Syllabus of

«Elements of operations research»

University Polytechnic of Tirana

Séance	Titre	Description	CM	TD	TP
n°					
1 (4 hours)	INTRODUCTION : What is Operations research ? Graphs.	Operations Research - history The practical nature of Operational Research: Some operational research issues: Discrete combinatorial problems Continuous combinatorial problems Random problems WHY GRAPHS? : GRAPH THEORY VOCABULARY: CODING OF GRAPHS:	x	x	
2 (4 hours)	Polynomial algorithms for graphs	DEFINITION OF POLYNOMIALITY: Algorithm for minimum cost spanning tree, Other graph algorithms	x	x	
3 (4 hours)	Shortest paths	INTRODUCTION: shortest PATHS: FORD ALGORITHM: DIJKSTRA ALGORITHM: BELLMAN ALGORITHM: MATRICAL METHOD:	x	x	
4 (2 hours)	Scheduling	NTRODUCTION: CONJUNCTIVE GRAPHS, THE POTENTIAL-TASK METHOD: The PERT method	x	x	
5 (6 hours)	Flows in networks	TRANSPORT NETWORK: FLOW CONSERVATION GENERALIZATION LEMMA Algorithm for searching a complete flow: FORD-FULKERSON algorithm: Augmenting path: Ford - Fulkerson theorem: The maximum flow problem ROY Algorithm	x	x	
6 (6 hours)	COMPLEXITE DES PROBLEMES COMBINATOIRES	CLASS NP, POLYNOMIAL AND NP-COMPLET PROBLEMS, DYNAMIC PROGRAMMING tree METHODS The Ladies of Gauss: The "LITTLE" method for the traveling salesman problem:	x	X	
7 (4 hours)	Linear programming : introduction and modelling (I)	Canonical formulation of a LP Modelling techniques real life examples: resource allocation, diet problem, warehouse, flows, etc.	x	x	
8 (4 hours)	Linear programming :		x	x	

	modelling (II)	Modelling for :		
		transportation problems,		
		paths and flows in networks,		
		scheduling, etc.		
9 (4 hours)	Linear programming :		х	х
	modelling (III)	Modelling for :		
		transportation problems,		
		paths and flows in networks,		
		Scheduling, etc.		
10 (8	Linear programming :		х	х
hours)	modelling (III)	Modelling for :		
		transportation problems,		
		paths and flows in networks,		
		Scheduling, etc.		
			I	

Pedagogical activities	hours
lectures	24
exercices	16
labs	8
Estimated personal work	72
total	120