
Shortest paths 
 



Shortest path problems 

� Let G=(X,U,v) with: 
± X={x0, x1, x2͕͙͕�ǆn-1} et v : Uo� 

 
� Length of a path: number of arcs composing the path 
� Weight(value) of a path : sum of weights of its arcs 

 
� Some path from xi to xk is of minimal weight if its weight is the 

smallest one (<= to all others paths from xi to xk.) 
± We call this the shortest path 

 
 Ps. all paths and cycles are assumed directed. 



The shortest path problems 

Three types of problems: 
� Given two vertices xi and xk, find the shortest path (when 

such a path exists); 
 

� Given a vertex xs, find all shortest paths (if they exist) from 
xs to any other vertex xi; 

 
� Find the shortest paths for all couples of vertices in the 

graph.  



Applications 
 

� Subproblem for numerous optimisation problems. 
� Applications to transport: 

± Vehicle routing problem; 

� �ƉƉůŝĐĂƚŝŽŶƐ�ŝŶ�ƚĞůĞĐŽŵŵƵŶŝĐĂƚŝŽŶƐ͕��dD͙ 
� etc. 



Some properties of shortest paths (I) 

� Lemma 1. Any subpath of a shortest path is as well a shortest 
path. 

 
 We assume below that there exists at least a path from x0 to xi for any i. 

� Lemma 2. A necessary and sufficient condition such that, for 
any i, there exists a shortest path from x0 to xi is that graph G 
ĚŽĞƐŶ͛ƚ�ĐŽŶƚĂŝŶ�a negative cycle.  
 



Some properties of shortest paths (II) 
� Theorem 1. Let G be a graph without negative cycles and Oi values of paths 

from x0 to xi. A necessary and sufficient condition such that {Oi / 0 d i d n-
1} be the set of shortest paths values from x0 is that: 

 1-  O0 = 0; 
 2-  Oj - Oi d vij , for all arc (xi, xj) � U. 
 
Proof (hint): 
NC. If for some arc (xi, xj) � U. Oj - Oi > vij, we have a shorter path than Oj to xj. 

SC: Let P be a shortest path to xj, then we write down the eq. for all arcs 
composing it and sum on them, we obtain Oj d value(P). 

 
Corollary. The set of arcs (xi, xj) such that Oj - Oi = vij is the set of arcs involved 

in shortest paths. 
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Shortest path algorithms 
� FORD (or Bellman-Ford) algorithm: 

± Works for all weights given to arcs 
± O(n m) 
± Label correcting algorithm 
 

� DIJKSTRA algorithm: 
± Works for all non negative weights given to arcs 
± O(n²) 
± Label setting algorithm 

 
� BELLMAN algorithm: 

± Works in acyclic graphs 
± O(m) 
± Label setting algorithm 
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FORD Algorithm 

 Algorithm:  
(i)  Initialization 
 Poser O0 = 0 et Oi = +f pour i > 0. 
 
(ii) Edges examination 
 for each vertex xi, check all (xi,xj) from xi 

and substitute Oj with OL + vij when Oi +vij 
< Oj. 

 
(iii) Stop Test 
 Iterate (ii) until some Oj is updated in (ii). 
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FORD Algorithm  
an example 

End of first iteration 
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FORD Algorithm  
an example 

End of second iteration 
 



FORD Algorithm  
an example 

Last iteration 
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Validity et complexity  
of Ford algorithm  

Theorem 2:  Ford algorithm computes values of the shortest path 
from x0 when the graph is without negative circuits. 

 
Proof by recurrence (hint):  

± Set Oi
k*, the min value of a path from x0 to xi containing at most k arcs.  

± Set Oi
k, the value Oi

 after k steps in the loop while.  
Invariant: 
 At the end of kth step, Oi

k gives the value of a path from x0 to xi s.t. Oi
k ч Oi

k*. 

 
Theorem 3:  The complexity of Ford algorithm is in O(nm) where n 

= |X| and m = |U|. 
 



DIJKSTRA Algorithm 

Algorithm 
(i) Set S ={x0}, O0 = 0, Oi =v0i, if (x0, xi )�U, and Oi=+f, otherwise. 
(ii) While S z X do:  
         choose xi � X - S of Oi minimum. 
         set S = S +{ xi }. 
         For any xj�( X - S ), successor of xi,  
   set: Oj = min( Oi + vij, Oj ). 
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DIJKSTRA Algorithm  
an example 
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DIJKSTRA Algorithm  
an example 

End of the first iteration 



DIJKSTRA Algorithm  
an example 

End of the second iteration 



DIJKSTRA Algorithm  
an example 

End of the third iteration 



DIJKSTRA Algorithm  
an example 

End of the forth iteration 



DIJKSTRA Algorithm  
an example 

End of the last iteration 



Validity and complexity  
of Dijkstra algorithm 

 Theorem 4. Oi obtained at the end of the algorithm are 
the shortest path values from x0. 

(valuations t 0 : there are no negative cycles) 
Proof by recurrence : 
Invariant: 
 At the end of step k,  
 1- if xi � S : O i = O*i. 
 2- if xi � S : O i = minz�U-(i)�S O z+vzi 

 
Lemma 3. Dijkstra algorithm is of complexity O(n2). "



Exercise 
We wish to find the values of the minimal paths from x0.  
 
 

 
 
 
 
 
Apply DIJKSTRA algorithm. Write down the successive values of ʄi (if DIJKSTRA 

may be used), as well as a tree of minimal paths from x0.  
Are the minimal paths unique? Justify your answer.  
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PROBLEM: SECOND SHORTEST (I)  
Second shortest algorithm:  

Begin 
 1) Apply the Dijkstra algorithm to obtain the tree A of the shortest  
 paths from 0 to i and the potentials ʄ (i) from 0 to i for all the vertices i of G.  
  (Note: We shall note ɶ (r, s) the path, if it exists, from r to s in A)  
 2) Determine ɶ (0, n-1) = (y0 = 0, y1, ..., yp = n-1).  
 ϯͿ�^Ğƚ�ǀĂůƵĞ͗�с�нь͖� 
  For j: = 1 to p do  
   for all k � (U-(yj) - (yj-1)) do  
   Begin 
    ɲ: = ʄ (k) + v (k, yj) + (ʄ(n-1) - ʄ(yj));  
    if ɲ < value then  
    value: = ɲ; pivot1: = k; pivot2: = yj;  
   end;  
 4) Second: = ɶ (0, pivot1) + (pivot1, pivot2) + ɶ (pivot2, n-1).  
end.  
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PROBLEM: SECOND SHORTEST (II) 
1) Apply the algorithm to the following graph G:  
 

 
 
2) Analysis of the complexity function of n and m:  
It is assumed that the graph is coded by the queue of predecessors and successors.  

2.1) What are the complexities of the phases 1, 2, 3 and 4 of the algorithm?  
Conclude as to the total complexity. 
2.2) What improvements could be proposed to reduce this complexity?  

3) Proof of the algorithm: 
We note first ɶ = (0, n-1) = (y0 = 0, y1, ..., yp = n-1) the shortest path obtained in 
the phase 1) of the algorithm and second = (z0 = 0, z1, ..., zq = n-1) a second 
shortest path from 0 to n-1.  
3.1) Show that there is an integer r such that yq = zp, yp-1 = 1 ,...,  yp-r = zq-r and 
yp-r-ϭ�т�ǌƋ-r-1.  
3.2) What is the remarkable property of the path (0 = z0, z1, ..., zq-r-1) ? 
3.3) Deduce the validity of the algorithm.  
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Bellman algorithm 

Algorithm:  
(i) enumerate all vertex of the graph, set O0= 0. 
(ii) for j = 1 to n ʹ 1 set : Oj = min (Ok + vkj ) over the set of 

predecessors xk of xj. 
Ps. Vertex numeration is a function f : {V}->N s.t. for any arc (xi,xj) f(xj) < f(xj). 
 
WƌŽŽĨ�ďǇ�ƌĞĐƵƌƌĞŶĐĞ͙ 
 
Theorem 5: Bellman algorithm computes the shortest 

path values Oi from x0 in O(m). 
 

-

1-

¥ *



>e-
1

y µ
=L

•
2

A

• 0
& a

•

¥
• a •

• 46 a3

µA a • 6
t !÷. 3 5
* Xzét Xp 4

X. = 0 .

* = Ott-1

Xz= min 40-411-4--1

×.
-

- 2 à µ À
Xu = brin 4h,et ,

laet , Xzt 3f : 2
→ ~

¥ min 44+5 the if = 4
de = minHi

,
× H =3 .



Some path problems 

� The longest path computation problem; 
� The maximum probability path; 
� The maximum capacity path value; 

 
± Exercise : compute the shortest path among these of 

maximum capacity. 



Exercise: The itinerary of Michel Strogoff 

 Leaving from Moscow, Michel STROGOFF, courier of the tsar, was supposed to reach 
IRKUTSK. Before leaving, he had consulted a fortune teller who told him, amongst 
other things : "After KAZAN beware of the sky, in OMSK beware of the tartars, in 
TOMSK beware of the eyes, after TOMSK beware of water and, above all, always be 
careful of a large brown-haired person with black boots. " STROGOFF had therefore 
written on a map his "chances" of success for each route between two towns : these 
chances were represented by a number between 1 and 10 (measuring the number of 
chances of success out of 10). Ignoring probability calculation, he had therefore 
chosen his route by maximising the total sum of the chances.  
 
The numbers of the cities are: MOSCOW (1), KAZAN (2), PENZA(3), PERM (4), OUFA 
(5), TOBOLSK (6), NOVO-SAIMSK (7), TARA (8), OMSK (9), TOMSK (10), 
SEMIPALATINSK(11), IRKOUTSK (12).  
 

  



Exercise: The itinerary of Michel 
Strogoff 
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1. Determine the route of Michel Strogoff.  
 

2. What was the probability, with the assumption of the independence 
of the random variables, that Strogoff would succeed?  
 

3. What would have been his route if he had known the principles of 
probability calculation? 
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Matrix method (I) 
for im1 à n do { 
 for jm1 à n do {  
  if (j�U+(i)) then V0[i][j] m vij otherwise V0[i][j] m f; 
 } 
} 
for km1 à n do { 
 for im1 à n do { 
  for jm1 à n do {  
   Vk[i][j] m min(Vk-1[i][j]  , Vk-1[i][k]+Vk-1[k][j]) 
  } 
 } 
} 
 
 

 
Proof of validity of the algorithm by recurrence : 
Hint : at the end of iteration k, Vk[j][j] gives the value of the shortest path 
from i to j going through vertices ^������«��N`�^L��M`� 
 
Complexity : O(n3) 
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for im1 à n do { 
 for jm1 à n do {  
  if (j�U+(i)) then V0[i][j] m vij 

otherwise V0[i][j] m f; 
 } 
} 
for km1 à n do { 
 for im1 à n do { 
  for jm1 à n do {  
   Vk[i][j] m min(Vk-1[i][j]  , 

Vk-1[i][k]+Vk-1[k][j]) 
  } 
 } 
} 
 
 

Matrix method (II) nvgj-miulif.my?.si- Es }
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END. 


