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Chapter 1

What is modeling?
Why use models?

Rather than starting with a theoretical overview of what modeling is, and why it is useful, we shall look
at a problem facing a very small manufacturer, and how we might go about solving the problem. When
we have gained some practical modeling experience, we shall come back to see what the benefits of
modeling have been.

Section 1.1 gives a word description of the problem and its translation into a mathematical form. We then
define in Section 1.2 the notion of a Linear Program and show how the example problem fits this form. In
Section 1.3 the problem is implemented with Mosel and solved with the Xpress-Optimizer. The discussion
of the results comprises a graphical representation of the solution information that may be obtained from
the solver. Important issues in modeling and solving linear problems are infeasibility and unboundedness
(Section 1.4). The chapter closes with reflections on the benefits of modeling and optimization (Section
1.5) and the importance of the data (Section 1.6).

1.1 The chess set problem: description

A small joinery makes two different sizes of boxwood chess sets. The small set requires 3 hours of ma-
chining on a lathe, and the large set requires 2 hours. There are four lathes with skilled operators who
each work a 40 hour week, so we have 160 lathe-hours per week. The small chess set requires 1 kg of
boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce and only 200 kg per week
can be obtained.

When sold, each of the large chess sets yields a profit of $20, and one of the small chess set has a profit
of $5.

The problem is to decide how many sets of each kind should be made each week so as to maximize profit.

1.1.1 A first formulation

Within limits, the joinery can vary the number of large and small chess sets produced: there are thus two
decision variables in our model, one decision variable per product. What we want to do is to find the
best (i.e. optimal) values of these decision variables, where by ’best’ we mean that we get the largest
profit. We shall give these variables abbreviated names:

xs : the number of small chess sets to make
xl : the number of large chess sets to make

The number of large and small chess sets we should produce to achieve the maximum contribution to
profit is determined by the optimization process. In other words, we look to the optimizer to tell us the
best values of xs, and xl.

The values which xs and xl can take will always be constrained by some physical or technological limits.
One of the main tasks in building a model is to write down in a formal manner the exact constraints that
define how the system can behave. In our case we note that the joinery has a maximum of 160 hours of
machine time available per week. Three hours are needed to produce each small chess set, and two hours
are needed to produce each large set. So if in the week we are planning to make xs small chess sets and
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xl large chess sets, then in total the number of hours of machine time we are planning to use is:

3 · xs + 2 · xl

where the 3 · xs comes from the time making small sets, and the 2 · xl from the time machining large sets.

Note that we have already made some assumptions here. Firstly we have assumed that the lathe-hours to
machine xs small sets is exactly xs times the lathe-hours required to machine one small set. This probably
will not be exactly true in practice — one tends to get faster at doing something the more one does it, so
it will probably take a slightly smaller amount of time to machine the 2nd and subsequent sets than the
first set. But it is unlikely that this will be a very important effect in our small joinery.

The second assumption we have made is much more likely to be inaccurate. We have assumed that the
time for making small and large sets is the sum of the times for the sets. We have not allowed for any
changeover time: resetting the lathes, cleaning up, getting different size tools etc. In some situations,
the time that we lose in changeovers can be very large compared with the time we actually spend doing
constructive work and then we have to resort to more complex modeling. But for the moment, we shall
assume that the changeover times are negligible.

Our first constraint is:
3 · xs + 2 · xl ≤ 160 (lathe-hours)

which says ‘the amount of time we are planning to use must be less than or equal to the amount of time
available’, or equivalently ‘we cannot plan to use more of the resource (time) than we have available’.
The allowable combinations of small and large chess sets are restricted to those that do not exceed the
lathe-hours available.

In addition, only 200 kg of boxwood is available each week. Since small sets use 1 kg for every set made,
against 3 kg needed to make a large set, a second constraint is:

1 · xs + 3 · xl ≤ 200 (kg of boxwood)

where the left hand side of the inequality is the amount of boxwood we are planning to use and the
right hand side is the amount available.

The joinery cannot produce a negative number of chess sets, so two further non-negativity constraints
are:

xs ≥ 0

xl ≥ 0

In a similar way, we can write down an expression for the total profit. Recall that for each of the large
chess sets we make and sell we get a profit of $20, and one of the small chess set gives us a profit of $5.
Assuming that we can sell all the chess sets we make (and note that this may not always be a reasonable
assumption) the total profit is the sum of the individual profits from making and selling the xs small sets
and the xl large sets, i.e.

Profit = 5 · xs + 20 · xl

Profit is the objective function, a linear function which is to be optimized, that is, maximized. In this case
it involves all of the decision variables but sometimes it involves just a subset of the decision variables.
Note that Profit may be looked at as a dependent variable, since it is a function of the decision variables.
In maximization problems the objective function usually represents profit, turnover, output, sales, mar-
ket share, employment levels or other ‘good things’. In minimization problems the objective function
describes things like total costs, disruption to services due to breakdowns, or other less desirable process
outcomes.

Consider some possible values for xs, and xl (see Table 1.1). The aim of the joinery is to maximize profit,
but we cannot select any combination of xs and xl that uses more of any of the resources than we have
available. If we do plan to use more of a resource than is available, we say that the plan violates the
constraint, and the plan is infeasible if one or more constraints is violated. If no constraints are violated,
the plan is feasible. The column labeled ‘OK?’ in the table tells us if the plan is feasible. Plans C and E are
infeasible.

In terms of profit, plan H looks good. But is it the best plan? Is there a plan that we have not consid-
ered that gives us profit greater than 1320? To answer this question we must move to the notion of
optimization.
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Table 1.1: Values for xs and xl

xs xl Lathe-hours Boxwood OK? Profit Notes

A 0 0 0 0 Yes 0 Unprofitable!

B 10 10 50 40 Yes 250 We won’t get rich doing this.

C -10 10 -10 20 No 150 Planning to make a negative
number of small sets.

D 53 0 159 53 Yes 265 Uses all the lathe-hours. There
is spare boxwood.

E 50 20 190 110 No 650 Uses too many lathe-hours.

F 25 30 135 115 Yes 725 There are spare lathe-hours
and spare boxwood.

G 12 62 160 198 Yes 1300 Uses all the resources

H 0 66 130 198 Yes 1320 Looks good. There are spare
resources.

1.2 Linear Programming

We have just built a model for the decision process that the joinery owner has to make. We have isolated
the decisions he has to make (how many of each type of chess set to manufacture), and taken his objective
of maximizing profit. The constraints acting on the decision variables have been analyzed. We have given
names to his variables and then written down the constraints and the objective function in terms of these
variable names.

At the same time as doing this we have made, explicitly or implicitly, various assumptions. The explicit
assumptions that we noted were:

• For each size of chess set, manufacturing time was proportional to the number of sets made.

• There was no down-time because of changeovers between sizes of sets.

• We could sell all the chess sets we made.

But we made many implicit assumptions too. For instance, we assumed that no lathe will ever break or
get jammed; that all the lathe operators will turn up for work every day; that we never find any flaws in
the boxwood that lead to some being unusable or a chess set being unacceptable; that we never have to
discount the sale price (and hence the per unit profit) to get an order. And so on. We have even avoided
a discussion of what is the worth of a fraction of a chess set — is it a meaningless concept, or can we just
carry the fraction that we have made over into next week’s production?

All mathematical models necessarily contain some degree of simplification of the real world that we are
attempting to describe. Some assumptions and simplifications seem eminently reasonable (for instance,
that we can get the total profit by summing the contributions of the individual profits from the two sizes);
others may in some circumstances be very hopeful (no changeover time lost when we swap between
sizes); whilst others may just be cavalier (all the lathe operators will arrive for work the day after the
World Cup finals).

Modeling is an art, not a precise science. Different modelers will make different assumptions, and come
up with different models of more or less precision, and certainly of different sizes, having different num-
bers of decision variables. And at the same time as doing the modeling, the modeler has to be thinking
about whether he will be able to solve the resulting model, that is find the maximum or minimum value
of the objective function and the values to be given to the decision variables to achieve that value.

It turns out that many models can be cast in the form of Linear Programming models, and it is fortunate
that Linear Programming (LP) models of very large size can be solved in reasonable time on relatively
inexpensive computers. It is not the purpose of this book to discuss the algorithms that are used to solve
LP problems in any depth, but it is safe to assume that problems with tens of thousands of variables and
constraints can be solved with ease. So if you can produce a model of your real-world situation, without
too many wild assumptions, in the form of an LP then you know you can get a solution.

So we next need to see what a Linear Programming problem consists of. To do so, we first introduce the
notion of a linear expression. A linear expression is a sum of the following form

A1 · x1 + A2 · x2 + A3 · x3+. . . +AN · xN
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which in mathematical notation is usually written as

N∑

j=1

Aj · xj

where A1, . . . , AN are constants and x1, . . . , xN are decision variables. So for instance, if we have variables
x, makeP and makeQ

2 · x − 3 ·makeP + 4 ·makeQ

is a linear expression, but
2 · x ·makeP − 3 ·makeP + 4 ·makeQ

is not, as the first term contains the product of two variables.

Next, we introduce the notion of linear inequalities and linear equations. For any linear expression∑N
j=1 Aj · xj and any constant B, the inequalities

N∑

j=1

Aj · xj ≤ B and
N∑

j=1

Aj · xj ≥ B

are linear inequalities, and the equation
N∑

j=1

Aj · xj = B

is a linear equation. So for example our lathe-hours constraint

3 · xs + 2 · xl ≤ 160

is a linear inequality, but
2 · xs · xl + 3 · xs = 200

is not a linear equation because of the first term, which is a product of two decision variables.

Now, if we have decision variables
x1, x2, x3, . . . , xN,

a linear expression
C1 · x1 + C2 · x2 + C3 · x3+. . . +CN · xN

and a number of linear inequalities and linear equations

Ai1 · x1 + Ai2 · x2 + Ai3 · x3+. . . +AiN · xN ≤ Bi for i = 1, . . . , M1

Ai1 · x1 + Ai2 · x2 + Ai3 · x3+. . . +AiN · xN = Bi for i = M1 + 1, . . . , M2

Ai1 · x1 + Ai2 · x2 + Ai3 · x3+. . . +AiN · xN ≥ Bi for i = M2 + 1, . . . , M3,

then a Linear Programming problem is to

maximize or minimize
N∑

i=j

Cj · xj (the objective function)

subject to the constraints
N∑

j=1

Aij · xj ≤ Bi for i = 1, . . . , M1

N∑

j=1

Aij · xj = Bi for i = M1 + 1, . . . , M2

N∑

j=1

Aij · xj ≥ Bi for i = M2 + 1, . . . , M3

and xj ≥ 0 for each j = 1, . . . , N (non-negativity constraints)

The Bi are often called the right hand sides (RHS).

So, for instance, the chess set model is a linear program as it has variables xs and xl and is to

maximize 5 · xs + 20 · xl

subject to 1 · xs + 3 · xl ≤ 200 (kg of boxwood)

3 · xs + 2 · xl ≤ 160 (lathe-hours)

xs ≥ 0

xl ≥ 0
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We have stressed the linearity condition, where the objective function and all of the constraints must be
linear in the decision variables. But there are two further properties that we must have, Divisibility and
Determinism.

Divisibility means that in an acceptable solution any values of the decision variables are allowed within
the restrictions imposed by the linear constraints. In particular, we are not constrained to accept only
whole number (integer) values for some or all of the decision variables. We have already alluded to this,
when we remarked on the debate as to whether a fraction of a chess set is worth something (or, more
precisely, whether a fraction f of a chess set is worth exactly f times the worth of a whole chess set).

The final requirement we have of an LP problem is that it is deterministic — all the coefficients in the
constraints and the objective function are known exactly. Determinism is sometimes a very strong as-
sumption, particularly if we are building planning models which extend some way into the future. Is it
reasonable, for example, to assume that it will always take 7.5 days for the oil tanker to reach our refinery
from the Gulf? Or that all of the lathe operators will arrive for work every day next week?

Problems where we must consider the variability in objective function coefficients, right hand sides or
coefficients in the constraints are Stochastic Programming problems. We do not consider them in this
book, because they are difficult to deal with, not because they are of little practical interest. In fact, it
can be argued that all planning models have stochastic elements, and we will later demonstrate some
methods for dealing with uncertainty in an LP framework.

1.3 Solving the chess set problem

1.3.1 Building the model

The Chess Set problem can be solved easily using Mosel. We will discus Mosel much more in the next
chapter, and then throughout the book, but give the Mosel model here so you can see the solution to
the problem we have modeled.

The first stage is to get the model we have just developed into Mosel. Here it is.

Table 1.2: Chess Set Model

Notes

model Chess 1

uses "mmxprs" ! We use the Xpress-MP Optimizer 2

declarations

xs, xl: mpvar ! These are the decision variables 3

end-declarations

Profit:= 5*xs + 20*xl 4

Boxwood:= 1*xs + 3*xl <= 200 ! kg of boxwood

Lathe:= 3*xs + 2*xl <= 160 ! Lathehours

maximize(Profit) 5

writeln("LP Solution:") 6

writeln(" Objective: ", getobjval)

writeln("Make ", getsol(xs), " small sets")

writeln("Make ", getsol(xl), " large sets")

end-model 7

When we were building our mathematical model we used the notation that items in italics (for example,
xs) were the mathematical variables. The corresponding Mosel decision variables have the same name in
non-italic courier font (for example, xs).

Once the model has been defined, the objective function can be optimized and the optimal number of
chess sets to make is obtained.

Notice that the character ‘*’ is used to denote multiplication of a decision variable by the constant as-
sociated with it in the constraint. Blanks are not significant and the modeling language distinguishes
between upper and lower case, so X1 would be recognized as different from x1.

By default, Mosel assumes that all variables are constrained to be non-negative unless it is informed
otherwise. There is therefore no need to specify non-negativity constraints on variables. It is possible to
tell Mosel that variables are not non-negative: we shall see how to do this later.
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Chapter 2

Typical LP model constructs

We move now to a more disciplined approach to modeling. Though we have noted that modeling is an
art, this does not mean that we should treat each modeling exercise in an ad hoc way. Rather, we need
to learn from our previous modeling experience so as to increase our productivity and skill in the next
modeling work we do.

A natural way to approach any new modeling exercise is to try to understand the constraints in terms of
constraint types that we have seen before and so know how to model. If we can do a disaggregation of
the overall set of constraints into individual constraints that we know how to model, then we can feel
quite confident that we will be able to complete the whole model.

So we shall look at some typical constraint types. We will first give various ‘word descriptions’ of con-
straints, that is, phrases in which the constraint might be articulated by the person responsible for the
system we are modeling. We will then give an algebraic formulation of the constraint, and see how
it might be generalized. The presentation below is given in terms of the following constraint types:
bounds (Section 2.1), flow constraints (Section 2.2), simple resource constraints (Section 2.3), material
balance constraints (Section 2.4), quality requirements (Section 2.5), accounting constraints (Section 2.6),
blending constraints (Section 2.7), modes (Section 2.8), soft constraints (Section 2.9), and as a special form
of non-constrained ‘constraints’, objective functions (Section 2.10),

It should be noted that these constraint types are somewhat arbitrary — another presentation could have
categorized them in different ways.

2.1 Simple upper and lower bounds

A) ‘Marketing tells me that we cannot sell more than 100 units of Product 4 this period.’

B) ‘I’m committed to sending at least 20 tonnes of Blend 6 to Boston tomorrow.’

C) ‘I have to send exactly 30 tonnes of Blend 5 to Paris next period.’

D) ‘Electricity can flow in either direction along the Channel Cable.’

In A, one of the decision variables will be the amount of Product 4 that we sell, and suppose this is
variable sell4. The words say that there is an upper limit or upper bound of 100 on the single variable
sell4, i.e.

sell4 ≤ 100

In case B, we have a restriction in the opposite direction. If the decision variable is, say, sendb6,Boston, then
we have a lower limit or lower bound on the single variable,

sendb6,Boston ≥ 20

Note that this is more restrictive than the normal non-negativity constraint

sendb6,Boston ≥ 0

We can see case C, where the decision variable might be called sendb5,Paris, as an example of a variable
being fixed, or equivalently that its lower and upper bounds are identical, i.e.

sendb5,Paris = 30

or
sendb5,Paris ≥ 30 and sendb5,Paris ≤ 30
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One might ask ‘why have sendb5,Paris as a decision variable at all, as it is fixed and there is no decision to
make about its value?’. If every day we always sent exactly 30 tonnes to Paris then it might be legitimate
to remove this from the decision process, remembering to account for the resources that are used in the
blend, the transport capacity that is used up in moving the blend, etc. But of course there will inevitably
come a day when Paris needs more of Blend 5, and we have to spend time recalculating the resource
availabilities, transport capacity etc., net of the new Parisian demand. We will get things wrong unless
someone remembers to do the recalculation; and of course forgetting to redo the sums is likely when
we are having to rejig our production plan because of the extra demands from other cities in France (it
is Bastille Day tomorrow). What we gain by removing one variable from the model is not worth the risk
arising from later inflexibility.

The last case, D, expresses the fact that sometimes a variable is not bound by the normal non-negativity
constraint, and in this situation it is said to be free. Since, as we have mentioned before, all decision
variables are by default assumed to be non-negative, we have to explicitly tell our modeling software
that the decision variable here (which we shall call eflow), denoting the flow from Britain to France
where a positive value means that electricity is flowing from Britain to France and a negative value
means that it is flowing in the reverse direction is not non-negative

−∞ ≤ eflow ≤ +∞

In Mosel, this is indicated by the notation

eflow is_free

Free variables can be replaced by normal non-negative variables, e.g.

eflow = eflowBF − eflowFB

where eflowBF (eflowFB) is the non-negative flow from Britain to France (respectively, France to Britain),
but since optimization software can handle free variables directly there may be no reason to do this
transformation. If, however, there is some asymmetry in the flows (perhaps a flow from Britain to France
is taxed in some way by the French government, whereas a flow in the other direction is not taxed), the
eflowBF and eflowFB variables may be required anyway by other parts of the model, so the substitution is
harmless, or even necessary.

2.2 Flow constraints

Flow constraints arise where one has some sort of divisible item like electricity, water, chemical fluids,
traffic etc. which can be divided into several different streams, or alternatively streams can come together.
Some word formulations might be

A) ‘I have got a tank with 1000 liters in it and 3 customers C1, C2 and C3 to supply.’

B) ‘I buy in disk drives from 3 suppliers, S1, S2 and S3. Next month I want to have at least 5000 disk drives
arriving in total.’

C) ‘I have 2 water supplies into my factory, S1 and S2. I get charged by the water supplier for the amount
of water that enters my site. I lose 1% of the water coming in from S1 by leakage and 2% of that from
S2. My factory needs 100,000 gallons of water a day.’

Case A is where there is an outflow from a single source, whilst case B is where we want to model a total
inflow. Case C is a little more complicated, as we have to model losses.

In case A we have flow variables supply1, supply2 and supply3, being the amounts we supply to the three
customers. The total amount supplied is the sum of these three decision variables i.e. supply1 + supply2 +
supply3, and this total must be less than or equal to the 1000 liters we have available. Thus we have

supply1 + supply2 + supply3 ≤ 1000

(providing we have defined the units of supply to be liters).

Case B is very similar. The obvious decision variables are buy1, buy2 and buy3, and the total amount we
buy is buy1 + buy2 + buy3. Our requirement is for at least 5000 drives in total, so the constraint is

buy1 + buy2 + buy3 ≥ 5000

If we wanted exactly 5000 drives, then the constraint would be

buy1 + buy2 + buy3 = 5000
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Case C is more challenging. ‘I have 2 water supplies into my factory, S1 and S2. I get charged by the
water supplier for the amount of water that enters my site. I lose 1% of the water coming in from S1 by
leakage and 2% of that from S2. My factory needs 100,000 gallons of water a day.’

There are several different ways we might approach the modeling. One way is to define decision variables
as follows: buy1 and buy2 are the amounts we buy from supplier 1 and 2 respectively, and get1 and get2

are the amounts that we actually get (after the losses). If we measure the decision variables in thousands
of gallons, then we have the requirement constraint

get1 + get2 = 100

and we can model the losses as follows (loss equations):

get1 = 0. 99 · buy1

get2 = 0. 98 · buy2

since, for example, we only receive 98% of the water from supplier 2 that we have to pay for. Then the
objective function would, among other entries, have terms PRICE1 ·buy1 +PRICE2 ·buy2, where PRICE1 and
PRICE2 are the prices per thousand gallons of water from the two suppliers.

We have the option of using the loss equations to substitute for buy1 and buy2 (or, alternatively, get1 and
get2), and doing so would reduce the number of equations and variables by 2. But as we have discussed
before, it almost certainly is not worth the effort, and the LP solver should be clever enough to do the
work for us automatically anyway if it thinks it will reduce the solution time.

2.3 Simple resource constraints

We have already seen examples of this sort of constraint in the chess set problem where, to remind you,
we had limited amounts of lathe-hours and boxwood, and we had to create a production plan that used
neither too many lathe-hours nor too much boxwood.

If we generalize what we mean by a resource, all linear programs can be formulated as maximizing some
objective function subject to not using any more of any resource than we have available. But it is not
particularly helpful to think of everything as a resource, so we will give more word formulations here
which involve real resources.

A) ‘I can only get hold of 10,000 connectors a month. Each Industry PC I make needs 8 connectors and
each Home PC I make requires 5 connectors.’

B) ‘Each tonne of chemical C1 uses 50 grams of a rare catalyst and 1 kg of a certain fine chemical, whereas
each tonne of chemical C2 requires 130 grams of the catalyst and 1.5 kg of the fine chemical. I can only
afford to buy 10 kilograms of catalyst per month and I can only acquire 200 kg of the fine chemical each
month.’

C) ‘If I do one unit of activity i it takes up COSTi of my disposable income. My disposable income next
week is $150.’

If we consider just one scarce resource then a resource constraint can be characterized by the activities
that potentially use up some of that resource, the level at which we are planning to conduct those
activities, the availability of the resource and, finally, the amount of the resource that is used per unit of
each activity.

These latter numbers, the resources used per unit of activity, are called technological coefficients. because
they are determined by the technology that we are using. Typically, when we have several products which
are each made from several resources, we will have a technological coefficient matrix which gives the
number of units of each resource required to make one unit of the product. It would be presented in
the form of Table 2.1, where, for example, the entry 0.8528 means that to make 1 unit of Product 3 we
require 0.8528 units of Resource 3. We have to be careful to use consistent and sensible units for how we
measure products and resources.

Case A where we stated that ‘I can only get hold of 10,000 connectors a month. Each Industry PC I make
needs 8 connectors and each Home PC I make requires 5 connectors’ has a simple technological matrix:

If we have decision variables makeI and makeH, being the number of Industrial and Home computers
we plan to make, then the number of connectors we plan to use is the number used making industrial
computers plus the number used making Home computers. If we make 1 Industrial computer then we
use 8 connectors, so if we make makeI Industrial computers we use 8 ·makeI connectors; and if we make
1 Home computer then we use 5 connectors, so if we make makeH Home computers we use 5 · makeH
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Table 2.1: Technological coefficient matrix

Resource 1 Resource 2 Resource 3 ... Resource R

Product 1 1.28235 0.24

Product 2 0.95474 1.8361

Product 3 12.33312 6.128 0.8528

... etc.

Product P 11.2322 5.208

Table 2.2: Simple technological coefficient matrix

Connector

Industry PC 8

Home PC 5

connectors. So in total if we make makeI Industrial computers and makeH Home computers we will use
8 ·makeI + 5 ·makeH connectors. This total must not be greater than the number available i.e.

8 ·makeI + 5 ·makeH ≤ 10000

In case B we said ‘Each tonne of chemical C1 uses 50 grams of a rare catalyst and 1 kg of a certain fine
chemical, whereas each tonne of chemical C2 requires 130 grams of the catalyst and 1.5 kg of the fine
chemical. I can only afford to buy 10 kilograms of catalyst per month and I can only acquire 200 kg of the
fine chemical each month.’ So we have two products and two resources.

Table 2.3: Resource use

Catalyst Fine Chemical

C1 50 1.0

C2 130 1.5

We measure the catalyst in grams, and the fine chemical in kg. Defining decision variable make1 and
make2 to be the number of tonnes of the two chemicals (C1 and C2) we plan to make, and using an
argument similar to the one in case A), we get two constraints, one for the catalyst and one for the fine
chemical.

50 ·make1 + 130 ·make2 ≤ 1000 (catalyst)

1. 0 ·make1 + 1. 5 ·make2 ≤ 200 (fine chemical)

We have been careful to keep the units of measurement consistent.

In general, we have one constraint for each resource, relating the amount we are planning to use to the
amount available.

Case C is now hardly challenging. ‘If I do one unit of activity i it takes up COSTi of my disposable income.
My disposable income next week is $150.’ The decision variables are doacti, the amount of activity i that
I plan to do. Making the linearity assumption that if I do doacti units of activity i it costs me COSTi ·
doacti, my total planned expenditure is

∑
i COSTi · doacti and this can be no more than the money I have

(assuming credit is not an option for me!). Then the constraint is
∑

i

COSTi · doacti ≤ 150

2.4 Material balance constraints

Many systems have constraints which can be expressed in words as ‘what goes out must in total equal
what comes in’. In other words, there can be no loss of mass when some particular process takes place. If
the process is some sort of material flow and the thing that is flowing is incompressible, then sometimes
the constraint is expressed in terms of conservation of volume.

Pictorially if we have a process with inflow variables flowini where i ranges from 1 to NIN and outflows
flowoutj where j ranges from 1 to NOUT , and an inflow L from the outside world, we might have
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Figure 2.1: Material flow balance in a node

If the flow variables are measured in terms of mass or weight then we will have

L +
MIN∑

i=1

flowini =
NOUT∑

j=1

flowoutj

A particular form of material balance constraint occurs when we are accounting for the flow of materials
between time periods in a multi-time period model, that is, a model where we represent time as a
series of intervals, not concerning ourselves with the details of when during an interval events happen.
Suppose that we have a simple factory that only makes one product and that we are trying to decide the
manufacturing levels (maket) for the next NT periods, i.e. t ranges from 1 to NT . Another set of decision
variables are sellt, the amount of the product that we decide to sell in time period t. If we have the
possibility of storing product from one time period to the next time period we can introduce a further
set of decision variables storet which are the amounts of product to have in stock (inventory) at the end
of time period t.

Let us consider the material balance in time period t. In words we can say ‘the stock at the end of time
period t is equal to the stock at the beginning of time period t, plus what we make, minus what we sell.’

We are faced with a slight problem now — we do not know the decision variable for the stock at the
beginning of time period t but we can see that, assuming there is no loss of stock, the stock at the
beginning of time period t is the same at the end of time period t -1. So in different words, the previous
statement can be phrased as ‘the stock at the end of time period t is equal to the stock at the end of time
period t − 1, plus what we make in period t, minus what we sell in period t’. In algebraic form this can
be written

stockt = stockt−1 + maket − sellt

This is deceptively simple but it contains one flaw: there is no time period preceding time period 1, so
there is no stock0 variable. We need a special constraint that relates to time period 1 only, and says in
words ‘the stock at the end of time period 1 is equal to the opening inventory SINIT , plus what we make
in time period 1, minus what we sell in time period 1’, or in algebra

stock1 = SINIT + make1 − sell1

Other material balance constraints arise when we are talking about raw materials that we buy in from
an outside supplier and use in our production process. A word description might be, ‘for a particular raw
material, the stock of the raw material at the end of time period t is equal to the stock at the end of
time period t − 1, plus the amount of the raw material that we buy in time period t, minus the amount
of raw material that we use in making the products during time period t’. Then considering one raw
material we might have decision variables rbuyt, rstockt and ruset, so the constraints for all but the first
time period are

rstockt = rstockt−1 + rbuyt − ruset

We have to remember again that there is a special constraint for time period 1 as we already know the
opening stock level in that period: it is what we have in stock right now.

It is also likely that the ruset variables will be related to the decision variables in another part of the model
which represent how much product we are going to make. If we have products indexed by p = 1, . . . , NP
with technological coefficients REQpr, the number of units of raw material r required by 1 unit of product
p, and decision variables makept denoting the amount of product p that we make in time period t, we
can immediately write down an expression for the amount of raw material we use in time period t (ruset)
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as

ruset =
NP∑

p=1

REQpr ·makept

(see Section 2.3 ‘Simple resource constraints’ above for an explanation of this).

Since we have just written down an equation for ruset we might consider substituting for it in the con-
straint in which it occurs. This would generally not be a particularly good thing to do, but not particularly
bad either. It would reduce the number of variables a little but we are probably going to have to use
these variables somewhere else in the model anyway and so the substitution would have to take place ev-
erywhere the ruset variables appeared in the model. The model would certainly be less comprehensible,
and consequently harder to maintain.

A new form of material balance equations of the multi-period type occurs where we have fixed demands
for our product or products in the NT time periods. In other words, the selling decision variables (sellt in
the example above) are fixed. We have the choice of expressing this as a set of simple equality constraints
with sellt variables e.g.

sellt = MUSTSELLt

or by substituting the sellt variables by MUSTSELLt everywhere they occur. This time the decision as to
whether to substitute for the sellt variables is probably a matter of choice — some modelers will eliminate
variables while others might put in the simple equality constraint arguing that the sellt variables will
probably at some stage in the future be of interest in themselves.

2.5 Quality requirements

Here are some word statements

A) ‘I cannot have more than 0.02% of sulphur in this gasoline.’

B) ‘There must be at least 3% of protein in this dried apricot mixture.’

C) ‘This foodstuff must have no less than 5% fat but no more than 10%.’

These sorts of quality requirements frequently occur when we are blending together various raw ma-
terials with differing properties to create a final product. Typically each of the raw materials will come
with a set of properties, for instance in foodstuffs it might be the fat content or the percentage of car-
bohydrates; in the petrochemical industry it might be sulphur content or the octane number. For some
characteristics of the final product we require that quality specifications are adhered to. For ‘bad’ things
these are usually expressed as a maximum percentages; for desirable properties they will be expressed as
a minimum percentage and other properties may have to lie between specified lower and upper bounds
(perhaps so that the product has stability or other characteristics that we desire). An extreme form of
the latter case is where we have to have an exact percentage of a particular characteristic in the final
product.

Consider a number NR of raw materials and just one characteristic that we are concerned about in the
final product. Suppose that one unit of raw material r contains CONTr units of the characteristic (for
instance CONT3 might be 0.1 if raw material number 3 is 10% fat and the characteristic we are considering
is fat). As usual with LP we assume that we know the CONT data precisely.

In many manufacturing processes it is reasonable to assume that the characteristic in the resulting end
product comes from blending the raw materials linearly. For example if we blend together one kg of a
gasoline with 0.01% sulphur and 1 kg of gasoline with 0.03% sulphur, then we will get 2 kg of the mixture
with 0.02% sulphur. Whether this assumption of linearity is correct very much depends upon the physics
or chemistry of the blending process and in some industries it certainly does not hold. However, making
the assumption of linearity, we can see that the proportion of the characteristic in the final product is
given by

p = proportion =
total mass of constituents

total mass of blend

If the decision variables are ruser for the amount of raw material r to use, then we have

p =

∑NR
r=1 Cr · ruser∑NR

r=1 ruser

and we can apply the desired inequality (or equality) to this proportion. For instance, p ≤ 0. 1 (i.e. 10%)
becomes ∑NR

r=1 Cr · ruser∑NR
r=1 ruser

≤ 0. 1
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At first sight this does not seem like a linear inequality and indeed it is not as it is a constraint applying
to the ratio of two linear expressions. However, by cross multiplying we can get the constraint into the
form

NR∑

r=1

Cr · ruser ≤ 0. 1
NR∑

r=1

ruser

Note: we have to be careful when multiplying inequalities. The direction of the inequality is preserved
if we multiply by a non-negative amount, but is reversed if we multiply by a negative amount. Here, we
are multiplying both sides of the inequality by the sum of a set of non-negative variables, so the direction
of the inequality is maintained.

If we collect together two terms for each decision variable ruser we get the linear inequality

NR∑

r=1

(Cr − 0. 1) · ruser ≤ 0

2.6 Accounting constraints, non-constraining ‘constraints’

A typical way of building up a model is to construct it in quasi-independent pieces. So, for instance, we
might have a constraint expressed as ‘the total cost of operating region 1 plus the cost of operating region
2,... plus the cost of operating region 16 must be less than $10M’, and then later on in the model we
have 16 different equations which capture the cost of operating each of the regions. If we had decision
variables totalcost and rcosti this would be expressed as

totalcost =
16∑

i=1

rcosti

where rcosti = some_expressioni for i = 1 to 16.

Obviously it is possible to eliminate the rcosti variables (the cost of operating region i) by substituting
some_expressioni into the equation defining totalcost but it is very likely that we will want the costs of
operating different regions to appear in some report, so we might as well let the LP system calculate the
values of these variables for us. We call the rcosti variables accounting variables and the constraints that
define them accounting constraints.

Whether you choose to use the LP system to do the accounting for you, or do them afterwards when
producing reports, is a matter of taste. In the past, when LP systems were limited and one had to squeeze
the problem into as few constraints as possible, it was obviously a good idea to eliminate accounting
variables and then to calculate their values from the optimum values of the variables contributing to
them. Now, where a few hundred extra constraints are of no consequence it is better to leave accounting
variables and constraints in the model.

There is however one subtlety that we must be aware of: it is possible that an accounting variable does
not necessarily have to be non-negative. Suppose we had variables revenuei and expenditurei which were
the revenue and expenditure of plant i. If we were to define accounting variables profiti and accounting
constraints

profiti = revenuei − expendi

to pick up the values of the profiti variables then we must remember that it is possible for a plant to
have negative profitability and so the profiti variables must be declared as free variables (unless for some
reason we have to run each plant in a profitable mode).

Forgetting that decision variables are by default non-negative is a common cause of error with account-
ing variables. However, if one just wants the LP system to do accounting for you, it is possible to add
extra unconstrained linear expressions to a model, letting the LP system work out the value of the linear
expression for you. It used to be the case that adding lots of these expressions could slow down the
LP solution process, but modern solvers recognize such constraints and discard them during the solution
process, only reinstating them when the rest of the LP has been solved.

2.7 Blending constraints

A very common use of LP modeling is to deal with the situation where we have a set of inputs each with
certain percentages of different characteristics and we want to blend these inputs together to get a final
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product with certain desired characteristics. Blending typically falls into one of two major categories:
either we use fixed recipes where the proportion of different inputs is determined in advance (rather like
the recipes you see in cookery books which specify the exact weights of the constitutes required to make
a certain weight of cake) or we have variable recipes where it is up to us to decide, perhaps within limits,
the proportions of the inputs that we are going to blend together.

An example of a variable recipe might be in the manufacture of animal feed stuffs which can be made
from a wide variety of different raw materials, not necessarily always mixed in the same proportions. An
interesting example of recipes which pretend to be fixed but in fact are variable are those found in books
that tell you how to mix cocktails. They usually pretend that the proportions of gin, tequila, vermouth
etc are fixed, but of course anyone who has been in the position of having restricted stocks of any of
these raw materials knows that within limits the recipes are very variable.

Suppose we have 3 raw materials and the constraint in words is ‘the ratios of raw material 1, raw material
2 and raw material 3 are 6:3:1’. If we have decision variables raw1, raw2 and raw3 representing the weight
of the materials in the blend, then the total weight in the blend is raw1 + raw2 + raw3 and we have the
constraints

raw1

raw1 + raw2 + raw3
=

6
10

raw2

raw1 + raw2 + raw3
=

3
10

raw3

raw1 + raw2 + raw3
=

1
10

These are ratio constraints, not linear equations, but as before we can convert them into linear equations
by cross multiplying to get

(1− 0. 6) · raw1 = 0. 6 · raw2 + 0. 6 · raw3, i. e.

0. 4 · raw1 = 0. 6 · raw2 + 0. 6 · raw3

The cross multiplication preserves the direction of the inequality since the denominator is always non-
negative.

Similarly we get

0. 7 · raw2 = 0. 3 · raw1 + 0. 3 · raw3, and

0. 9 · raw3 = 0. 1 · raw1 + 0. 1 · raw2

One of these equations is redundant as it is implied by the other two but it does no harm to put all three
equations into the model. In fact it is probably a good idea to put all three equations down as inevitably
at some time in the future we will have a fourth raw material and if we try to be too clever in eliminating
redundant constraints we will forget that we have omitted a previously redundant equation, and make
a mistake that will be hard to detect.

2.8 Modes

A generalization of blending constraints is where we have M inputs and N outputs which must be in strict
proportions. As an example, this might be expressed as ‘My 3 inputs have to be used in the ratio of 2 :
1.6 : 2.2 and they produce outputs of 1.6 of output 1 and 1.7 of output 2’. So, for example we might put
in 1 kg of input 1, 0.8 kg of input 2, and 1.1 kg of input 3, and get out 0.8 kg of output 1 and 0.85 kg of
output 2.

It is easy to see that if we have just one output then this is a simple fixed ratio blending example.

Such M-input/N-output constraints often arise where we have a plant that we can operate in different
ways (modes), and the ratios differ for different modes. At any point in time, the plant can only be in
one mode.

Consider a very simple example, where we have 3 inputs, 2 outputs and 3 possible operating modes. We
present the operating characteristics in the tables below, where we have defined a unit of a mode as 1
hour i.e. we have shown the kg of each input used, and output produced, by the plant.

The decision variables are the number of hours the plant spends in each mode m, say usemodem. Then
the usage of Input 1, for instance, is 20 · usemode1 + 22 · usemode2 + 24 · usemode3 and the production of
output 2 is 17 · usemode1 + 20 · usemode2 + 24 · usemode3.
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Table 2.4: Fixed ratio blending example

Quantities used/produced
Mode 1 Mode 2 Mode 3

Input 1 20 22 24

Input 2 16 14 13

Input 3 22 21 18

Output 1 16 15 14

Output 2 17 20 24

In any given planning period we will also have a constraint on the total number of hours the plant spends
in all the modes. For instance, if we are doing a weekly plan (168 hours), then we will have the constraint
that

usemode1 + usemode2 + usemode3 ≤ 168

We are assuming that we can work at most 168 hours in the week, and that we do not lose any time
changing from one mode to another. The latter assumption may be totally unrealistic for some plants,
and if we cannot assume that change-over times are negligible then we have to use an Integer Program-
ming formulation.

2.9 Soft constraints and ‘panic variables’

The constraint that we have just modeled, that we can run a plant for at most 168 hours, is an example
of a hard constraint. It is impossible to get more than 168 hours into a week. Other examples of hard
constraints are ones that relate to physical, chemical or engineering properties, such as a boiler’s capacity,
or a reaction rate. Other hard constraints come from accounting or definitional constraints (for instance,
profit = revenue-cost is a hard constraint, as it is just a definition really).

But there are other, more ‘economic’ constraints where in reality if we have to violate a constraint we
can do so at a cost. If there is a scarce resource, the economic environment invariably sets up a market in
that resource, and we can go to the market if we really do need to acquire more of that resource. (This
is somewhat of a generalization as a particular resource may actually be so specific to us that we are the
only people who can make it to the standards or in the locality or to the timescale we require.)

Consider again the statement of case B of Section 2.3 ‘Simple resource constraints’ above: We said ‘Each
tonne of chemical C1 uses 50 grams of a rare catalyst and 1 kg of a certain fine chemical, whereas each
tonne of chemical C2 requires 130 grams of the catalyst and 1.5 kg of the fine chemical. I can only afford
to buy 10 kilograms of catalyst per month and I can only acquire 200 kg of the fine chemical each month.’
The key part of this phrasing is the last sentence, where we say we can only afford so much of the catalyst,
and we can only acquire 200 kg of the fine chemical. We expressed the fine chemical constraint as

1. 0 ·make1 + 1. 5 ·make2 ≤ 200 (fine chemical)

i.e. as a hard constraint. But suppose that if we were willing to pay P per kg we could get more of the
fine chemical. Then we could introduce an extra decision variable buyFC to represent the number of
kg of fine chemical we bought at this price. If we were building a profit maximizing LP then we would
have to add a term −P · buyFC to the objective function, accounting for the money we pay for the fine
chemical, but now the constraint becomes

1. 0 ·make1 + 1. 5 ·make2 ≤ 200 + buyFC (fine chemical, with buy-in)

We now have a soft constraint, i.e. we can violate the original constraint but at a penalty to our objective
function. The buyFC variable can be considered a panic variable: it is a variable which is there in case we
cannot manage with our normal resources and have to resort to the market to satisfy our needs.

The way we have introduced panic variables is not the way they are most commonly used in modeling.
We have mentioned before that getting an infeasible solution to an LP is very difficult to diagnose, and
good modelers have learned the art of what we might call ‘defensive modeling’. One of the worst things
that can happen to a model when it has been deployed to end-users is that it gives an infeasible solution
message to the poor end-user, who then does not know what to do. Defensive modelers try to avoid
this by adding panic variables to constraints that might possibly be violated, at the same time trying to
get estimates of how much it will realistically cost to violate the constraint. Often the end-user can help
in this, as they will know what can be done to get extra resources — for instance, if it is a question of
shutting down the plant or renting a plane to fly in the scarce resource, you may well decide to rent the
plane.
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Panic variables do not just apply to resource availability constraints; they can also be added to demand
constraints. For instance, we might have a constraint that a particular customer C has to have a total
supply from our depots of 100 tonnes, modeled as

∑

d∈DEPOTS

flowdC ≥ 100

If, however, it is just not possible to supply him then we may undersupply. There may be a contractual
cost to doing this, in which case we know what the direct cost will be, or we might have some measure
of the cost in terms of loss of goodwill (admittedly these costs are hard to estimate, and can be very
subjective).

If a panic variable is non-zero in an optimal solution, then we can infer one of two things: either we have
put in too low a penalty cost, or we are truly being forced to use the panic variable to achieve feasibility.
Rerunning the model with higher penalty costs will enable us to distinguish these cases. But in either case
we have an implementable solution, and we are not left with an end-user staring at a computer screen
wondering what on earth to do.

2.10 Objective functions

An objective function is not a constraint, but since it consists of a linear expression usually involving lots
of variables its construction has many similarities to the process of building constraints. In fact, now we
have so extensively covered modeling constraints there is little new to say about modeling an objective
function.

The objective is usually cost (when we minimize) or profit (when we maximize). Most LP systems minimize
by default and the industry MPS standard for presenting an LP problem to an optimizer does not specify
whether the objective is to be minimized or maximized, so everyone has at one time or another selected
the wrong sense for optimization, and come up with a silly answer. One feels foolish, but it is usually
obvious that a mistake has been made.

Problems do exist where there is no objective function, and the LP optimizer is being used just to obtain
a feasible solution, or to answer the question in a design study as to whether the constraints are too
restrictive. But such problems are rare.

2.10.1 Minimax objective functions

Two apparently non-linear objective functions can be converted into LP forms by tricks. The first is where
we wish to:

minimize max(t1, t2, t3, . . . , tN)

i.e. minimize the maximum of a set of decision variables. We can model this by introducing a new
decision variable, say s, and then

minimize s

subject to s ≥ t1

s ≥ t2

s ≥ t3

. . .

s ≥ tN

You can see that s has to be no less than each of the t’s, and the minimization objective will force it down
to take the value of the largest t. Unfortunately, the same trick cannot be applied where we want to
minimize min(t1, t2, t3, . . . , tN) or maximize max(t1, t2, t3, . . . , tN).

2.10.2 Ratio objective functions

The second trick enables us to deal with a ratio objective function of the form

minimize Obj =

∑
j Nj · xj∑
j Dj · xj

subject to LP constraints
∑

j

Aij · xj ∼ Ri
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where ∼ is one of ≤, ≥ or =.

Define new variables d = 1∑
j
Dj·xj

and yj = xj · d (i.e. xj = yj / d). Then the objective becomes

Obj = d ·∑j Nj · xj

=
∑

j Nj · d · xj

=
∑

j Nj · yj

The definition of d can be linearized by cross multiplying:

1 =
∑

j

Dj · d · xj =
∑

j

Dj · yj

and into the normal LP constraints we can substitute for xj thus:
∑

j

Aij · xj ∼ Ri

or (multiplied by d)
d ·

∑

j

Aij · xj ∼ d · Ri

or ∑

j

Aij · d · xj ∼ d · Ri

i.e. or ∑

j

Aij · yj ∼ d · Ri

The resulting LP has variables d and yj. When it has been solved, the optimal values of the original xj

variables can be recovered from the definition xj = yj / d.

Note that we are in trouble if variable d can become 0. We also have to taken care if d is always negative,
as the signs of the inequalities must be reversed when we multiply by d above.
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