
Shortest paths

Shortest path problems

� Let G=(X,U,v) with:
± X={x0, x1, x2͕͙͕�ǆn-1} et v : Uo�

� Length of a path: number of arcs composing the path
� Weight(value) of a path : sum of weights of its arcs

� Some path from xi to xk is of minimal weight if its weight is the

smallest one (<= to all others paths from xi to xk.)
± We call this the shortest path

 Ps. all paths and cycles are assumed directed.

The shortest path problems

Three types of problems:
� Given two vertices xi and xk, find the shortest path (when

such a path exists);

� Given a vertex xs, find all shortest paths (if they exist) from
xs to any other vertex xi;

� Find the shortest paths for all couples of vertices in the

graph.

Applications

� Subproblem for numerous optimisation problems.
� Applications to transport:

± Vehicle routing problem;

� �ƉƉůŝĐĂƚŝŽŶƐ�ŝŶ�ƚĞůĞĐŽŵŵƵŶŝĐĂƚŝŽŶƐ͕��dD͙
� etc.

Some properties of shortest paths (I)

� Lemma 1. Any subpath of a shortest path is as well a shortest
path.

 We assume below that there exists at least a path from x0 to xi for any i.

� Lemma 2. A necessary and sufficient condition such that, for
any i, there exists a shortest path from x0 to xi is that graph G
ĚŽĞƐŶ͛ƚ�ĐŽŶƚĂŝŶ�a negative cycle.

Some properties of shortest paths (II)
� Theorem 1. Let G be a graph without negative cycles and Oi values of paths

from x0 to xi. A necessary and sufficient condition such that {Oi / 0 d i d n-
1} be the set of shortest paths values from x0 is that:

 1- O0 = 0;
 2- Oj - Oi d vij , for all arc (xi, xj) � U.

Proof (hint):
NC. If for some arc (xi, xj) � U. Oj - Oi > vij, we have a shorter path than Oj to xj.

SC: Let P be a shortest path to xj, then we write down the eq. for all arcs
composing it and sum on them, we obtain Oj d value(P).

Corollary. The set of arcs (xi, xj) such that Oj - Oi = vij is the set of arcs involved

in shortest paths.

=

.

Ht
.

i y EË I"
'

t

µµp

Shortest path algorithms
� FORD (or Bellman-Ford) algorithm:

± Works for all weights given to arcs
± O(n m)
± Label correcting algorithm

� DIJKSTRA algorithm:
± Works for all non negative weights given to arcs
± O(n²)
± Label setting algorithm

� BELLMAN algorithm:

± Works in acyclic graphs
± O(m)
± Label setting algorithm

{
\

FORD Algorithm

 Algorithm:
(i) Initialization
 Poser O0 = 0 et Oi = +f pour i > 0.

(ii) Edges examination
 for each vertex xi, check all (xi,xj) from xi

and substitute Oj with OL + vij when Oi +vij
< Oj.

(iii) Stop Test
 Iterate (ii) until some Oj is updated in (ii).

x

x

xx

x

0

1

2

3 4

2

5

7

4

1

1

An example

¥.)
↳ +Karajan
↳=p

0cm
x.¥2¢ g

→ *
. top

ds#

$ Il a

'

s :

- sina.IM/kYiuew- .

⇒ kiffe,

0µm
t

FORD Algorithm
an example

End of first iteration

✓

<
V

a. %
^

÷

✓
'

FORD Algorithm
an example

End of second iteration

FORD Algorithm
an example

Last iteration

✓

Validity et complexity
of Ford algorithm

Theorem 2: Ford algorithm computes values of the shortest path
from x0 when the graph is without negative circuits.

Proof by recurrence (hint):

± Set Oi
k*, the min value of a path from x0 to xi containing at most k arcs.

± Set Oi
k, the value Oi

 after k steps in the loop while.
Invariant:
 At the end of kth step, Oi

k gives the value of a path from x0 to xi s.t. Oi
k ч Oi

k*.

Theorem 3: The complexity of Ford algorithm is in O(nm) where n

= |X| and m = |U|.

DIJKSTRA Algorithm

Algorithm
(i) Set S ={x0}, O0 = 0, Oi =v0i, if (x0, xi)�U, and Oi=+f, otherwise.
(ii) While S z X do:
 choose xi � X - S of Oi minimum.
 set S = S +{ xi }.
 For any xj�(X - S), successor of xi,
 set: Oj = min(Oi + vij, Oj).

(A)ü.

ON

me

-

→
Où

-

a.lt//oa*n--o"

DIJKSTRA Algorithm
an example

x

x

xx

x

0

1

2

3 4

2

5

7

4

1

1

§, l do de Xz Xz Y

Xt

"•÷.
÷.in?::f::::ii:::µµ
H

DIJKSTRA Algorithm
an example

End of the first iteration

DIJKSTRA Algorithm
an example

End of the second iteration

DIJKSTRA Algorithm
an example

End of the third iteration

DIJKSTRA Algorithm
an example

End of the forth iteration

DIJKSTRA Algorithm
an example

End of the last iteration

Validity and complexity
of Dijkstra algorithm

 Theorem 4. Oi obtained at the end of the algorithm are
the shortest path values from x0.

(valuations t 0 : there are no negative cycles)
Proof by recurrence :
Invariant:
 At the end of step k,
 1- if xi � S : O i = O*i.
 2- if xi � S : O i = minz�U-(i)�S O z+vzi

Lemma 3. Dijkstra algorithm is of complexity O(n2). "

Exercise
We wish to find the values of the minimal paths from x0.

Apply DIJKSTRA algorithm. Write down the successive values of ʄi (if DIJKSTRA

may be used), as well as a tree of minimal paths from x0.
Are the minimal paths unique? Justify your answer.

x1

x2

x0 x
3

x4

x
5

x6

x7

x8

1 2

4 6

2
0

10

46

0

120

10 4

tu # il
#qË
5f Xd e 20 1 10 PTN A

Sfxqxy
° a t 3 ⑤a •• •

-

O 6 1 35 7 Age

* * ÷¥¥¥§ : : : : : " ::#µ 06
1 35 711 ⑨•

ÂÆ - Mz :

o ④ 1 35 7 11 13 ④
(KH

o pq i 35 7 11 13 17
¥ "Ils 45*4

*
45-14.4 0 1f 135 7

11 1317

Xian À

""
"

"* """

""¥0 *Îçqxo} 0 20 1 10 • • • • •

✗à
Ïsiç

*4×21
0 20 1 3- 5 •

on a •

"*("" ° " ' " ± + "
°

* ¥9 17 pipi
.

0 20 1 3 5 Ill • •

+4%-40
20 1 35 7111f *

3- ¥:* "" * • [+ " "
-

°

"" " " $+4×840 ff 1 3 5 7 11 13/7le

+µ,} @ pq e 3 5 7 1113 '"

PROBLEM: SECOND SHORTEST (I)
Second shortest algorithm:

Begin
 1) Apply the Dijkstra algorithm to obtain the tree A of the shortest
 paths from 0 to i and the potentials ʄ (i) from 0 to i for all the vertices i of G.
 (Note: We shall note ɶ (r, s) the path, if it exists, from r to s in A)
 2) Determine ɶ (0, n-1) = (y0 = 0, y1, ..., yp = n-1).
 ϯͿ�^Ğƚ�ǀĂůƵĞ͗�с�нь͖�
 For j: = 1 to p do
 for all k � (U-(yj) - (yj-1)) do
 Begin
 ɲ: = ʄ (k) + v (k, yj) + (ʄ(n-1) - ʄ(yj));
 if ɲ < value then
 value: = ɲ; pivot1: = k; pivot2: = yj;
 end;
 4) Second: = ɶ (0, pivot1) + (pivot1, pivot2) + ɶ (pivot2, n-1).
end.

OH
OH§ ait {À"
OH

PROBLEM: SECOND SHORTEST (II)
1) Apply the algorithm to the following graph G:

2) Analysis of the complexity function of n and m:
It is assumed that the graph is coded by the queue of predecessors and successors.

2.1) What are the complexities of the phases 1, 2, 3 and 4 of the algorithm?
Conclude as to the total complexity.
2.2) What improvements could be proposed to reduce this complexity?

3) Proof of the algorithm:
We note first ɶ = (0, n-1) = (y0 = 0, y1, ..., yp = n-1) the shortest path obtained in
the phase 1) of the algorithm and second = (z0 = 0, z1, ..., zq = n-1) a second
shortest path from 0 to n-1.
3.1) Show that there is an integer r such that yq = zp, yp-1 = 1 ,..., yp-r = zq-r and
yp-r-ϭ�т�ǌƋ-r-1.
3.2) What is the remarkable property of the path (0 = z0, z1, ..., zq-r-1) ?
3.3) Deduce the validity of the algorithm.

0

1 2

3 4 5

6

1

1

1

74
3

2

1 5

1

1

✗il ✗4=2
22 la

✗0=0 ✗6=3

1- 3
✗1--1 ✗riz ✗5--4

✗1=1 42=2

✗ 6=3
À

✗3=1. Kiss
: 4

Xp
'

Xz"

do" dis

¥1 gaz *
< 4

-

Yoo , y ,
-

- t yéz Yz :b
-

ff-1 E- 134
.

x-xzttze-Xg-H-t-t-4-3-y-z.ME,

pivotez
pivotez

ftp.KN-zz-X-E
=L -17+3-2=9

k-tia-H-frtkg-H-2-3-3-2-6-svdue-6.protri-4piroti.LI23 : Kf54 KIT a- Xstttgtdg -té
= 4+1+3-3=5

⇒ Value -_ 5
,
prete > 5, pivote :b ,

Bellman algorithm

Algorithm:
(i) enumerate all vertex of the graph, set O0= 0.
(ii) for j = 1 to n ʹ 1 set : Oj = min (Ok + vkj) over the set of

predecessors xk of xj.
Ps. Vertex numeration is a function f : {V}->N s.t. for any arc (xi,xj) f(xj) < f(xj).

WƌŽŽĨ�ďǇ�ƌĞĐƵƌƌĞŶĐĞ͙

Theorem 5: Bellman algorithm computes the shortest

path values Oi from x0 in O(m).

-

1-

¥ *

>e-
1

y µ
=L

•
2

A

• 0
& a

•

¥
• a •

• 46 a3

µA a • 6
t !÷. 3 5
* Xzét Xp 4

X. = 0 .

* = Ott-1

Xz= min 40-411-4--1

×.
-

- 2 à µ À
Xu = brin 4h,et ,

laet , Xzt 3f : 2
→ ~

¥ min 44+5 the if = 4
de = minHi

,
× H =3 .

Some path problems

� The longest path computation problem;
� The maximum probability path;
� The maximum capacity path value;

± Exercise : compute the shortest path among these of

maximum capacity.

Exercise: The itinerary of Michel Strogoff

 Leaving from Moscow, Michel STROGOFF, courier of the tsar, was supposed to reach
IRKUTSK. Before leaving, he had consulted a fortune teller who told him, amongst
other things : "After KAZAN beware of the sky, in OMSK beware of the tartars, in
TOMSK beware of the eyes, after TOMSK beware of water and, above all, always be
careful of a large brown-haired person with black boots. " STROGOFF had therefore
written on a map his "chances" of success for each route between two towns : these
chances were represented by a number between 1 and 10 (measuring the number of
chances of success out of 10). Ignoring probability calculation, he had therefore
chosen his route by maximising the total sum of the chances.

The numbers of the cities are: MOSCOW (1), KAZAN (2), PENZA(3), PERM (4), OUFA
(5), TOBOLSK (6), NOVO-SAIMSK (7), TARA (8), OMSK (9), TOMSK (10),
SEMIPALATINSK(11), IRKOUTSK (12).

Exercise: The itinerary of Michel
Strogoff

1

2 4 6 8 10

12

119753

9

7 3 1 2

6

8

8 6 1 9

1

7
5

59
4

1. Determine the route of Michel Strogoff.

2. What was the probability, with the assumption of the independence
of the random variables, that Strogoff would succeed?

3. What would have been his route if he had known the principles of
probability calculation?

✗2=9 HIG ✗ça! ✗g.U Host

trist

Xiao

✗ 3=8 ✗5:16 Hirt 49=26 ✗pis

te :[1,2in , 7,110,12] : PM -_ Iki.fi = 1,7%
.

Cij)€Æ

Matrix method (I)
for im1 à n do {
 for jm1 à n do {
 if (j�U+(i)) then V0[i][j] m vij otherwise V0[i][j] m f;
 }
}
for km1 à n do {
 for im1 à n do {
 for jm1 à n do {
 Vk[i][j] m min(Vk-1[i][j] , Vk-1[i][k]+Vk-1[k][j])
 }
 }
}

Proof of validity of the algorithm by recurrence :
Hint : at the end of iteration k, Vk[j][j] gives the value of the shortest path
from i to j going through vertices ^������«��N`�^L��M`�

Complexity : O(n3)

æ

✗ i. 0,9 diode} +6=932,18> %" 0,064
O
,

Q O
,

O
,

on %
0,0384;É%µ .

.H=1% 9

am °
,

*
°
'

✗ne 0,1151
✗ poil 45:O.GL#y-.q56ttgiQl2f

1 2 3 4

1 0 0 9 f

2 6 0 8 0

3 0 7 0 5

4 f 4 0 0

x1 x4

6

x3

x2

0

9
0

0 4

0 5
7 8

1 2 3 4

1 0 0 9 f

2 6 0 8 0

3 0 0 0 5

4 f 4 0 0

1 2 3 4

1 0 0 8 0

2 6 0 8 0

3 0 0 0 0

4 10 4 0 0

1 2 3 4

1 0 0 8 0

2 6 0 8 0

3 0 0 0 0

4 0 0 0 0

1 2 3 4

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

for im1 à n do {
 for jm1 à n do {
 if (j�U+(i)) then V0[i][j] m vij

otherwise V0[i][j] m f;
 }
}
for km1 à n do {
 for im1 à n do {
 for jm1 à n do {
 Vk[i][j] m min(Vk-1[i][j] ,

Vk-1[i][k]+Vk-1[k][j])
 }
 }
}

Matrix method (II) nvgj-miulif.my?.si- Es }

Toi! .
.

V0

!

END.

