 3 2 3  0 E 0 0 0 3  0

F 9 8 8 5 3  3 F 6 5 5 2 0  F 3 2 3 2 0 

 12 3 3 2 0 0 0 8

Figure 3.7 : Appearance of zeros by row and by column.

The Hamiltonian circuit will have a value greater than 20 because we subtracted 12 from rows

and 8 from columns. 20 is a default evaluation for the optimal value of the initial matrix. We will

work with the reduced matrix, for which all Hamiltonian circuits have a translated value of 20.

We aim to construct a Hamiltonian circuit with a value of zero (which is necessarily optimal as

the values are positive). To build the enumeration tree, we will choose arcs with a valuation of 0.

To select one of these arcs, we introduce the notion of regret. We will choose a zero with

maximum regret. For example, if we do not take arc AE, we will necessarily take another element

from row A and another element from column E. The additional cost here, which is 2, is called

the regret. This regret is calculated by summing the minima from the corresponding row and

column (excluding the 0 on which we calculate the regret). Indeed, if we do not pass through this

arc with a value of 0, we will at best pass through two arcs with the minimum cost from the

corresponding row and column, incurring the regret cost.

 A B C D E F

A  02+0

B  02+2

C  01+0

D  02

E 01 02 02  00

F 02 

Figure 3.8 : Matrix of regrets

The regrets for the different 0s are shown in Figure 3.8. It is observed that BD has the highest

regret. We choose to take the arc BD and introduce two new nodes in the enumeration tree (see

Figure 3.9). The node BD corresponds to the set of Hamiltonian circuits that include the arc BD,

while the node ¬BD corresponds to the set of Hamiltonian circuits that do not include the arc BD.

The default evaluation for node BD is 20, and the default evaluation for node ¬BD is 24, which is

the sum of 20 and the regret.

36

Figure 3.9 : The current tree structure after the first split

In the matrix associated with the node BD, we need to forbid the arc DB by setting M(D, B) =

+∞, in order to avoid the suboptimal circuit [D, B, D], and then repeat the process. In figure 3.10,

we have on the left-hand side the matrix associated with the node BD in the tree, and on the right-

hand side the regrets obtained by eliminating row D and column B.

 A B C D E F

A  2 4 2 0 2 A B C E F

B 2  4 0 7 5 A 02

C 1 6  9 0 6 C 01

D 4  2  4 0 D 02

E 0 0 0 3  0 E 01 02 02 00

F 3 2 3 2 0  F 02

Figure 3.10 : Matrices associated with the node

We choose a 0 with the highest regret and introduce two new nodes in the current tree (see Figure

3.11), AE and ¬AE.

Figure 3.11 : Next state of the current tree

The matrix associated with the node AE after prohibiting EA is shown in figure 3.12. There is no

zero per row, so we will subtract the minimum valuation from each row and column. Therefore, a

total of 3 is subtracted. This explains why the valuation of node AE is 23, while the valuation of

node ¬AE is 22.

Racine

BDBD

20

24 20

Racine

BDBD

20

24 20

AE

22

AE

23

37

 A B C F

C 1 6  6 1

D 4  2 0 0

E  0 0 0 0

F 3 2 3  2

Figure 3.12 : new matrix with EA = ∞

Let's present the LITTLE algorithm.

LITTLE Algorithm:

(1) Initialization:
Generate zeros (at least one per row and one per column)
{The default evaluation of the root of the tree is the sum of the subtracted numbers}.
Set f0 = ∞ {f0 will be the value of the best known solution}.

(2) Main loop:
While the node S with the smallest default evaluation f(S) is such that f(S) < f0 do {breadth-first}

• Evaluate the regret of each zero in the matrix associated with S and keep track of (i, j) corresponding
to a zero with maximum regret.

• Introduce the nodes (S + (i, j)) and (S + (i, j)) while forbidding the creation of a sub-tour in (S + (i,
j)), generating zeros in both associated matrices, and setting their default evaluations.

• If the node (S + (i, j)) corresponds to a Hamiltonian circuit, record the circuit and calculate its value
f1.

• Set f0 = min(f0, f1)
 End while.

Racine

BDBD

20

24 20

AE

22

AE

23

DF DF

24 22

FE

25

FE

23

AB AB

30 23

CA


CA

23

EC



EC

23

Figure 3.13 : Global tree

Continuation of the example : On the figure 3.13, the tree after applying the algorithm is shown.

We provide comments below on its construction.

On the figure 3.14, we have the matrix associated with the ¬AE vertex, which is the pendant vertex

of the current tree with the smallest default evaluation, along with its regrets.

The highest regret is obtained for the DF arc. We prohibit the FB arc to avoid creating a parasitic

circuit.

38

 A B C E F A B C E F

A  0 2  0 A 00 00

C 1 6  0 6 C 01

D 4  2 4 0 D 02

E 0 0 0  0 E 01 00 02 00

F 3 2 3 0  F 02

Figure 3.14 :matrices associated with the node

¬AE.

So, there are 2 new nodes in the current tree, which are DF and ¬DF. DF is the pendant node with

the smallest default evaluation. Figure 3.15 shows the matrix associated with this node and its

regrets. The largest regret is for the arc FE.

 A B C E A B C E

A  0 2  A 02

C 1 6  0 C 01

E 0 0 0  E 01 00 02

F 3  3 0 F 03

Figure 3.15:matrices associated with the vertex

DF.

We need to prohibit the parasitic circuit described in Figure 3.16 by placing  in the cell

corresponding to EB.

Figure 3.16 : parasite circuit

Having prohibited the arc (EB), new zeros need to be introduced in the matrix associated with the

node FE (See figure 3.17). To obtain a zero, 1 is subtracted and thus 1 is added to the evaluation.

AB is then the zero with the highest regret. For the matrix associated with the node AB, the

parasitic circuit from figure 3.18 must be prohibited.

 A B C A B C

A  0 2 A  07 2

C 1 6  (-1) C 05 5 

E 0  0 E 00  02

B D F E

39

Figure 3.17 : separation of FE.

Figure 3.18 : To eliminate the parasite circuit from the node AB.

On figure 3.19, the choice of arcs CA and EC is mandatory. Thus, the Hamiltonian circuit of value

23 is obtained as shown in figure 3.20. This Hamiltonian circuit is optimal as all the dangling

nodes of the global tree have an evaluation greater than or equal to 23.

Discussion:

Currently, the most effective method for solving the Traveling Salesman Problem is not the

LITTLE algorithm, which can optimally handle examples with around 40 cities. Symmetric and

asymmetric cases are distinguished. In the asymmetric case, methods that use linear assignment

coupled with Lagrangian relaxation (see RO04) for default evaluation can handle examples with

around 300 cities. In the symmetric case, generalized linear programming with the introduction of

integrity cuts (polyhedral methods) can handle examples with around 400 cities.

23





A C

C

E

f0 = 23

AB

CA CA

23

EC EC

23

 0 

 0

 0

Figure 3.19 : separation of AB.

DF

FE FE

22

25

AB

30

AB

23

22 + 1 = 23

A B D C E

40

Figure 3.20 : circuit hamiltonien optimal.

3.5.3. Boolean Linear Programming: FAURE-MALGRANGE method.

We will present the FAURE-MALGRANGE method using an example to solve a linear

programming problem with boolean variables. We want to solve the following linear program:

Max F = 3x1 + 5x2 - x3 + 2x4

sous les contraintes :

x1, x2, x3, x4  {0, 1}

3x1 + 4x2 - 2x3 + x4  5

2x1 - x2 + 3x3 - x4  4

4x1 - x2 - x3 + 2x4  5

We introduce ¬x1, ¬x2, ¬x3, ¬x4 defined by xi + ¬xi = 1. This allows us to replace the minus

signs with plus signs in the inequality constraints, which become:

3x1 + 4x2 + 2¬x3 + x4  7

2x1 + ¬x2 + 3x3 + ¬x4  6

4x1 + ¬x2 + ¬x3 + 2x4  7

By replacing the + signs with - signs in the objective function, we have:

F = 10 - (3¬x1 + 5¬x2 + x3 + 2¬x4)

Note that F cannot exceed 10.

The problem is put in a form facilitating an implicit enumeration. But this time it is a maximization

problem. We will therefore build a tree whose vertices will be valued by an evaluation by excess.

The separation will consist of choosing a Boolean variable and fixing the truth value of this

variable.

The best constructed solution will provide a default evaluation of the optimal solution. Figure 3.21

shows the global tree whose construction we comment on below.

E C A B D F

Circuit hamiltonien optimal

41

Figure 3.21 : Tree structure for searching an

optimal solution.

First choice:

We choose to branch on x2 because its coefficient in the objective function is the largest (x2 has

the maximum regret). At the node x2 = 1 in the tree, new constraints are added:

3x1 + 2¬x3 + x4  3

2x1 + 3x3 + ¬x4  6

4x1 + ¬x3 + 2x4  7

F = 10 - (3¬x1 + x3 + 2¬x4)

We branch on this node:

Second choice:

We choose to branch on x1 because its coefficient in the objective function is the largest (x1 has

the maximum regret). At the node x1 = 1 in the tree, new constraints are added:

2¬x3 + x4  0

3x3 + ¬x4  4

¬x3 + 2x4  3

F = 10 - (x3 + 2¬x4)

We then have the implications x3 = 1 and x4 = 0. Thus, we have found a solution with a value of

7. This solution is optimal as all the overestimations (evaluations par excès) of the leaf nodes in

the tree are lower than 7.

Here, the advantage of having inequalities with positive terms becomes apparent. In fact, if Σaiyi

≤ b with yi as Boolean variables, ai as positive coefficients, and for some i, ai > b, then necessarily

yi = 0. In this case, we have traversed the tree using a depth-first search approach, choosing to

branch on the last introduced node. Such a policy can be managed using a stack, which further

reinforces its usefulness.

ensemble des

solutions

ensemble des

solutions

avec x = 0
2

ensemble des

solutions

avec x = 1
2

ensemble des

solutions

avec x = 1 et

x = 0
2

1

ensemble des

solutions

avec x = 1 et

x = 1
2

1

10

5 10

7 10

x = 1; x = 0
3 4

7

42

3.5.4Linear programming with integer variables :

In the course RO04, the simplex method is presented as an efficient approach for solving linear

programming problems with rational variables. However, when the variables are required to be

integers, the problem becomes NP-hard. It can be solved either by cutting plane methods (see

RO04), or by tree-based methods.

Consider the following linear programming problem with integer variables:

Max F = 3x1 + 8x2

x1 + 4x2 ≤ 20

x1 + 2x2 ≤ 11

3x1 + 2x2 ≤ 19

4x1 - x2 ≤ 22 where x1, x2 ∈ ℕ.

A first method to solve this type of problem is to bound the variables in order to convert them into

Boolean variables. The first constraint implies x2 ≤ 5. A linear combination of the third and fourth

constraints leads to x1 ≤ 5. We then introduce the following substitutions: x1 = 4X11 + 2X12 +

X13 and x2 = 4X21 + 2X22 + X23, which allows us to convert the variables into Boolean variables

and use the FAURE-MALGRANGE method.

A second method is to directly utilize the fact that the variables are bounded and sequentially

branch on x1 and x2. The resulting tree, as shown in Figure 3.22, has evaluations as upper bounds,

and a depth-first traversal yields two solutions: x2 = 5, x1 = 0 and x2 = 4, x1 = 3. The second

solution with a value of 41 is optimal as the child nodes of the tree have lower evaluations.

Figure 3.22 : Global tree

3.6. Summary :

a) In a tree-based method, we construct a tree whose vertices correspond to subsets of solutions.

The union of the successors of a vertex is equal to that vertex. The terminal vertices of this

tree are the solutions of the problem. This is called implicit enumeration because evaluations

and implications allow us to enumerate only a limited number of solutions.

b) Each vertex S of the tree is associated with an evaluation f(S), which is by default for a

minimization problem, and by excess for a maximization problem.

x = 5
2

x = 4
2

x = 3
2

x = 2
2

x = 1
2

x = 0
2

x = 0
1

x = 3
1

55

55

47 39 31 23 15

40 41

43

c) We also have a global evaluation f0, which is by excess for a minimization problem and by

default for a maximization problem. f0 is often the value of the best solution constructed.

d) The choice of the vertex to be branched is essential. The main strategies are depth-first and

breadth-first.

e) In depth-first, we will branch the deepest vertex of the tree. Consequently, we will traverse the

tree branch by branch. The current tree will be a path, and therefore manageable with a stack. This

strategy is the most commonly used for this reason.

f) In breadth-first, we will branch the vertex with the smallest evaluation in the tree. Consequently,

we will traverse the tree in an anarchic manner. The idea is to branch a promising vertex.

g) Branching allows us to introduce successor vertices for the chosen vertex. To be effective, the

default evaluation for a minimization problem (respectively, the excess for a maximization

problem) must increase (respectively, decrease) for these introduced vertices.

h) Implications, also known as dominance rules, make the method more efficient.

3.7. Heuristic Methods:

Tree-based methods are efficient methods for solving many problems. However, unlike

polynomial algorithms, their efficiency strongly depends on the problem data. Moreover, they are

cumbersome to implement and often only allow for optimal solutions for small problem sizes. For

these reasons, it is often necessary to use heuristic methods that allow for the construction of

solutions to a problem but no longer guarantee optimality.

 Let's explain a simple heuristic for the traveling salesman problem. We start by choosing a starting

city. The second city chosen is then the closest neighboring city. Once a certain number of cities

are chosen, we choose the nearest unselected city to the last introduced city and iterate until we

return to the starting point. This naive heuristic obviously gives very poor results in practice. That's

why neighborhood methods are introduced.

Let's first introduce descent methods. The idea is to define a neighborhood relation on the set of

Hamiltonian circuits in such a way that it is easy to calculate the best neighbor of a vertex. We

then start from the Hamiltonian circuit constructed using the naive heuristic. Then we calculate its

best neighbor, and if it has a lower cost than the initial tour, we keep it. We iterate, descending,

until we obtain a tour whose all neighbors are worse than itself. We have then found a local

optimum with respect to the neighborhood relation.

Note that there is no reason for this local optimum to be a global optimum. However, these descent

methods are extremely effective when the neighborhood relation is well chosen. For example, for

a symmetric traveling salesman problem, the K-opt method of LIN and KERNINGHAN allows

to quickly find solutions close to 2 or 3% of the optimal solution, even for large problems (e.g.,

1000 cities).

However, the results of neighborhood methods are rarely as good. It has been empirically observed

that the traveling salesman problem is an NP-hard problem for which it is relatively easy, most of

the time, to construct good solutions. This explains why, for practically more difficult problems,

we try to escape from local optima. There are three main techniques to achieve this: simulated

annealing, tabu search, and genetic algorithms.

In simulated annealing, when the neighbor of a vertex is better, we descend as previously

described. On the other hand, if the neighbor of a vertex is worse, we may retain it instead of the

current vertex with a certain probability, denoted as p. This probability decreases over time in

order to allow for many ascents at the beginning of the algorithm and very few ascents towards

the end. Technically, a decreasing parameter T, called temperature, allows for this.

44

We have: [p = 1 - exp (-T)]. The disadvantages of simulated annealing are as follows: there is no

guarantee of optimality, at least within a reasonable amount of time; it is often computationally

expensive; and finally, the temperature is difficult to tune.

In tabu search methods, if we can no longer descend, we also allow for ascents to escape from a

local minimum. However, there is a risk of cycling. To avoid this, we maintain a dynamic list of

limited length containing a list of recently made modifications. This list is managed according to

the first-in, first-out rule. Tabu search methods have similar drawbacks to simulated annealing.

Lastly, let's mention genetic methods. In this case, at each iteration, we keep a population of more

than 1 solution. We then choose a subset of the population, often of size 2, and apply a genetic

rule to construct a new solution from this subset. We iterate, putting this new solution (birth) into

the population and removing another solution (death). These methods also do not guarantee

optimality.

The performance of these three methods depends on the problems and the skill of their designer.

Therefore, it cannot be said that one is better than the others. They are effective if a good and

computationally efficient neighborhood relation can be defined.

45

4. ROUTING PROBLEMS:

4.1. Introduction :

In this chapter, we will study polynomial algorithms that solve fundamental routing problems. G

= (X, U, v) (v a mapping from U to R) will be a valued graph, with X = {x0, x1,...., xn-1}. Moreover,

for convenience, we assume that x0 is a root of G (therefore, there exists a path from x0 to any

xiX). We mainly consider the following fundamental problem:

Determine the minimal values (if they exist) of the paths originating from x0, and then calculate a

minimal path going from X0 to Xi (for all i).

We will see that this problem is solved in O(n3) in the general case (FORD algorithm), in O(m) in

the specific case of graphs without cycles (BELLMAN algorithm), and in O(n2) in the specific

case of graphs whose arcs are positively valued (DIJKSTRA algorithm).

4.2. Properties of shortest paths:

Recall that the value of a path is the sum of the valuations of its arcs. A path from x0 to xi is of

minimal value if its value is smaller than that of any other path from x0 to xi.

Lemma 1

Any sub-path of a path of minimal value is also a path of minimal value.

Proof

Let µ be a path from xi to xj and let µ' be a sub-path of µ from xk to xl. Then, µ = µ1µ'µ2 where

µ1 = [xi, xk] and µ2 = [xl, xj]. Let's suppose that µ has minimal value. If µ' is not of minimal value,

there would exist a path µ" of strictly lower value from xk to xl, and the path µ1µ"µ2 would have

a strictly lower value than µ, which contradicts the fact that µ has minimal value. Q.E.D.

This very simple property is the basis of dynamic programming (see tutorial): for problems

involving paths, global optimization is the result of local optimizations.

Lemma 2

A necessary and sufficient condition for there to exist a path of minimal value from x0 to xi for all

i is that the graph G has no circuit of strictly negative value (such circuits are called absorbing).

Proof : Suppose there exists a circuit µ1 = [xi, xi] of strictly negative value and µ = [x0, xi] is a

path of minimal value from x0 to xi. Then, the value of the path µ' = µµ1 is strictly lower than that

of µ, which contradicts its minimality. Conversely, suppose G has no absorbing circuit. From any

path from x0 to xi, we can extract an elementary path of lower value (if [x0, xi] is not elementary,

we successively remove the different circuits it uses). Therefore, we can limit the search for

minimal paths to that of elementary minimal paths. As the number of elementary paths from x0 to

xi is finite, there exists an elementary path of minimal value from x0 to xi. Q.E.D. The absorbing

circuits for minimization are circuits of strictly negative value.

 Similarly, if we maximize, the absorbing circuits are those of strictly positive value. We must

always be careful of the existence of such circuits when searching for extreme paths.

46

Theorem 1 :

Let G be a graph without any circuit with strictly negative values, and let λi be the values of the

paths between x0 and xi. A necessary and sufficient condition for these {λi / 0 ≤ i ≤ n-1} to be the

set of values of the minimum paths from x0 is that:

1°) λ0 = 0;

 2°) λj - λi ≤ vij, for all arc (xi, xj) ∈ U.

3°) The set of arcs for which the inequality in 2°) is an equality is the set of arcs belonging to

minimum paths.

Figure 4.1 : Paths from x0 to xj

Proof:

The neccessary conditions:

Let i be the minimum values of the paths from x0.

 1°) 0 = 0 (a vertex is a path of value 0).

2°) j is the minimum value of a path from x0 to xj and is therefore less than i + vij which is the

value of a path from x0 to xj using the arc (xi, xj).

3°) If j - i = vij, the arc (xi, xj) belongs to a minimum value path from x0 to xj, obtained by

concatenating a minimum value path from x0 to xi with the arc (xi, xj). Conversely: If (xi, xj)

belongs to a minimum value path [x0, xk], according to lemma 1, the sub-paths going from x0 to

xj and from x0 to xi are of minimum value; it follows that j = i +vij, so the inequality is an

equality.

The conditions are sufficient:

 Assuming that the λi satisfy 1°) and 2°) and are values of paths; we will show that they are the

minimal values of paths starting from x0.

 Let's consider a path [x0, xi] = µ of minimal value, also noted as: µ= [xj0 = x0, ... , xjp = xi]. We

have: λj0 = 0, λj1 - λj0 ≤ vj0j1, λj2 - λj1 ≤ vj1j2, ..., λjp - λjp-1 ≤ vjp-1jp. By adding up, we obtain λjp = λi

≤ v(µ). It follows that λi is the minimal value of a path going from x0 to xi. This value λi is indeed

lower and upper bounded by the minimal value of a path between x0 and xi. Q.E.D.

The theorem 1 is at the basis of the algorithms presented below. We will start with a set of upper

bounds of optimal values and adjust them until condition 2 is satisfied.

jj

i

v
ij



 x

i
x

x
0

47

4.3. FORD Algorithm:

It can be used for any graph, but in certain cases, it is less efficient than other algorithms.

(i) Initialization

Set λ0 = 0 and λi = +∞ for i > 0.

(ii) Examination of arcs

For each vertex xi examined, traverse the set of arcs (xi,xj) originating from xi and replace

λj with λi+vij if λi+vij < λj.

(iii) Termination test

Iterate (ii) as long as a λj has been modified in (ii).

Figure 4.2 : Example

The table below reports the successive values of λi during the application of the FORD algorithm

to the example in Figure 4.2.

The following questions must be asked:

1- Does this algorithm always give the minimum values?

2- What is the complexity of this algorithm?

3- 3- How to determine the minimum paths?

 0 1 2 3 4 Arcs from

Initialization 0    

 0 2 5   x0

First 0 2 5 3 9 x1

iteration 0 2 5 3 9 x2

 0 2 4 3 9 x3

 0 2 4 3 9 x0

 0 2 4 3 9 x1

 Second

iteration

0 2 4 3 8 x2

 0 2 4 3 8 x3

x

x

xx

x

0

1

2

3 4

2

5

7

4

1

1

48

 0 2 4 3 8 x0

Third 0 2 4 3 8 x1

iteration 0 2 4 3 8 x2

 0 2 4 3 8 x3

 None i Modified STOP

Theorem 2 answers question 1.

Theorem 2:

Ford's algorithm computes the values of the minimum paths from x0 when the graph has no

absorbing circuit.

Proof:

Let i(k) be the value of i at the end of the kth iteration of the algorithm, and i
k be the value of

a minimal path from x0 to xi among the paths that take at most k arcs.

The theorem is proved by induction. We assume that a property is true after k iterations and we

prove that it remains true after k+1 iterations. At the end of the kth iteration of (ii), i =i(k) is

the value of a path from x0 to xi and is less than or equal to the minimal value of a path from x0 to

xi that takes at most k arcs: i
k  i(k). Let µk+1(x0, xj) be a minimal path from x0 to xj among

the paths that take at most k+1 arcs: µk+1(x0, xj) = µk(x0, xi) concatenated with (xi, xj), for xj

successor of xi; j
k+1 is the value of this path. By the induction hypothesis, i

k  i(k). Using

j
k+1 = i

k + vij, we have: j
k+1 i(k)+ vij and due to the algorithm, i(k) + vij  j(k+1).

Hence the result. The property is therefore true at order k+1. As a result, at the n-1th iteration, the

i are the minimal values of the paths from x0. Q.E.D.

Theorem 3 answers question 2.

Theorem 3:

The complexity of Ford's algorithm is: O(n x m) where n = | X | and m = | U |.

Proof:

We execute (n - 1) (ii), (ii) costs O(m); hence the overall complexity. Q.E.D. Finally, to answer

question 3, we use the proposition: the arcs belonging to the minimum paths are the (xi, xj) such

that j = i+vij. The paths of the partial graph formed by these arcs are exactly the minimum paths.

4.4. DIJKSTRA Algorithm:

This algorithm will only be applicable if the valuations of the arcs are positive or zero. In this

algorithm, we will again adjust the λi, but this time the number of adjustments will be minimal,

thus equal to the number of arcs of the graph.

Algorithm

(i) Set S ={x0}, λ0 = 0, λi =v0i , if (x0 , xi) ∈ U, λi= ∞ ,otherwise.

(ii) (ii) While S ≠ X do

49

 (a) Choose xi ∈ X - S with minimum λi.

 (b) Set S = S +{ xi }.

(c) For every xj ∈ (X - S), successor of xi , set: λj = min {λi + vij, λj}.

Example :

Figure 4.3: Example

 xi S          

S {x0} {x0}          

S {x2} {x0,x2}     8 7    

S {x3} {x0,x2,x3}     8 4 5 4  

S {x1} {x0,x1,x2,x3}     7 4 5 4  

S {x5}     7 4 5 4 8 

S {x7}     7 4 5 4 8 6

S {x6}     7 4 5 4 8 6

S {x9}     7 4 5 4 8 6

S {x4}     7 4 5 4 8 6

S {x8}     7 4 5 4 8 6

Minimum path tree :

If we define for each vertex xj its parent as the vertex xi ,λj (thus λj - λi = vij), we have a Shortest

path tree (see figure 4.4).

x

x

x

x

x

x

x

x

x

x

0

1

2

3

4

5

6

7

8

9

4

3

1

0
7 2

0

4

1

2

4

3

2 5

13

6

2

50

Figure 4.4: Shortest path tree

Complexity of Dijkstra's algorithm:

 Lemma 3

 Dijkstra's algorithm terminates in a finite number of steps and has a complexity of O(n2).

Proof:

(i)Initialization costs O(n).(ii) (a) costs O(n) and is done n times. (b) costs O(1) and is done n

times. (c) costs overall O(m) because each arc is examined once. The overall complexity is

therefore: O(n2). Q.E.D.

Theorem 4

The i values at the end of the algorithm are the minimal values of the paths starting from x0.

Proof

Since valuations are positive or zero, there is no absorbing circuit. Therefore, there are minimum

paths. Let i * be the minimum value of a path from x0 to xi and let us show by induction that at

the end of each iteration (ii), we have:

1°) if xj  S , j= j*,

 2°) if si xj X - S, j = min {k + vkj} over xk  S, and predecessor of xj.

 The property is true at the end of initialization. Suppose the property is true at the end of the kth

iteration and show that it remains true at the end of the k+1st iteration. Let xi be the vertex of X-S

with minimal i at the beginning of the k+1st iteration. According to the induction hypothesis, i

is the minimum value of an elementary path from x0 to xi that does not pass through a vertex of

X-S. We will show that i = i* by comparing the value of an elementary path from x0 to xi passing

through a vertex of X-S to i and using the fact that i is the minimum value of a path from x0 to

xi passing only through the vertices of S.

x

x

x

x

x

x

x

x

x

x

0

1

2

3

4

5

6

7

8

9

4

3

1 4

2

3

2

1 2

51

Figure 4-5: A path from x0 to xi

Let µ(x0, xi) be such a path. Let xh be the first vertex of X-S belonging to µ(x0,xi). The sub-path

from x0 to xh has a value greater than or equal to h. Since the valuations are positive, the value

of the path µ(x0, xi) is greater than or equal to h, and therefore greater than or equal to i,

according to the algorithm ((ii) a)). It follows that i = i* (Figure 4.5).

According to the algorithm ((ii)a))

1°) is verified for the other vertices of S by induction hypothesis;

2°) results from the induction hypothesis and the adjustment in step (c) of the algorithm.

 Indeed, let S’ = S + {xi} and consider a vertex xj not belonging to S’. Let us show that after the

adjustment j = min{k + vkj} for xk  S’ and predecessor of xj. Before the adjustment, we have

by induction hypothesis: j = min{k + vkj} for xk  S. We then set j= min(j  i + vij). Q.E.D.

4.5. BELLMAN Algorithm:

It is applicable to graphs without circuits. We have seen that we can number the vertices of a graph

without circuits in O(m) operations. The number of adjustments is also minimal, equal to the

number of arcs in the graph.

Bellman’s Algorithm :

(i)Number the vertices of the graph, set 0= 0.

(ii) For j = 1 to n - 1, set: j = min {i + vij} on the set of predecessors xi of xj.

Example :

x

x 0

i

h

S
x

52

Figure 4.6 : An example of Bellman’s Algorithm

0 = 0. 1= 6 (0+6). 2 =8 (0+8). 3 = 8(6+2). 4 = 9 = min {8+5, 6+7}. 5=10=min {9+ 1,

8+9}.

Theorem 5:

The Bellman algorithm computes the values λi of the minimum paths from x0 in O(m) iterations.

Proof:

costs O(m). (ii) costs O(m) as each arc is examined exactly once. We assume by induction that, at

sequence j, we have: 1= 


, 2 =*
2, ..., j = *j, where λi are the minimal values of the paths

from x0 to xi, which exist because the graph is acyclic, and thus has no absorbing circuit. The

property is true at sequence j+1, since a minimal path from x0 to xj+1 is obtained by adding the arc

(xk, xj+1) to a minimal path from x0 to xk for a predecessor xk of xj+1. This demonstrates the property

by induction. Q.E.D.

Figure 4.7 : Proof of theorem 5

4.6. Matrix method:

The matrix method allows to compute the value of the minimum paths between any pair of vertices

in a graph without an absorbing circuit for a complexity of O(n3).

x

E

A

D

C

B

F

6

2

1
7

58

9
1

x

x
x

x

x

0

1

2

3

4

5

x x
k j+1

53

Algorithm

(i) Let V0 = (v0
ij) be the matrix of valuations of the edges in G.

(v0
ij =  if (xi, xj) does not belong to U)

(ii) For k = 1 to n,

For i = 1 to n,

For j = 1 to n,

do vk
ij = min {vk-1

ij , v
k-1

ik + vk-1
kj}

Figure 4-8: An example for Matrix method

  0 9   0 9 

V0= 6  8 0 V1= 6 6 8 0

 0 7  5 0 0 9 5

  4 0   4 0 

 6 0 8 0 6 0 8 0

V2= 6 6 8 0 V3= 6 6 8 0

 0 0 8 0 0 0 8 0

 10 4 0 4 0 0 0 0

 0 0 0 0

V4= 0 0 0 0

 0 0 0 0

 0 0 0 0

Figure 4.9 : Application of the Method

0

6

7 8

0

4

5

0

9

0

x

x

x

x 1

2

3

4

54

Theorem 5:

In the absence of an absorbing circuit, at the end of the k-th iteration, vk
ij is the minimal value of

an elementary path going from i to j and passing only through vertices 1, 2, ..., k.

Proof:

 This result is immediately proven by induction. The absence of an absorbing circuit makes it

possible to limit the search for minimal paths to elementary paths. An elementary path between i

and j, if it exists, passing only through 1, 2, ..., k is either a path passing once through k or a path

not passing through k. This explains the formula of the algorithm. Q.E.D.

Note: If there are absorbing circuits, negative terms appear on the main diagonal of one of the

matrices.

4.7. Other pathfinding problems:

Other pathfinding problems can be solved similarly. We mention the following problems and their

methods of resolution:

Maximum value paths: Ford and Bellman's algorithms still hold true by replacing MIN with MAX

and initializing the λi values to -∞ and λ0 to 0.

Existence of a path from i to j: matrix method or boolean matrix raised to a power.

Counting the number of paths between i and j: M real matrix associated (number of paths of length

1), Mk (number of paths of length k).

 Maximum reliability paths between i and j: The reliability of a path is the product of the valuations

of the arcs on this path (reliability: probability of not breaking down). Ford or Bellman algorithms

are used by replacing + with x and MIN with MAX. The λi values are initialized to 0, except λ0

which is initialized to 1.

Maximum capacity paths: The maximum capacity of a path is the smallest valuation (≥ 0) on this

path. Ford and Bellman algorithms are also used by replacing + with MAX and MIN with MAX.

The λi values are initialized to -1, except λ0 which is initialized to ∞.

55

5. SCHEDULING PROBLEMS :

5.1. Introduction :

Until 1958, Gantt charts (also known as bar charts) were commonly used for scheduling.

In that year, two graph-based methods were developed:

1 - The potential-tasks method, used during the construction of the FRANCE ocean liner.

2 - The PERT (Program Evaluation Review Technique) method, used during the development of

the POLARIS missiles.

Both methods only consider potential constraints such as precedence and temporal localization,

and do not manage resource constraints. They are based on finding maximal paths, known as

critical paths. This was not too detrimental at the time, as these projects typically had a large

number of tasks, were prestigious, and cost was secondary. The main goal was to complete the

project as early as possible, which was facilitated by the critical path methods.

5.2. Conjunctive graphs, set of potentials:

In either method, a conjunctive graph is associated with the scheduling problem. A scheduling

will be a set of potentials on the conjunctive graph.

Conjunctive graph:

A conjunctive graph is a valued graph G = (X, U) with a root 0 and

an anti-root n+1, such that there exists a positive-valued path

between the root and any other vertex, and between any vertex other

than the anti-root and the anti-root.

Figure 5.1 : example of conjuctive graph

Set of potentials:

A set of potentials on a conjunctive graph G = (X, U) is a function t from X to R such that:

1. t0 = 0,

2. vij ≤ tj - ti, for every arc (i, j) in U. For convenience, we write T = {ti | i ∈ X}.

Existence theorem:

A necessary and sufficient condition for the existence of a set of potentials on a conjunctive graph

G = (X, U) is that the graph has no circuit with strictly positive value.

Proof: The condition is necessary:

If there exists a circuit [i1, i2, ..., ir, i1] with strictly positive value, i.e., vi1i2 + vi2i3 + . . . + viri1> 0,

then for any set of potentials T ti2 - ti1  vi1i2, ti3 - ti2  vi2i3, ..., ti1- tir  viri1.

1

2

0

3

4

5

0

2

4

3

5

7

2

56

Summing these inequalities, we get 0 > 0, which is absurd.

The condition is sufficient:

 If there is no circuit with strictly positive value, there exists a maximal path from 0 to i. Let ri be

the value of such a path, and we will show that R = {ri / i ∈ X} is a set of potentials. Indeed, the

maximal value rj of a path from 0 to j is greater than ri + vij, which is the value of a path from 0

to j obtained by concatenating a maximal path from 0 to i with the arc (i, j). As a result, we have:

1. ro = 0,

2. rj - ri ≥ vij. Q.E.D.

Left-aligned and right-aligned set of potentials:

In the following, we assume that the graph has no circuit with strictly positive value, and we denote

by l(i,j) the maximum value of a path from i to j.

We have seen that R = {ri = l(0,i) / i  X} is a set of potentials (referred to as left-aligned or

earliest). We will show that F = { fi = l(0,n+1) - l(i,n+1) / i X } is also a set of potentials (referred

to as right-aligned or latest). Let t* = l(0,n+1).

Proposition 1:

 For any set of potentials T = {ti / i ∈ X}, tn+1 ≥ t* = l(0,n+1). In particular, t* is the optimal

duration of the scheduling. Moreover, for any i, we have: ri ≤ ti (ri: earliest start time). Finally, if

T is an optimal scheduling of duration t*, then ti ≤ fi (fi: latest completion time).

Proof: Let [io=0 , ... , ir = n+1] be a path of maximum value between 0 and n+1, thus with a value

of l(0,n+1) (such a path is called critical). ti1 - tio  vioi1, ti2 - ti1  vi1i2, ..., tir - tir-1  vir-1ir. By

summing, we obtain: tir - tio  l(0,n+1) and since i ir = n+1 and io = 0, we have: tn+1 t* = l(0,n+1).

Similarly, we can verify that R = {ri = l(0,i) / i ∈ X} is a set of potentials with minimal difference

between to and ti, hence ti ≥ ri. The minimal difference between ti and tn+1 is equal to l(i,n+1),

therefore if F = {fi = l(0,n+1)-l(i,n+1) / iX we have: ti  fi si tn+1 = t*. Q.E.D.

5.3. The potential-task method:

Tasks Duration
Potential constraints

1 3

2 7

3 4
Task 1 precedes task 3

4 6
Tasks 1 and 2 precede task 4

5 5
Task 3 precedes task 5

6 3
Tasks 3 and 4 precede task 6

7 2
Task 6 precedes task 7

Figure 5-2 : example

57

Figure 5.3 : The potential-task graph of the

example

We associate canonically with this problem a graph G = (X, U) where X = {0, 1, 2, ..., n+1} (0:

fictitious start task; n+1: fictitious end task), and U is associated with potential constraints, which

include, on the one hand, the initial constraints, and on the other hand, the constraints due to tasks

0 and n+1: we connect any vertex without predecessor to 0 with an arc of valuation 0, and we

connect any vertex i without successor to n+1 with an arc of valuation equal to the duration of task

i.

The critical path:

The maximal paths between 0 and n+1, called critical paths, play a central role in this method.

The tasks belonging to this critical path are called critical tasks. If a critical task is delayed by a

certain delay, the scheduling will be delayed by the same delay. This is because critical tasks have

the same earliest and latest start times, resulting in zero slack.

Scheduling: A scheduling is a set of potentials on the associated conjunction graph. Any

scheduling has a duration greater than l(0,n+1) = t*, the value of the critical path. The most

common approach is to calculate left and right-aligned schedules (earliest and latest start times)

by solving two path problems: ri = l(0, i), fi = l(0,n+1) - l(i,n+1). Bellman's algorithm is typically

used in the absence of cycles, or Ford's algorithm if there is a cycle, using the following formulas

for earliest start times: r0 = 0, rj = max(ri + vij) (with i in U-(j)).

Figure 5.4 : Earliest start times

latest finish times: fn+1 = t*, fi = min (fj - vij) (with jU+(i)).

0

1 3 5

8

7642

0

3 4

5

6 3

2

7

0

3 4

tâche "f ictive" f in

tâche

"f ictive"début

tâche

"f ictive"début

0

1 3 5

8

7642

0

3 4

5

6 3

2

7

0

3 4

tâche "f ictive" f in

0

0 3 7

18

161370

58

Figure 5.5 : Latest finish times

The different types of potential constraints:

We report below the different types of potential constraints, which include constraints of

precedence and temporal localization.

Constraints of precedence:

i precedes j, calling ti (resp. tj) the start date of i (resp. j) and pi the duration of i, the constraint is

written as tj >= ti + pi, i.e., tj - ti >= pi: we associate an arc (i, j) with a weight of pi.

Constraints of temporal localization:

Task i is available at date ai, ti >= ai or ti - t0 >= ai (t0 = 0). We associate an arc (0, i) with a

weight of ai. Task i must be completed by date di: ti + pi <= di, which is written as: to - ti >= pi -

di. We associate an arc (i, 0) with a weight of pi - di (this weight can be negative or zero).

Constraints of broad precedence:

Task j can start after task i with an additional setup time rij: tj >= ti + pi + rij, hence tj - ti >= pi +

rij. Task j can start after task i has started by one third of its duration: tj >= ti + pi/3.

5.4. The PERT method :

We associate with each task i an event Di, representing the start of task i, and an event Fi,

representing the end of task i. We also introduce an event D representing the start of the scheduling

and an event F representing the end of the scheduling.

The conjunctive graph associated with this has vertices representing the set of events and arcs

representing the set of tasks, along with fictitious arcs to represent the constraints.

Example :

tâche "f ictive" f in

tâche

"f ictive"début

0

1 3 5

8

7642

0

3 4

5

6 3

2

7

0

3 4
0

0,4 3,9 7,13

18,18

16,1613,137,70,0

59

Figure 5.6 : expanded PERT graph

Figure 5.7 : simplified PERT graph

We can simplify the PERT graph by merging start or end events of tasks. However, the

disadvantages of the simplified graph are:

• The lack of automation in its construction.

• The fact that it is not unique.

• The need to reconstruct the entire simplified graph if any constraints are modified (added or

removed).

The advantage of the PERT graph is improved readability for non-specialists. In fact, a task with

a certain duration is represented by an arrow.

60

6. MAXIMUM FLOW PROBLEM:

6.1. Introduction

In this chapter, we will study the problem of maximum flow. This problem arises when we need

to maximize the amount of material transported from one or more sources to one or more

destinations. It is modeled by a valued graph, called a transport network, which we define. The

edges represent the possibilities of transport between two sites and are valued by their

corresponding capacities. The problem of maximum flow is solved by an efficient fundamental

algorithm due to FORD and FULKERSON, which we present and justify below. Finally, we

discuss the polynomiality of this problem by referring to more recent research that has led to the

development of more efficient algorithms.

6.2. Transport Network:

Definition :

We call a transport network a positively valued graph without

loops, having a root s, a sink p, and containing the arc (p,s) of

infinite valuation. The valuations of the arcs are called capacities.

An example of a transport network is reported in Figure 6.1 below.

A

B

C

D

E

F

s p

20

15

25

20

20

10

15

5

5

5

10

10

35



Figure 6.1 : Transport network

Definition :

A flow on a transport network G = (X, U) is a function f: U -> R that

satisfies:

1)Capacity constraints: for every arc (i,j) in U: 0  fij  cij;

2)Conservation constraints (Kirchoff) (see figure 6.2): for every

vertex i in X, we have : 
+)(iUj

ijf = 
−)(iUk

kif

61

Figure 6.2 : Conservation constraint

A first example of a flow is the null flow. A second example of a flow is shown in Figure 6.3.

Figure 6.3 : A complete flow.

Three warehouses A, B, C, contain respectively 20, 35 et 10 tons of goods. There are demands of

25, 20 et 20 tons to destinations D, E and F. The unitary transportation costs are given in the

following matrix. What would be the minimal cost transport plan ?

D E F

15 10 0

15 5 5

5 0 10

Problem: Determine a transport plan that allows for the maximum quantity of goods to be

transported from origins to destinations. To solve this problem, the graph in Figure 6.1 is

associated. More generally, the following problem must be solved:

 Determine a maximum value flow on the arc (p, s), thus maximizing fps.

6.3. Lemma :

Before introducing the algorithms to maximize the flow, we show that the flow conservation

property generalizes to a subset of vertices.

i f
ij

f
ki

A

B

C

D

E

F

s p

20 20

15 15

25 25

10 20

15 20

5 10

10 15

5 5

5 5

0 5

10 10

10 10

20 35

50

62

Lemma :

If Y is a subset of X, the flow outgoing from Y is equal to the flow incoming into Y.

Proof :

We sum the Kirchoff equation over all vertices in Y. The flows on the arcs that have one endpoint

in Y and the other outside of Y appear on each side of the equation. Therefore, we can subtract

them. What remains on one side of the equation is the sum of the flows on the arcs outgoing from

Y and on the other side of the equation, the sum of the flows on the arcs incoming into Y. Thus,

we have the result. Q.E.D.

Figure 6.4: Proof of the lemma.

6.4. Complete flow :

6.4.1. Introduction :

A first idea to optimize the flow is to successively saturate the paths from s to p. We will obtain a

so-called complete flow which, as we will see below, is not maximal but provides an excellent

starting solution to apply the Ford-Fulkerson algorithm that we will present in the following

section.

Définition :

A flow is said to be complete if every path in the transportnetwork

from s to p contains at least one saturated arc, that is an arc (i,j) such

that fij = cij.

6.4.2. Algorithm for finding a complete flow:

We start with a flow f (for example, f = 0) and improve it step by step with a marking procedure:

(I) Mark s.

(II) Let i be a marked vertex not yet examined;

Y

63

 mark j if j is an unmarked successor of i with fij < cij.

 The mark on j is +i.

(III) If p is marked, go to (IV).

 If all marked vertices have been examined, the flow is complete END.

 Otherwise, go to (II).

(IV) Improve the flow. Erase the marks (except for the one on s) and go to (I)

6.4.3. Operation on the previous example:

Successively, the following augmenting paths are found: sADp (15), sAEp (5), sBDp (10), sBEp

(5), sBFp (5), and sCFp (10). The resulting flow has a value of 50 and is complete (see figure 6.3).

Indeed, all paths passing through the arc sA are saturated because this arc is saturated; all paths

passing through the arc sC are saturated because this arc is saturated; all paths passing through the

arc sB are saturated because the arcs Dp, BE, and BF are saturated.

6.5. Ford-Fulkerson algorithm:

To construct a complete flow, we removed the augmenting paths. It is not optimal because there

is still an augmenting chain. We explain below the notion of augmenting chain and report the

Ford-Fulkerson algorithm, which allows searching for the augmenting chains and stops when there

is no more augmenting chain. The flow is then optimal.

6.5.1. Augmenting chain:

Figure 6.5: An augmenting chain

In a path from s to p, the direction of the arcs is respected. In a chain from s to p, on the other

hand, the direction of the arcs is not necessarily respected. We can then distinguish between two

types of arcs: arcs that respect the orientation (called forward arcs +) and arcs that do not respect

the orientation (called backward arcs -). An augmenting chain is a chain going from s to p, whose

forward arcs are unsaturated and whose backward arcs transport a strictly positive flow. It allows

improving the flow by adding a quantity δ on the forward(+) arcs and removing a quantity δ on

the backward(-)arcs.

 The Ford-Fulkerson algorithm starts from an arbitrary flow (for example, the null flow or a

complete flow). It searches for an augmenting chain. It improves the flow as long as there exists

an augmenting chain and stops otherwise. The flow is then optimal.

A

B

D

Es p

15 15

10 20

5 10

10 15

20 35

64

6.5.2. Ford-Fulkerson algorithm:

(I) Mark the source s with *.

(II) Let i be a marked but unexamined vertex.

 Consider all successors j of i:

 Mark j with +i if it is unmarked and if fij < cij. Consider all predecessors k of i:

 Mark k with -i if it is unmarked and if fki > 0.

 (III) If p is marked, go to (IV).

 If there are still unexamined marked vertices, go to (II).

 Otherwise, the flow is optimal. END.

(IV) Improve the flow using the augmenting chain that allowed marking p.

 Clear the marks, except for s, and go back to step (I).

6.5.3. Example :

(I) We mark s with * and start from the complete flow built previously (see figure 6.3).

 (II) We examine s.

We mark B with +s, because only the arc sB is unsaturated.

(II) We examine B. BD is the only unsaturated arc leaving B, so we mark D with +B (successor

of B).

B has no unmarked predecessor.

(II) We examine D.

 There is no unsaturated arc leaving D.

However, the arc AD carries a non-zero flow. This means that A is marked -D (predecessor of D).

 (II) We examine A.

 We mark E with +A, as it is an unsaturated successor of A.

The only predecessor of A is already marked.

 (II) We examine E.

 We mark p with +E, i.e., as a successor of E.

 (IV) Since p is marked, we have found an augmenting path. We use the marks "going back" to

reconstruct this augmenting path: it is the path sBDAEp, whose four arcs in the + direction are

unsaturated, while the arc in the - direction carries a non-zero flow.

This path allows us to improve the flow by 5 units. We clear the marks except for s and start again.

65

Figure 6.6 : Ford-Fulkerson marking

Figure 6.7 : Optimal flow.

(iii) This time, we mark the vertex B and it's finished because all the outgoing arcs from B

are now saturated. The flow is maximal as we will show below in the general case.

6.5.4. Ford-Fulkerson's Theorem:

Definition :

A cut is a set of vertices containing s and not containing p. The capacity

of a cut is the sum of the capacities of the arcs leaving this cut.

Example : at the end of the previous algorithm, the set of marked vertices M = {s, B} is a cut

that has the following property:

-all arcs leaving M are saturated;

- the arcs entering M, except for (p,s), have zero flow.

A

B

C

D

E

F

s p

20 20

15 15

25 25

10 20

15 20

5 10

10 15

5 5

5 5

0 5

10 10

10 10

20 35

50

* +s

+B-D

+A
+E

A

B

C

D

E

F

s p

20 20

10 15

25 25

15 20

15 20

10 10

15 15

5 5

5 5

0 5

10 10

10 10

25 35

55

* +s

66

Ford-Fulkerson Theorem:

The minimum capacity of a cut is equal to the maximum flow.

Proof :

It must be shown that: Max fps = Min C(Y) (with f, flow,Y , sY, pY)

1- Let's show that Max fps ≤ Min C(Y):

 Let f be any flow and Y any cut, it suffices to show that: fps ≤ C(Y). The flow leaving Y is less

than or equal to C(Y). The flow entering Y is greater than or equal to fps. Since the flow entering

Y is equal to the flow leaving Y, we have: fps ≤ C(Y).

2- Let's show that Max fps ≥ Min C(Y): We will show that there exists a flow f ' and a cut M

such that: f'ps = C(M). The inequality will result because Max fps ≥ f 'ps and Min C(Y) ≤

C(M). When we apply Ford-Fulkerson, at the end, if we designate by M the set of

marked vertices and by f ' the flow, we have C(M) = f 'ps.

3-

4- Figure 6.8 : Minimal cut.

After a finite number of iterations, Ford-Fulkerson algorithm stops. Indeed, each iteration

improves the flow by at least one unit; this flow is bounded, for example, by C({s}). In the end,

the outgoing arcs from M are saturated and the incoming arcs into M have zero flow. The flow

entering M is fps. The flow leaving M is C(M). Hence, C(M) = fps. Q.E.D.

The following corollaries are immediately demonstrated:

1: A necessary and sufficient condition for a flow to be maximal is that there exists no augmenting

path.

2: The Ford-Fulkerson algorithm constructs a maximal flow.

6.5.5. Complexity of the Ford-Fulkerson algorithm:

Figure 6.9 shows an example where the number of iterations of Ford-Fulkerson is equal to 2M if

we successively choose the augmenting paths {s x y p} and {s y x p} of capacities 1. The number

of augmentations can thus be exponential. The Ford-Fulkerson algorithm is not polynomial.

f c
ij ij

=

i

0

k

l

p
s

j

67

Figure 6.9 : Example.

However, if we apply the "first labeled, first examined" rule, the Ford-Fulkerson algorithm

becomes polynomial with complexity O(n5): the number of augmenting paths is bounded by 1/4

(n3 - n) according to the Edmonds-Karp theorem. This amounts to searching for the shortest

augmenting paths. Finally, note that there are better algorithms, in particular, the KARZANOV

algorithm with a global complexity of O(n3).

 6.6. Maximum flow at minimum cost:

S

1

2

3

4

5

P

0

0

00

1
1

3

3

4

44

5

55

5

5 

6

7

6

f
ij

c
ij

Figure 6.10 : Flow on a transport network

We return to the Ford-Fulkerson algorithm by showing that the concept of an augmenting chain

on the initial graph is equivalent to the concept of an augmenting path on the residual graph. In

y

x

s p1

MM

M M

1
1

1 y

x

s p1

MM

M M

1

1

-1

68

Figure 6.10, we have a flow on the transport network, and the corresponding residual graph is

shown in Figure 6.11.

6.6.1. Maximum flow problem:

Definition of the residual graph Ge(ƒ) :

For a pair consisting of a flow f and a transport network G, we associate the residual graph Ge(f)

= (X, Ue(f)), defined by:

for any arc (i, j) in G, there are two arcs in Ge(f): one arc (i, j) of

capacity cij - fij and one arc (j, i) of capacity fij (if the capacity of an

arc is zero in Ge(f), the arc is not represented, as it is useless).

Note that adding (or subtracting) flow on an arc of the initial graph is equivalent to adding this

flow on the corresponding (or inverse) arc of the residual graph. Augmenting chains on the initial

graph correspond to paths on the residual graph. Therefore, the Ford-Fulkerson algorithm becomes

the following algorithm :

Algorithm of the residual graph:

This algorithm constructs a flow of maximum value on the backward arc (p, s) in G.

(I) Initialize f on all arcs (for example, f = 0 if b(u) = 0 for all u).

(II) (II) Construct Ge(f) and find a path from s to p in Ge(f). Go to (III) if a path is found,

otherwise END.

(III) (III) Improve the flow f along the obtained path and return to (II).

S

1

2

3

4

5

P

4

4

1

6

1

4

2

1

6

3

5

7

5



Figure 6.11 : First residual graph

Application of the algorithm to the previous example

69

On the first residual graph (Figure 6.11), we have the path [s, 3, 4, 1, 5, p] that allows us to improve

the flow by 3. On the second residual graph (Figure 6.12), we have the path [s, 2, 4, 1, 5, p] that

allows us to improve the flow by 1. The third residual graph (Figure 6.13) no longer contains a

path from s to p; the flow is therefore maximum. The flows are equal to the capacities of the

reverse arcs in this third residual graph (see Figure 6.14).

S

1

2

3

4

5

P

4

4

5

4

3

3

3

1

2

1

3

4

1

3

3

8



Figure 6.12 :Second residual graph

S

1

2

3

4

5

P

4

5

5

3

4

2

4

1

2

3
3

3

3

2



9

Figure 6.13: Third residual graph

70

S

1

2

3

4

5

P

4

4

33

2
2

3

3

0

44

5

55

5

9 

6

7

6

Figure 6.14 : Maximal flow.

S

1

2

3

4

5

P

0

0

00

0
0

3

3

0

40

5

50

5

0 

6

7

6

2

4

1

5

7

1

9
9

1

Figure 6.15: A problem with costs

6.6.2. The problem of maximum flow at minimum cost:

We will now modify this algorithm for the residual graph to take into account unit transport costs

on the arcs. For each arc (i, j), we also have a cost dij (≥ 0). We must determine a maximum flow

of minimal global cost, that is, which minimizes: 
Uji

ijij fd
),(

ROY’s Algorithm :

(I) Set f = 0.

(II) Construct Ge(f) by introducing a cost dij on arc (i, j) and a cost - dij on arc (j, i).

(III) (Look for a minimum cost path in Ge(f) from s to t. If there is no path from s to t, then

the flow is maximal of minimum cost, so FINISH.

(IV) Otherwise, improve the flow f and return to (II).

71

S

1

2

3

4

5

P

2, 4

4, 5

1, 2

-1, 3

5, 7

7, 6

-1, 3

9, 39, 5

1, 3

-1, 3

0, 3

0, 

Figure 6.16 : Second residual graph.

S

1

2

3

4

5

P

2, 2
-2, 2

4, 3

-4, 2

-1, 5

9, 3

7, 6

-1, 3
5, 71, 3

-1, 3

9, 5

0, 5

0, 

Figure 6.17 : Third residual graph.

Example :

The first residual graph coincides with the initial graph (see Figure 6.15). On this graph, the

minimum cost path from s to t is [s, 3, 4, t] with a cost of 3. We then pass a flow of value 3 along

this path and obtain a second residual graph (see Figure 6.16). On this graph, the minimum cost

path from s to t is [s, 1, 4, t] with a cost of 7. We then pass a flow of value 2 along this path and

obtain a third residual graph (see Figure 6.17). On this graph, the minimum cost path from s to t

is [s, 1, 5, t] with a cost of 14. We then pass a flow of value 2 along this path and obtain a fourth

residual graph (see Figure 6.18). On this graph, the minimum cost path from s to t is [s, 2, 4, 1, 5,

t] with a cost of 26. We then pass a flow of value 2 along this path and obtain a final residual graph

(see Figure 6.19). There is no longer a path from s to t.

 The flow is maximum of minimum cost (see Figure 6.20). The cost of this flow is: 3x3 + 2x7 +

2x14 + 2x26 = 103.

72

S

1

2

3

4

5

P

-2, 4

4, 3

-4, 2

-1, 5

5, 5

-5, 2

7, 4

-7, 2

9, 3

-1, 3

1, 3

-1, 3

9, 5

0, 7

0, 

Figure 6.18 : Fourth residual graph.

S

1

2

3

4

5

P

-2, 4

9, 3

-9, 2

4, 5

-7, 4

7, 2
5, 3

-5, 4

9, 1

-9, 2

1, 3

-1, 3

-1, 5

0, 9

0, 

Figure 6.19 : Last residual graph.

73

S

1

2

3

4

5

P

4

4

3
3

2
2

3

3

0

44

5

55

5

0 

6

7

6

2

4

1

5

7

1

9
9

1

Figure 6.20 : Maximum flow of minimum cost.

74

7. THE PROBLEMS OF CHANNELED FLOWS AT MINIMUM COST:

7.1. Introduction :

In this chapter, we consider generalizations of the maximum flow problem by addressing

minimum cost flow problems and channelized flow problems. A channelized flow is a flow that

must satisfy, in addition to the Kirchhoff and capacity constraints, additional constraints called

bounds: for each arc (i, j), a bound bij is associated, and the flow on arc (i, j) must be greater than

or equal to bij. A flow is considered to be of minimum cost if a linear function of transportation

costs is minimized. The basic tool remains the augmenting chain. We simplify it by introducing

the concept of residual graph, which allows us to reduce the search for augmenting paths. We

explain how to find a channelized flow and a minimum cost flow.

7.2. Channelized flow and residual graph:

Sometimes, an integer lower bound b(u) on the flow of arc u may not be zero, in which case the

problem of finding a compatible flow (referred to as channelized flow) arises. It is reminded that

c(u), the capacity of arc u, is an integer upper bound on the flow of arc u.

Definition:

A channelized flow is a function ƒ from U to N (set of integers) that

satisfies the Kirchhoff constraints, as well as the constraints of

bounds and capacities. We seek a flow ƒ such that for every u, b(u) ≤

ƒ(u) ≤ c(u). The Hoffman theorem provides a condition for the

existence of a channelized flow.

Hoffman's Theorem:

A necessary and sufficient condition for the existence of a channelized flow in the network G =

(X, U, b, c) is that for every Y ⊆ X, the sum of the bounds of the arcs entering Y is less than or

equal to the sum of the capacities of the arcs leaving Y, i.e.:

 +− 


)()(
)()(

YUuYUu
ucub

Proof:

The condition is obviously necessary. Indeed, the flow entering Y is equal to the flow leaving Y.

The incoming flow is greater than the sum of the bounds, and the outgoing flow is less than the

sum of the capacities, so the inequality holds whenever there exists a flow.

The sufficiency of the condition is ensured by the algorithm for finding a compatible flow that we

introduce and justify below. Q.E.D.

75

Algorithm for finding a compatible flow:

{Note: fu denotes the flow on arc u}

(I) Start with a flow f set to zero. (II) Search for an arc u such that fu < b(u) - If such an arc does not exist, then END 1;
- Otherwise, set s as the terminal node of u and p as the initial node of u.

(III) Search for a path from s to p in the forward direction (+) where the arcs are unsaturated, and in the backward
direction (-) where the flow on the arcs is strictly greater than the bound; if such a path does not exist, then END 2.

(IV) Use this path to improve the flow by attempting to satisfy the bound constraint on arc u, and return to (II).

This algorithm terminates either after finding a compatible flow (FIN1), or because the necessary

condition of the theorem is not satisfied (FIN2). We will prove this result after running the

algorithm on the example in Figure 7.2.

We find the following four augmenting paths successively:

• for s = x3 and p = x1, we have the path (x3, x4, x1) with a capacity of 2.

• for s = x3 and p = x1, we have the path (x3, x4, x5, x1) with a capacity of 2.

• for s = x2 and p = x1, we have the path (x2, x5, x1) with a capacity of 3.

• for s = x3 and p = x5, we have the path (x3, x4, x5) with a capacity of 1.

We then have a compatible flow.

Validity of the algorithm:

Validité de l'algorithme :

The algorithm terminates. It cannot loop indefinitely because the set of values is finite, and we are

sure to never encounter the same flow between two steps. Indeed,  


−
Uu

uu fb 0,max is strictly

decreasing during the algorithm and bounded below by 0.

Since we start with a null flow and always respect capacity constraints, we can be sure that for

every u: ƒu ≤ c(u).

If FIN1, then we have obtained a compatible flow.

If FIN2, then the marking algorithm for a path from s to p is blocked. Let's denote A as the set of

vertices marked at the end of this phase. We verify that the flow entering A is strictly less than the

sum of the capacities of the incoming arcs to A, and is equal to the sum of the capacities of the

outgoing arcs from A (Refer to 7.1).

s

p

A

u

f < b
u u

f  b
w w

f = c
v v v

w

Figure 7.1 : Case of non-existence of a compatible flow (FIN2).

76

 x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



1) s = x p = x
3 1 2) s = x p = x

3 1

3) s = x p = x
2 1

4) s = x p = x
5 3

0

0

0 0

0

0
0

0

0

0

0

2

2

0

0
0

0

2

0
0

2

4

4

2
2

0

0

4

2

0

3
3

0

2

4

5

x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



5

3

1

3
3

0

2

4

5

Figure 7.2 : application of algorithm

77

7.3. Minimum cost flow :

7.3.1. Decomposition of a flow on a basis of circuits :

Proposal:

A necessary and sufficient condition for a flow ƒ to be positive is that there exists a family of

circuits μ₁, μ₂, ..., μp and positive integer coefficients λ₁, λ₂, ..., λp such that: ƒ = λ₁μ₁ + λ₂μ₂ + ... +

λpμp.

Proof:

The condition is sufficient because each circuit can be considered as a positive flow. Let's show

that the condition is also necessary. Starting from an arc with non-zero flow, we can find another

arc with non-zero flow due to Kirchoff's condition. By iterating this process, we will eventually

revisit a same vertex, and thus we have found a circuit μ₁. Let λ₁ be the minimum value of flows

on this circuit; ƒ - λ₁μ₁ is still a positive flow, and we can apply the same reasoning to it to obtain

all the components of ƒ successively, as a new arc with zero flow appears each time. Q.E.D.

7.3.2. Gap bijection :

Definition of the residual graph Ge(ƒ) (including bijections):

To the pair consisting of a flow ƒ and a transportation network G, we associate the residual graph

Ge(ƒ) = (X, Ue(ƒ)), defined as follows:

for each arc (i, j) in G, there are two corresponding arcs in Ge(ƒ): an arc (i, j)

with capacity cij - ƒij, and an arc (j, i) with capacity ƒij - bij (if the capacity of

an arc is zero in Ge(ƒ), it is not represented as it is unnecessary).

Let ƒ0 be a compatible flow and Ge(ƒ0) be the associated residual graph. Let  be a flow on

Ge(ƒ0). We define a new compatible flow ƒ on G using the notation ƒ = ƒ0  , where:

((ƒ)u = (ƒ0)u + ()u+ − ()u-

The cost of the flow ƒ on G is equal to the cost of the flow ƒ0 on G plus the cost of the flow  on

the residual graph. We aim to minimize the cost of ƒ, where ƒ is a compatible flow. The method

we will discuss involves removing circuits with strictly negative costs in the residual graph, and

is based on the optimality theorem, which we will prove.

7.3.3. Optimality theorem :

Optimality theorem:

A compatible flow ƒ0 is of minimal cost if and only if Ge(ƒ0) does not contain any circuit with

strictly negative cost.

Proof:

The condition is obviously necessary. If there exists a circuit with strictly negative cost, this circuit

allows to construct a strictly better flow, as explained in the example below. The condition is also

sufficient

78

Let ƒ0 be a flow such that Ge(ƒ0) does not contain any circuit with strictly negative cost, and let ƒ

be another compatible flow. We have ƒ = ƒ0  , where  decomposes over a base of circuits of

Ge(ƒ0) :  =  +  +  +pp.

Therefore, Cost() = 
],1[pi

i Cost(i) is positive because the costs of all the circuits in the graph

of the residual network are positive, and the λi coefficients are also positive. By using the equation

Cost(ƒ) = Cost(ƒ0) + Cost() on a Cost(ƒ)  Cost(ƒ0) which means that ƒ0 is a compatible flow of

minimal cost. Q.E.D.

x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



6

5

2

3
3

0

1

4

6

2
1

2

5

3

5

0

1

1

bij f
ij

c
ij

d
ij

Figure 7.3 : Minimum-cost network flow problem

In Figure 7.3, we have an example of a compatible flow. We will use the previous result to find a

minimum-cost compatible flow. In Figure 7.4, we have the associated residual graph. This residual

graph contains a circuit with strictly negative cost: the circuit [x5, x4, x1]. We then send a flow of

1 through this circuit in the residual graph. In Figure 7.5, we have the updated residual graph. This

residual graph contains a circuit with strictly negative cost: the circuit [x3, x5, x4]. We then send

a flow of 1 through this circuit in the residual graph. We obtain a final residual graph where all

circuits have positive or zero costs (see Figure 7.6). As a result, the resulting compatible flow,

which is shown in Figure 7.7, is a minimum-cost compatible flow.

79

x

xx
1

x
2

3 x
5

4

-2, 2

 1, 2

-5, 1

+2, 1

-5, 2

5, 1

0, 

0, 6

1, 1 -3, 6

2, 3

7.4 : first residual graph.

x

xx
1

x
2

3 x
5

4

-2, 2

 1, 2

-5, 1

+2, 1

-5, 1

5, 2

0, 

0, 5

-1, 1 -3, 6

2, 3

7.5 : second residual graph.

80

x

xx
1

x
2

3 x
5

4

-2, 2

 1, 2

+5, 1

+2, 1

5, 3

0, 

0, 5

-1, 1

-3, 5

2, 3

3, 1

7.6 : final residual graph.

x
2

x
5

x
1

x
3

x
4

1

1

1 2

2

4 4

4

3

3

3

0

0

5

0

6

6



5

3

1

3
3

0

2

4

5

2
1

2

5

3

5

0

1

1

bij f
ij

c
ij

d
ij

Figure 7.7 : minimum-cost network flow.

7.3.4. Proof of Roy's algorithm:

We conclude this chapter by using the optimality theorem to prove the validity of Roy's algorithm.

Proposition: Roy's algorithm determines a maximum flow with minimum cost.

Proof:

We show by induction that all the flows ƒk constructed during Roy's algorithm have minimal cost

among flows with value vk. This will imply that the last flow obtained is a maximum flow with

minimum cost.

The property holds for ƒ0 = 0, which is the flow with zero value and minimal cost. Let's assume

that ƒk has minimal cost among flows with value vk. We have ƒk+1 = ƒk   , where μ is a circuit

with minimal cost passing through the back edge in the residual graph Ge(ƒk), and ε is the

maximum allowable value of the flow. Let ƒ be an arbitrary flow with the same value on the back

81

edge as ƒk+1. We know that ƒ = ƒk  , where  is a flow on the residual graph Ge(ƒk). Applying

the decomposition theorem, we have  =  +  +  +pp By using the fact that ƒk+1 and

ƒ have the same components on the back edge, we obtain:


Ii

i =  where I is the set of circuits passing through the back edge.

We deduce that :

Cost(ƒ) = 
],1[pi

i Cost(i) + Cost(ƒk)  
Ii

i Cost(i) + Cost(ƒk) since all circuits that do not pass

through the back edge have a non-negative or zero cost due to the recurrence assumption,ƒk is of

minimal cost among the flows of value vk. Using Cost(i)  Cost() for i and

 
Ii

i =  we have : Cost(ƒ)   Cost() + Cost(ƒk) = Cost(ƒk+1). This demonstrates the

minimality of the cost of ƒk+1 and the result by induction. Hence, the validity of ROY's algorithm.

Q.E.D.

7.4. Graph Algorithms and Linear Programming

The minimum cost flow problem can be modeled by the following linear program. The same

applies to problems of pathfinding and matching. For example, finding a minimum-cost path from

s to t is equivalent to finding a flow of value 1 from s to t with minimum cost. We have seen for

the assignment problem, which is a matching problem, how to reduce it to a flow problem.

Therefore, in principle, linear programming solvers could be used for all these problems,

especially since the solution of the continuous linear program is integral. However, specific

algorithms for each problem are much more efficient in practice, which justifies the study of their

specific properties..

Viffa
ipreck

ik

isuccj

ji =  ;)(,,


Uji

jiji fdMin
),(

,,

UjiCfb jiji ),(;0)(,,

