
Java Programming :
applets, servlets and JSP.

SR03
Dritan Nace

A summary of Java
Java is a language developed by Sun, which is designed to be object

oriented and Simple, robust and secure, independent of hardware
architectures and Multitasking.

Object oriented and simple : Simpler than C++, transparent memory
managment…

Robust et secure : Data typing is extremely strict. For applets, it is in principle
impossible to access the resources of the host machine.

Independant of hardware architectures : The compiler generates a universal
code : the « byte-code ». An interpreter which is specific to the host machine,
« virtual machine », executes the programs.

Multitasking : Java seemingly allows execution of several processes. In reality,
a time slot is given to each process on the processor (Multithreaded).

J2SE versus J2EE

J2SE (standard edition) contains the basic usable
components from both the client and server side,
– GUI, AWT/Swing for applications (client) or applets.

Currently J2SE v1.6 (ou V6)

J2EE (enterprise edition), is in a certain sense an extension
of SE, designed for server side programming
– Servlets, JSP, EJB, etc.

• Currently J2EE v1.4

Java and object oriented
programming

• Classes, and objects
– The objects include data and processing for the data.

Communication is done via messages (methods).
– A class corresponds to an abstract model for object construction. A

class is made up of:
• attributes (static part)
• Methods (dynamic part), which define the behaviour.

– Inheritance : the « is a » relationship : a car is a vehicule,
– Polymorphism : the same message can be recognised by several

objects and entail different behaviour.

Portability: JVM
The compiler compiles the java source in byte code : javac car.java => car.class
Then, java is the name of the program which will interpret the generated byte code.

Event managment via design
patterns

• The management of events (mouse click, pressing a button, etc ...) is done
using the Observer Pattern principle (or listener).

• Certain objects (source) can generate events.
• Any object which would like to be warned when an event of a source

happens must implement an interface and methods for the processing
<Type event>Listener and subscribe to this source using the source object’s
methods.
– The subscription/retraction is achieved using add/remove<Type

event>Listener()

• It then becomes a target (the source). When a source generates an event,
concretely it will simply browse the list of subscribers and call one of the
methods mentioned above.

Java and packages
• Packages

– java.lang
– java.util
– java.io
– java.math
– java.net
– java.security
– java.sql
– java.awt
– javax.swing
– java.applet

classpath: specifies to the virtual machine the location from which the resources (bytecode
and others) should be taken.

– The directory /project/classes
– The archive /project/lib/archive.jar

import : command used for importing remote packages or classes…

Applets
• An applet is a special Java application that will run in an HTML

document viewed by a browser.
– Goal : transmit executable code to the client.

• The Applet class is a sub-class of the Panel class (from the
java.awt package). (An applet is a graphic component container.)

• An applet will be able to respond to mouse and keyboard events and
use graphic components like buttons, checkboxes etc..

• An applet runs in a specific JVM, the JVM of a web browser.

Applet specifics

An applet has special caracteristics compared with an
independant application :
• Limited access to the network : An applet can only

communicate with the machine from which it comes.

• Limited access to the file system : An applet which is loaded
into a browser from the network has no access to the local file
system.

• Limited access to native methods.

The java.applet package
The java.applet package:

allows programmers to integrate java applications (applets) into Web
documents.

This package contains:
The Applet class
The following interfaces : AppletContext, AppletStub et
AudioClip.

The Applet class is derived from the java.awt.Panel class.
Object

|
+----- Component { paint(); resize(); … }

|
+----- Container

|
+----- Panel

|
+--- Applet

Creating an applet

In order to create an applet, a class which inherits from the Applet
class must be defined, and certain methods must be redefined.

It has four special methods, which are :
public void init()
public void start()
public void stop()
public void destroy()

It also inherits from the public void paint(Graphics g) methods
declared in the Component class

The init() method
public void init()
The init() method, called by the browser, enables the initialisation of the applet,

(the constructor will be called before this method).

This method is executed one time only at the startup of the applet.

It allows:
• parameter fetching
• instantiation of objects which are parameter-dependant
• the initialisation of parameter-dependat values
• police loading or loading images which are paramter dependant

Methods
public void start()
The start() method is executed :
• just after the init() method
• every time the browser comes back to the HTML page which contains the applet.

public void stop()
The stop() method is executed each time the user leaves the web page which contains the

applet or whenever the page is no longer visible.

public void destroy()
The destroy() method is called at the end of the applet, so when the user leaves the

window or the web page browser.

public void paint(Graphics g)
The paint() method is obtained by inheritance, and is declared in the Component class
The paint() method is called each time the window manager has to draw the content of the

applet.

Other methods

Other methods allow obtaining of information about the applet which is running.

• public String getParameter(String name)
Recovers the parameters passed to the HTML document.

• public AppletContext getAppletContext()
Recovers the display context of the current applet.
It is generally a browser (Netscape etc.) or the appletviewer.

• public URL getDocumentBase()
Returns the URL of the HTML document which includes the applet.

• public Image getImage(URL url)
Loads an image which can be used afterwards. url is an absolute URL.

Parameter passing

Only one default constructor can be defined in an applet.

The browser would be unable to know which parameter to pass to
another contructor.

On the other hand, it is possible to pass parameters to an applet
designed for :

• instantiation of objects
• initialisation of values
• police or image loading

The <APPLET> tag
The <applet> tag enables the integration of a space for the executtion of a Java

application in an HTML document.

<APPLET
CODE="AClassName"
HEIGHT= anInteger
WIDTH= anotherInteger
>
<PARAM
NAME="firstParameter"
VALUE="valueOfFirstParameter"
>
<PARAM
NAME= "secondParameter"
VALUE="valueOfSecondParameter"
>
…
</APPLET>

The HTML file has the ability to pass parameters to an applet (the PARAM tag).
The recovery of these parameters is done in the source of the applet using the following method
String getParameter(String name) of theApplet class.

Structure of an applet
import java.applet.*;
import java.awt.*;
public class <AppletName> extends Applet {
public void init() {

<Initialisations>
<Start of the processes>
}

public void start() {
<Start the applet, the Web page is visited or becomes visible again>
}

public void paint(Graphics g) {
<Draw the current content of the applet>
}

public void stop() {
<Stop the applet, the web page is no longer visible or the user leaves the navigator>
}

public void destroy() {
<Release the resources, the applet will leave the memory>
}

}

Life cycle of an applet : init() (start() paint() stop()) destroy()

Example of a simple applet
import java.applet.*;
import java.awt.*;

public class HelloSR03 extends Applet
{
String text;
public void init()
{
texte = getParameter("text");
}

public void paint(Graphics g)
{
g.drawString(texte, 30, 30);
}

}

In order to execute, use :
• either the browser by opening the HTML file
• or the appletviewer

A minimal HTML page which holds an appletA minimal HTML page which holds an applet

<HTML> <HTML>
<body> <body>
<APPLET code="HelloSR03.class" width="500" <APPLET code="HelloSR03.class" width="500"
height="200">height="200">
<param name="text" value=<param name="text" value= "Hello SR03 !"> "Hello SR03 !">
</applet> </applet>
</BODY> </BODY>
</HTML></HTML>

Loading a JAR (Java Archive) file

• This file format de fichier allows the fusion of several files which are
used by an applet (".class", sounds and images) into one file in the
JAR format which will be loaded with a singe request by the HTTP
protocol.
– Creation : jar cfv file.jar file_1 … file_n
– Appel :

<applet
code = "file.class"
archive="file.jar"
width= "200" height= "200" >
</applet>

Servlets and JSP

SERVLETS
• Servlets are alternative to the Java technology for programming CGI.

• What do they do?
– Read data sent by the user. They are generally from a form on a Web page, an

applet or any HTTP client program.
– Acquire additional information about the request: Browser identification, type of

method used, values of cookies, etc..
– Generate results. This usually involves access to a business layer service.
– Format the output into a document. In most cases the results are integrated into

an HTML page..
– Defining the parameters of the appropriate HTTP response. The type of

document returned must be sent to the browser, cookies have to be set, a
session must be established.

– Return the document to the client. The format can be text (HTML), a binary
format (image, for example), a zip etc.

SERVLETS : how do they work?
An application server can load and run servlets in a JVM. This is an extension of the web

server. The application server contains, among other things, a servlet that manages
the servlets it contains.

In order to exectue a servlet, a URL which corresponds to the server must be put into the
browser.

• The server receives the http request which needs a servlet from the browser

• If this is the first request of the servlet, the server instantiates. Servlets are stored (as
a .Class file) in a particular directory on the server and remains in memory until the
server shuts down.

• The server creates an object that represents the HTTP request and an object that
contains the response, and sends them to the servlet.

• The servlet creates the response dynamically in the form of an html page transmitted
via a stream in the object containing the response. The creation of this response uses
the client's request, but also a set of resources on the server such as files or
databases.

• The server takes the response object and sends the html page to the client.

Environment

• The standard Edition J2SE v1.6 (or V6)
• The Entreprise Edition J2EE v1.4 which contains,

amongst other things, the classes for servlet, with the
2.4 specification

• A servlet server (Tomcat) for Apache
(http://www.apache.org) v5.x

Structure of theTomcat directory:
/bin/bin
/classes/classes
/common/common
/classes/classes

/lib/lib
/conf/conf Configuration filesConfiguration files
/lib/lib
/logs/logs
/server/server
/classes/classes

/lib/lib
/webapps/webapps Contains a directory for every web applicationContains a directory for every web application
/examples/examples Tomcat example applicationTomcat example application
/manager/manager
/ROOT/ROOT Serves as a model. Do not modifyServes as a model. Do not modify
/tomcat/tomcat--docsdocs
/webdav/webdav
/work/work
//localhostlocalhost Contains a directory for each web application in which Tomcat Contains a directory for each web application in which Tomcat
generates the servlets which come from JSPs (very useful for debgenerates the servlets which come from JSPs (very useful for debugging)ugging)

Structure of the Tomcat directory,
continued

/webapps/webapps
/images/images for .gif and other .jpegfor .gif and other .jpeg
/WEB/WEB--INFINF

/classes/classes for the .classfor the .class
/lib/lib for the .jarfor the .jar
web.xmlweb.xml the deployment filethe deployment file

/special directories/special directories
HTML and JSP directoriesHTML and JSP directories

Deployment descriptor

A deployment descriptor is an XML file containing information about the
WebApp which is necessary to the web server. The standard name is
web.xml. In Tomcat, it should be placed in Webapps \ WEB-INF and is read
at the startup of Tomcat.

In it, the following elements can be defined:In it, the following elements can be defined:
Context parameters Context parameters
Servlet identifiers (Servlet identifiers (<servlet<servlet--name>)name>). .
Parameter definitions (Parameter definitions (<param<param--name>name>) associated with servlet) associated with servlet
identifiers.identifiers.
Mappings between servelt identifiers and url (<Mappings between servelt identifiers and url (<servletservlet--mappingmapping> and > and
<<urlurl--patternpattern>).>).

An example of a Deployment
descriptor

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app

PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_4.dtd">

<web-app>
<!--======================================= -->
<!– Definition of WEB parameters-->
<!-- Valid for all servlets -->
<context-param>

<param-name>UV</param-name>
<param-value>SR03</param-value>

</context-param>
<context-param>

<param-name>Course</param-name>
<param-value>Servlet and Jsp</param-value>

</context-param>
<!--================================== ->

<!--====================================== -->
<!-- Definition pour Exemple 1 -->
<servlet>

<servlet-name>Hello</servlet-name>
<description>This is the first example</description>
<servlet-class>Hello</servlet-class>

<servlet-mapping>
<servlet-name>Hello</servlet-name>
<url-pattern>/servlet/Hello</url-pattern>

</servlet-mapping>
<init-param>
<param-name … </param-name>
<param-value> …</param-value>
</init-param>
</servlet>
<!– Definition for example 2 -->
<servlet>
…

Calling a servlet from a browser

• With its url mapping, class name or identifier
– Preferably, use the url-pattern :

http://serveur:port/servlet/Hello
(By default Tomcat receives on the 8080 port)

• Calling a servlet from an html page

– On a <a > tag…
– On a <form> tag…

Servlets :
classes and interfaces

Class javax.servlet.http.HttpServlet

Provides an abstract class to derive for implementing
servlets by method redefinition. (It implements the
http protocol)

interface javax.servlet.ServletConfig

Used by the servlet container for passing
information to the servlet during its initialisation

interface javax.servlet.Servlet

Defines all the methods which a servlet
has to immplement.
It is a servlet with no specified protocol

Class javax.servlet.GenericServlet

Defines a servlet (server extension) which is
independant of protocols.

javax.servlet package
javax.servlet package
Class
interface

Contains the classes and interfaces which define the servlets
generically. In other words, with no imposed protocol.

GenericServlet Defines a generic servlet, which is protocol-independant.

RequestDispatcher Defines an object which receives requests from a client and
return them to any resource (Servlet, JSP or HTML) on the
server. This is a redirection of the server.

Servlet Defines the methods which all the servlets must implement. It defines
thus the servlet’s lifecycle.

ServletConfig An object used by a servlet container for passing information
(parameterisation) to a servlet during its initialisation.

ServletContext Defines a set of methods used by a servlet to interact with its
container. A ServletContext represents an area common to
all servlets and JSPs of a Web application.

ServletException Defines the general exception which can trigger a servlet when
problems arise.

ServletRequest Defines an object for providing information concerning the client’s
requests to the servlet

ServletResponse Defines an object which assists the servlet in its response to the client.

javax.servlet.http package

Package javax.servlet.http
Class
interface

Contains the classes and interfaces which define the servlets
which support the HTTP protocol.

Cookie Generates cookies.
HttpServlet Provides an abstract class to derive, for creating an http

servlet.
HttpServletRequest Derived from ServletRequest to provide the information

for the HTTP servlet.
HttpServletResponse Derivde fro ServletResponse to provide the specific HTTP

functionalities when sending a response.
HttpSession Provides the means to identify a user, a request from one

page to the next and to store information about this
user.

…

Lifecyle of a servlet

Doesn’t
exist

Exists

service(req,resp)
doPost(req,resp)
doGet(req,resp)
doPut(req,resp)
doDelete(req,resp)

1 Constructeur
2 init (ServletConfig)

Processing of the http
message

Les methods (I)

The init method
• The Init (ServletConfig) method is called once after the creation of

the servlet. (somewhat equivalent to the init method of the Applet
class). The parameters set in the servlet web.xml in ServletConfig.
can be recovered here

The service method
• Whenever the server receives a request for a servlet it creates a

thread and it calls the service method. This method checks the type
of the HTTP request (GET, POST, PUT, etc. ...) and calls the
corresponding method (doGet, doPost, doPut, etc..)

Methods (II)

The doGet, doPost et doXxx methods...

• These are the methods which will need to be redefined,
with respect to the request to process. They have the
following form :

Public void doXxx (Httpservletrequest request, HttpServletResponse
response) {

//Fetch the client requests on request…
//give the headers if necessary…
//fetch a response stream (reponse.getWriter())
//write the response (creation of the html document html for example)
…
}

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class Hello extends HttpServlet {
private static final String CONTENT_TYPE = "text/html";

//===
/**Initialise global variables*/
public void init() throws ServletException {
}
//===
/**Process the HTTP request Get*/
public void doGet(HttpServletRequest request,HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriter();
out.println("<p>The servlet Hello received a "+

+"GET. </p>");
out.println("<h1>Hello. Hello.class. says hello</h1>");
}
//===
/**Process the HTTP request Post*/
public void doPost(HttpServletRequest request,HttpServletResponse response)

throws ServletException, IOException {

response.setContentType(CONTENT_TYPE);
PrintWriter out = response.getWriter();
out.println("<p>The servlet Hello received a"+

"POST.</p>");
out.println("<h1>Hello. Hello.class. says hello</h1>");
}
//===
public void destroy() { }
}

An example

Fetching headers of the http resquest

Processing by doPost(HttpServletRequest req , HttpServletResponse rep)
{
String lastName;
String firstName;
int dateofBirth;
char gender;
...

lastname= req.getParameter ("lastName");
firstname = req.getParameter ("firstName");
dateofBirth= Integer.parseInt(req.getParameter("dateofBirth");
gender = req.getParameter("gender").charAt(0);

...
}

Cookie managment

Insertion of cookies into response headers.

Interface HttpServletResponse

addCookie (cookie) Adds a cookie to the response.

Recovery of client cookies.Recovery of client cookies.

HttpServletRequest Interface

Cookie [] getCookies () Fetches a table containing all the cookies sent by the client

Session management

• Servlets offer a solution using the HttpSession API. This interface is
located above the cookies and URL rewriting.

• Every input request is associated to an active session created by the client
(the browser).

• The sesssion is destroyed if there are no more requests within 30 minutes
(default value in tomcat).

Interface HttpServletRequest

HttpSession getSession (boolean create)
HttpSession getSession ()

Interface HttpSession

Object getAttribute (String name)
Enumeration getAttributeNames ()

Redirection on the server

To redirect to a login page or pass on the construction of the response, the
servlet uses forward.

The servlet uses include when it needs a servlet to insert its answer inside
its own.

Essential differences:
– Forward

• Separate processing of the client's request (made on the caller servlet) from the
generation of the response (done on the called servlet).

– getServletContext().getRequestDispatcher(urlCible).forward(req,resp);
(urlCible, eg. a JSP page, provides the response)

• Share out the processing of the request on several servlets.
– Include

• Share out the generation of the response on several several.

Servlets and databases

• One of the principles of a good architecture is that an application
should be designed in three general layers :

Presentation – Business – Persistence

• Servlets are part of the presentation layer: and therefore have, in
principle, no access to JDBC in Servlets.

• JDBC accesses are processed in the persistence layer.

JSP
• Servlet are very flexible and have many advantages : object, portability,

performance, extensibility, free, etc.

• The fact remains that when creating a direct response html it becomes
extremely tedious. The Java developer does not necessarily want to master
HTML, JavaScript and related tools.

• Similarly, le designer of a HTML page is not necessarily an object specialist.

The MVC pattern(I)
The solution proposed by Sun is to divide the web applications web into 3

parts :

• The processing (the controller) which contains the control part only ,
chaining, etc.. This is a Java servlet which does not contain any HTML code
generation, and is difficult to create "by hand". Its creation is handled by a
Java developer.

• Presentation (a JSP Java Server Pages, which is an HTML extension with
some JSP tags JSP added). It should not contain the business code (in the
form of a "scriptlet"). However, it can call"scriptlets" for formatting. Its
creation is the responsibility of a web developer who traditionally works with
a tool such DreamWeaver.

• Access to data and to the business is done in Beans and/or EJB. Their
creation is the responsibility of a Java developper.

The MVC pattern (II)

Presentation Presentation –– BusinessBusiness –– PersistencePersistence

The MVC pattern (III)
The processing of a request from a client follows these steps :

1. the client makes a request of the controller. It sees all client requests pass. It is the entry
to the application. This is the C of MVC.

2. the C controller processes this request. To do this, it may need help from the business
layer. Once the client request is processed, it can invoke various responses. A classic
example is :
• an error page if the request could not be processed correctly
• a confirmation page otherwise

3. the controller selects the response (= view) to send to the client. Choosing the answer
for the client requires several steps :
• choose the object that will generate the response. This is called the V view. This
choice generally depends on the result of the execution of the action requested by the
user.
• provide the data needed to generate this response. In fact, it usually contains
information calculated by the controller. This information form what is called the M of
the View.

4. The C controller asks the chosen view to display itself. This mostly involves performing
a particular method of the V view which generates the response for the client.

5. The generator of the V view uses the M model prepared by the controller C to initialise
the dynamic parts of the response which he should send to the client.

6. The response is sent to the client. The exact form of the latter depends on the generator
of view. This may be an HTML stream, PDF, Excel, ...

Lifecycle of a JSP
The JSP page is stored at the same location as the html pages.

• The principle components of a JSP framework are :
– A source generator which takes the JSP page as input and transforms it

into a Servlet.
– A java compiler to compile the generated servelet.
– A set of execution support classes.
– Tools for linking between different elements, such as tag libraries.

The generated servlet
In the end, a JSP is converted into a Servlet. All the concepts covered in previous

chapters therefore also apply to JSP

• The generated class derives from javax.servlet.jsp.HttpJspBase.

• The _jspService(HttpServletRequest, HttpServletResponse) method
recovers the HTML code in a string format and writes it in a writer (JspWriter),
as a servlet would do.
It replaces the service and doXXX methods of servlets.

• The inherited methods jspInit () and jspDestroy () can be redefined. They are
called respectively after creating and before deleting the servlet.

The generated servlet

jspDestroy ()

_jspService ()

Initialisation

Request

Response

Destruction

JSP changed into Servlet

jspInit ()

JSP architectures
• A request from the browser is sent to the JSP page. It examines the application

(make checks such as authentication) and sends the response to the client.
• The separation between display and data is respected because JavaBeans address

the content.
• This model is suitable for very simple applications. It is unadvisable because the JSP

should not have a controller role, but only a view role.

dbms
Client

browser
web

Servlet container

JSP

javaBeann

1 request

4 replies

2

3

MVC architecture (Model View Controller)
• The controller is a servlet that examines the HTTP request (authentication, sessions,

...) and instantiates JavaBeans or objects used by the view (presentation). The
controller redirects the request to one of these objects according to the user actions.
There is no generation of HTML code in the controller.

• The model is generally represented by JavaBeans (which also implement the job
layer). They are aware of neither the controller nor the views.

• The view (presentation) is represented by JSPs that generate the user interface in
HTML / XML. There is no job processing in the vue.

dbmsServlet containerClient
browser

web
1 request

6 replies

Servlet
contrôleur

Bean
model

2

JSP
vue

JSP
vue

JSP
view

4 3

5

Different JSP tags
Types Syntax Function

Comment <!-- Html -->
<%-- JSP --%>

Comments which are visible in the generated Html.
Comments which are only visible in the JSP.

Instruction <%@ page ...%>
<%@ include ...%>

Definition of the structure of the JSP page
Inclusion of an html page and/or JSP. This is a copy of the

code.
Declaration <%! attribut java %>

<%! méthode java %>
Attribute declaration for the generated servlet.
Method declaration for the generated servlet.

Scriptlet <% code java ; %> Insertion of java code in the service method of the generated
servlet.

Action <jsp:useBean .../> Instantiation or recovery of Beans for use.

<jsp:include .../> Chaining on the server side to include the response from
another JSP or servlet in the caller JSP.

<jsp:forward .../> Chaining on the server side for additional processing or
generation of the response in another jsp or servlet.

Structure of a JSP page
A JSP page can be separated into several parts :

• Static data such as HTML,
– Static data are written into the HTTP response exactly as they appear in the source file.

• instructions,
– Instructions control the way in which the compiler generates the servlet.

• <%@ page import="java.util.*" %> // import
• <%@ page contentType="text/html" %> // contentType

• scripts and variables,
– page, request, response, session …

• actions,
– JSP actions are tags which call functions on the HTTP server.

• jsp:useBean, jsp:include, jsp:forward

• Personnalised tags.
– JSP tag libraries

• In addition to actions JSP Predefined, custom actions can be added using the JSP Tag
Extension API.

Structure of a JSP page (example)
<%-- This is a comment JSP --%>
<%@page contentType="text/html"%>
<%@page errorPage="error.jsp"%>
<%-- Importing a package --%>
<%@page import="java.util.*"%>
<html>
<head>
<title>Page JSP</title>
</head>
<body>
<%-- Declaration of a global variable of the class --%>
<%! int visitNumber = 0; %>
<%-- Definition of the Java code --%>
<% //Java code can be written here :

Date date = new Date();
visitNumber ++; %>

<h1>JSP page example </h1>
<%-- Printing the variables--%>
<p>At the execution of this script, we are <%= date %>.</p>
<p>This page was displayed <%= nombreVisites %> times!</p>
</body>
</html>

Transformation of a JSP page
JSP -> Servlet -> html

Java Servlet generated by the compiler:
package org.apache.jsp;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import org.apache.jasper.runtime.*;
import java.util.*;
public class example_jsp extends HttpJspBase {
……
}

HTML code generated by the server
<html>
<head>
<title>Page JSP</title>
</head>
<body>
<h1>Exemple de page JSP</h1>
<p>At the execution of this script, we are Mon Apr 13 19:31:28 EST 2009.</p>
<p>This page was displayed 5 times!</p>
</body>
</html>

Implicit objects of the _jspService method
Objetc Description
HttpServletRequest

request
The request passed to _jspService.

HttpServletResponse
response

The response passed to _jspService.

javax.servlet.jsp.PageContext
pageContext

Associated to the servlet. Provides many methods for
managing the servlet.

Range : page
ServletContext

application
Represents the servletContext.
Range : application

HttpSession
session

Represents the current session.
Range : session

ServletConfig
config

Represents the servletConfig
Range : page

JspWriter
out

The output flow
Range: page

Object
page

The page itself. Can be replaced by this
Range : page

Use of javaBeans

• Allow the recovery of objects which display data from servlet.
• <jsp:useBean id="myBean" class="exemples.TheBeans"

scope="session" />
– scope="page|request|session|application"

Recovery of the beans attributes is done with the following action :
<jsp:getProperty name="myBean" property="course" />

Modification of the beans attributes is done with the following action :

<jsp:setProperty name="myBean" property="course" value="SR03"/>
…

JSP redirection

• <jsp:forward page="anotherPage.jsp" />
– Stops the execution of the JSP page and redirects the request to another JSP (or

servlet).

• <jsp:include page="aJSPPage.jsp" />
– Behaves similarly to calling a subroutine. The control is temporarily given to

another page or another JSP file, or a static file. After processing of the other page,
the control is given back to the JSP during execution.

– Using this feature, the Java code can be shared between two pages rather than
being duplicated.

Personnalised tag libraries,
TagLib

The JavaServer Pages Standard Tag Library (JSTL) is a component of
the J2EE development platform. It extends the JSP specification by adding a
tag library for common tasks, such as work on XML files, conditional
execution, loops and internationalisation (Wikipedia).

• JSTL offers a method of developping different processing in a JSP page
without using Java code directly.

• The taglib is a way to extend the capabilities of servlet servers.

– manipulating the contents of the JSP page where they are inserted. That is, to recover the
body of the tag, then transform it and display it instead of the JSP.

– Mutualise the generation of html code common to many JSP. They are customisable, which is
not possible with <jsp:include>

Bibliography
• Poly SR03, M. Vayssade, chapitres 16 et 17.
• JSP - Java Server Pages, Douanes K. Fields, Mark A. Kolb, Eyrolles

editions, 2001.
• Programmer en java, C. Delannoy, Eyrolles editions, 2009.
• JSP avec Eclipse et Tomcat F.X. Sennesal, ENI editions, 2009.
• JSP et Servlets efficaces : Production de sites dynamiques Cas

pratiques, J.L. Déléage, Dunod editions, 2009.

• Internet Sources :
– Serge Tahe, http://tahe.developpez.com/
– http://fr.wikipedia.org/wiki/JavaServer_Pages
– http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
– http://java.sun.com/products/jsp/
– http://jakarta.apache.org/taglibs/
– http://www.sybase.com/content/1015262/JSPs-

Custom_Tag_Library_vs_JavaBeans.pdf
– …

