
Introduction to combinatorial optimization, Introduction to combinatorial optimization, 
modeling and complexity theorymodeling and complexity theory

Part I : Introduction to combinatorial optimization and graph thPart I : Introduction to combinatorial optimization and graph theoryeory
 Beginnings of Operations Research;Beginnings of Operations Research;
 Graph theory: basic notionsGraph theory: basic notions

Connectivity, shortest path problems, algorithms, applications iConnectivity, shortest path problems, algorithms, applications in routing in n routing in 
Internet, Internet, 

 Modeling combinatorial problems through LP, examplesModeling combinatorial problems through LP, examples
 Integer linear programmingInteger linear programming
 exercises;exercises;

Part II : Introduction to Computational Complexity TheoryPart II : Introduction to Computational Complexity Theory
 Algorithmic complexityAlgorithmic complexity

Notions and evaluation measures, examplesNotions and evaluation measures, examples
 Problems complexityProblems complexity

Decision problems, P and NP classes, polynomial reduction;Decision problems, P and NP classes, polynomial reduction;
NPNP--completeness, Cookcompleteness, Cook’’s Theorem, relation P s Theorem, relation P vsvs NP, examples, exercises;NP, examples, exercises;
PseudoPseudo--polynomialitypolynomiality, dynamic programming, NP, dynamic programming, NP--complete problems in the complete problems in the 
strong sense, examples, exercises.strong sense, examples, exercises.



HistoryHistory……
LLééonardonard EULEREULER: 1707: 1707--17831783
 Seven Bridges of Seven Bridges of KKöönigsbergnigsberg

Charles BABBAGECharles BABBAGE: 1791: 1791--1871(1871(Ada LOVELACEAda LOVELACE : : 
18151815--18521852))

Design of computers: Design of computers: Babbage sought a method by which Babbage sought a method by which 
mathematical tables could be calculated mechanically, mathematical tables could be calculated mechanically, 
removing the high rate of human error. removing the high rate of human error. 

Alan TURING: Alan TURING: 19121912--19541954
 The Turing machineThe Turing machine
 Decrypting the Enigma code (Decrypting the Enigma code (CombinatorialCombinatorial),),
 COLOSSUS:  one of the first computersCOLOSSUS:  one of the first computers



HistoryHistory……

LLééonidonid KANTOROVITCHKANTOROVITCH : 1912: 1912-- 19861986
 a pioneer of linear programminga pioneer of linear programming…… transport program, transport program, 
 Nobel price in economics (1975)Nobel price in economics (1975)

Georges Bernard DANTZIGGeorges Bernard DANTZIG : 1914: 1914-- 20052005
 Linear programmingLinear programming

Jeff HAWKINSJeff HAWKINS : 1957: 1957
 Inventor of personnelInventor of personnel--assistant (Palm Pilot)assistant (Palm Pilot)



HistoryHistory……

 Paul ERDOS and Alfred RENYIPaul ERDOS and Alfred RENYI

 AlbertAlbert--LazloLazlo BARABASI, Claude BERGE, BARABASI, Claude BERGE, 
Ken APPEL and Wolfgang HAKEN,Ken APPEL and Wolfgang HAKEN,

 Jack EDMONS, Bernard Roy, Paul Jack EDMONS, Bernard Roy, Paul 
ROBERTSON et Neil SEYMOUR, Robert ROBERTSON et Neil SEYMOUR, Robert 
TARJANTARJAN



Some problems of Operations Some problems of Operations 
ResearchResearch

Discrete combinatorial problemsDiscrete combinatorial problems
 Travelling salesman problemTravelling salesman problem,,
 Minimum spanning treeMinimum spanning tree

Continuous combinatorial problemsContinuous combinatorial problems
 Linear programming, Linear programming, 

Random problems Random problems 
 Queuing theoryQueuing theory
 Equipment replacementEquipment replacement

Competitive situationsCompetitive situations
 Game theoryGame theory



Discrete combinatorial problemsDiscrete combinatorial problems
Travelling salesman problemTravelling salesman problem

TSPTSP.  .  Given a set of n cities and a pairwise distance Given a set of n cities and a pairwise distance 
function d(u, v), is there a tour of length function d(u, v), is there a tour of length  D?D?

All 13,509 cities in US with a population of at least 500
Reference:  http://www.tsp.gatech.edu



Discrete combinatorial problemsDiscrete combinatorial problems
Travelling salesman problemTravelling salesman problem

TSPTSP.  .  Given a set of n cities and a pairwise distance Given a set of n cities and a pairwise distance 
function d(u, v), is there a tour of length function d(u, v), is there a tour of length  D?D?

Optimal TSP tour
Reference:  http://www.tsp.gatech.edu



Continuous combinatorial problemsContinuous combinatorial problems
Linear programmingLinear programming

Example. Example. Suppose that a farmer has a piece of farm land, say Suppose that a farmer has a piece of farm land, say AA square square 
kilometers large, to be planted with either wheat or cereals or kilometers large, to be planted with either wheat or cereals or some some 
combination of the two. combination of the two. 
The farmer has a limited permissible amount The farmer has a limited permissible amount FF of fertilizer and of fertilizer and PP of of 
insecticide which can be used, each of which is required in diffinsecticide which can be used, each of which is required in different amounts erent amounts 
per unit area for wheat (per unit area for wheat (FF1, 1, PP1) and cereals (1) and cereals (FF2, 2, PP2). 2). 
Let Let SS1 be the selling price of wheat, and 1 be the selling price of wheat, and SS2 the price of cereals. If we denote 2 the price of cereals. If we denote 
the area planted with wheat and cereals by the area planted with wheat and cereals by xx1 and 1 and xx2 respectively, then the 2 respectively, then the 
optimal number of square kilometers to plant with wheat optimal number of square kilometers to plant with wheat vsvs cereals can be cereals can be 
expressed as a linear programming problem:expressed as a linear programming problem:

maximize  maximize  (maximize the revenue)(maximize the revenue)
subject to: subject to: 

limit on total area) limit on total area) 
(limit on fertilizer) (limit on fertilizer) 
(limit on insecticide) (limit on insecticide) 
(cannot plant a negative area)(cannot plant a negative area)



Random problems Random problems 

Queuing theoryQueuing theory
 applications to (internet) network congestion;applications to (internet) network congestion;
 ordering the takeordering the take--off of aircraft.off of aircraft.

Equipment replacementEquipment replacement
 Deciding the replacement date for equipments Deciding the replacement date for equipments 

with given failure probability.with given failure probability.



Why using graphs?Why using graphs?

a

b

c

d

Seven bridges of Königsberg

Given the above graph, is it possible to construct a path (or a cycle, i.e. a path 
starting and ending on the same vertex) which visits each edge exactly once? 



Basic definitionsBasic definitions

Directed GraphsDirected Graphs
NonNon--oriented graphsoriented graphs
walks, cycles, paths, circuitswalks, cycles, paths, circuits
 elementaryelementary
 simplesimple
 EulerianEulerian
 Hamiltonian,Hamiltonian,
Stable, coloring, cliqueStable, coloring, clique……



Basic definitionsBasic definitions
A A directed graphdirected graph or or digraphdigraph is a pair is a pair GG= (= (XX, , UU) of:) of:
 a a setset XX, whose , whose elementselements are called are called verticesvertices or or nodes,nodes,
 a set a set UU of of ordered pairsordered pairs of vertices, called of vertices, called arcsarcs, , directed edgesdirected edges, or , or arrowsarrows. . 

It differs from an ordinary, or It differs from an ordinary, or undirected graphundirected graph in that the latter one is in that the latter one is 
defined in terms of defined in terms of edgesedges, which are , which are unordered pairs unordered pairs of vertices.of vertices.
A valuated graph is G = (X, U, v) where (X, U) is a graph and v A valuated graph is G = (X, U, v) where (X, U) is a graph and v an an 
application from U to R (real numbers).application from U to R (real numbers).

Successors, predecessors, vertex degreesSuccessors, predecessors, vertex degrees……



Basic definitionsBasic definitions
A A walkwalk is an alternating sequence of vertices and edges, beginning andis an alternating sequence of vertices and edges, beginning and
ending with a vertex, where each vertex is incident to both the ending with a vertex, where each vertex is incident to both the edge that edge that 
precedes it and the edge that follows it in the sequence, and whprecedes it and the edge that follows it in the sequence, and where the ere the 
vertices that precede and follow an edge are the end vertices ofvertices that precede and follow an edge are the end vertices of that edge. A that edge. A 
walk is walk is closedclosed if its first and last vertices are the same (called a if its first and last vertices are the same (called a cyclecycle)), and , and 
openopen if they are different (called a path).if they are different (called a path).

The The lengthlength ll of a walk is the number of edges that it uses. of a walk is the number of edges that it uses. 

A directed path is when edges are A directed path is when edges are ““has the same orientationhas the same orientation””

A directed cycle: without the arrows, it is just a cycle. A directed cycle: without the arrows, it is just a cycle. 

A path is A path is simple (resp. elementary)simple (resp. elementary), meaning that no vertices (resp. no , meaning that no vertices (resp. no 
edges) are repeated.edges) are repeated.

A graph is A graph is acyclicacyclic if it contains no cycles; if it contains no cycles; 

A path or cycle is A path or cycle is HamiltonianHamiltonian (resp. Eulerian)(resp. Eulerian) if it uses all vertices (resp. if it uses all vertices (resp. 
edges) exactly once. edges) exactly once. 



Associated graphsAssociated graphs

Partial GraphPartial Graph

SubSub--graphgraph

Complementary graphComplementary graph

1

5
4



Associated graphsAssociated graphs

Transitive closureTransitive closure

3

2 4 5

1 3

2 4 5

1



ConnectivityConnectivity
Simple Simple ConnectivityConnectivity: : connected componentconnected component
Strong Strong ConnectivityConnectivity: strong : strong connected componenconnected componentt

Reduced Graph:Reduced Graph:

A

H

I

J

B C D

E F

G K

L M N

A

L

B , C D , E , F

G , K

M , N

H , I , J



Connectivity and strong Connectivity and strong 
connectivity relationsconnectivity relations

An An equivalence relationequivalence relation is a binary relation on a set is a binary relation on a set 
that specifies how to split up (i.e. partition) the set into that specifies how to split up (i.e. partition) the set into 
subsets such that every element of the larger set is in subsets such that every element of the larger set is in 
exactly one of the subsets. exactly one of the subsets. 
 reflexivereflexive, , symmetricsymmetric and and transitivetransitive..

equivalence equivalence class ofclass of xx in in EE , denoted , denoted R(xR(x), is given by: ), is given by: 
R(xR(x)={y: )={y: xRyxRy}.}.

What canWhat can--we say about connectivity and strong we say about connectivity and strong 
connectivity relations?connectivity relations?



Particular GraphsParticular Graphs
Forest is a graph without cycleForest is a graph without cycle

Tree is a connected graph without cycle Tree is a connected graph without cycle 

A

B

B

C

E

B

F H

GD

1 2 3 4 5

7 6 8

9



Particular GraphsParticular Graphs
In In graph theorygraph theory, an , an arborescencearborescence is a is a directed graphdirected graph in in 
which, for a vertex which, for a vertex vv called the root and any other vertex called the root and any other vertex 
uu, there is exactly one directed path from , there is exactly one directed path from vv to to uu. . 

1

2 3 4

5 6 7

A bipartite graph is a A bipartite graph is a graphgraph whose whose vertices can be vertices can be 
divided into two disjoint sets divided into two disjoint sets UU and and VV such that every such that every 
edge connects edge connects a vertex in a vertex in UU to one in to one in VV; ; 

1

2

3

4

5

A

B

C

D

E



Particular GraphsParticular Graphs
In In graph theorygraph theory, a , a planar graphplanar graph is a is a graphgraph which can be which can be 
embeddedembedded in the plane, i.e., it can be drawn on the in the plane, i.e., it can be drawn on the 
plane in such a way that its edges intersect only at their plane in such a way that its edges intersect only at their 
endpoints. endpoints. 1

2 3

4

Graph of 3 entreprises () Complete Graph of 5 vertices ()



Basic definitionsBasic definitions
An An independent setindependent set or or stable setstable set is a set of is a set of verticesvertices in a graph in a graph 
no two of which are adjacent. The size of an independent set is no two of which are adjacent. The size of an independent set is 
the number of vertices it contains (the number of vertices it contains ((G(G))))..
 A A maximal independent setmaximal independent set is an independent set such that adding is an independent set such that adding 

any other node to the set forces the set to contain an edge.any other node to the set forces the set to contain an edge.

A A cliqueclique in an in an undirected graphundirected graph G, is a set of G, is a set of verticesvertices V, such that V, such that 
for every two vertices in V, there exists an for every two vertices in V, there exists an edgeedge connecting the connecting the 
two. two. 

A A cliqueclique in a graph G gives corresponds to a stable in its complementaryin a graph G gives corresponds to a stable in its complementary graph and vicegraph and vice--versa.versa.



Basic definitionsBasic definitions
Some graph G is called Some graph G is called cc--chromatic chromatic if its vertices can if its vertices can 
be colored  with c colors such that no two adjacent be colored  with c colors such that no two adjacent 
vertices have the same color. vertices have the same color. Similarly, an Similarly, an edge edge 
coloringcoloring assigns a color to each edge so that no two assigns a color to each edge so that no two 
adjacent edges share the same coloradjacent edges share the same color..

Conjecture of 4 colors (1875 Pertersen) : “all planar graphs are 4-chromatic”



Four colors theorem Four colors theorem 



Coding a graphCoding a graph

Adjacency MatrixAdjacency Matrix

2 3

1

4

1 1 1 0 
0 0 1 1 
0 0 0 1 
0 0 1 0 



Coding a graphCoding a graph

Successor queue Successor queue  andand 

Exercise: Exercise: Write an algorithm which allows the passage from the successor Write an algorithm which allows the passage from the successor 
queue to the adjacency matrix. queue to the adjacency matrix. 



Shortest path problemsShortest path problems
 Shortest path properties;Shortest path properties;
 Polynomial algorithms for shortest path computation, Polynomial algorithms for shortest path computation, 

examples and complexity:examples and complexity:
Label correcting algorithmsLabel correcting algorithms : Ford algorithm;: Ford algorithm;
Label setting algorithmsLabel setting algorithms : : DijkstraDijkstra algorithm, Bellman algorithm, Bellman 
algorithm;algorithm;



Shortest path problemsShortest path problems
Some properties: Some properties: 
 Lemma 1Lemma 1

Any path extracted from a shortest path is also the shortest Any path extracted from a shortest path is also the shortest 
one.one.

 Lemma 2Lemma 2
A necessary and sufficient condition of existence of shortest A necessary and sufficient condition of existence of shortest 
paths is the absence of negative circuits. paths is the absence of negative circuits. 

 Lemma 3Lemma 3
Let G be a graph without negative circuits and Let G be a graph without negative circuits and ii the shortest the shortest 
path values from xpath values from x0. 0. A necessary and sufficient condition  for A necessary and sufficient condition  for 
that edge (xthat edge (xii, , xxjj) is in a shortest path is : ) is in a shortest path is : jj -- ii == vvijij..



FORD AlgorithmFORD Algorithm
Algorithm: Algorithm: 
(i)  (i)  InitializationInitialization

Poser Poser 00 = 0 et = 0 et ii = += + pour i > 0.pour i > 0.

(ii) (ii) Edges examinationEdges examination
for each vertex xfor each vertex xii, check all (, check all (xxii,x,xjj) ) 
from xfrom xii and substitute and substitute jj with with jj + + vvijij
when when ii ++vvijij < < jj..

(iii) Stop Test(iii) Stop Test
Iterate (ii) until some Iterate (ii) until some jj is updated in is updated in 
(ii).(ii).

x

x

xx

x

0

1

2

3 4

2

5

7

4

1

1

An example



FORD Algorithm FORD Algorithm 
aan examplen example
End of first iteration



FORD Algorithm FORD Algorithm 
aan examplen example

End of second iteration



FORD Algorithm FORD Algorithm 
aan examplen example

Last iteration



Validity and complexity Validity and complexity 
of Ford algorithm of Ford algorithm 

Theorem 1: Theorem 1: 
Ford computes values of the shortest path from xFord computes values of the shortest path from x00 when when 

the graph is without negative circuits.the graph is without negative circuits.

Theorem 2: Theorem 2: 
The complexity of Ford algorithm is in The complexity of Ford algorithm is in O(nmO(nm) where n = |X| ) where n = |X| 

and m = |U|.and m = |U|.



DIJKSTRA AlgorithmDIJKSTRA Algorithm
AlgorithmAlgorithm
(i)(i) set S ={xset S ={x00}, }, 00 = 0, = 0, ii ==vv0i0i, if (x, if (x00, x, xii ))U, and U, and ii=+=+, , 

otherwise.otherwise.
(ii)    (ii)    while S while S  X do: X do: 

choose xchoose xii  X X -- S of S of ii minimum.minimum.
set S = S +{ xset S = S +{ xii }.}.
For any For any xxjj( X ( X -- S ), successor of xS ), successor of xii, , 

set: set: jj = min( = min( ii + + vvijij, , jj ).).



DIJKSTRADIJKSTRA Algorithm Algorithm 
an examplean example
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xx

x
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DIJKSTRADIJKSTRA Algorithm Algorithm 
an examplean example

End of the first iteration



DIJKSTRADIJKSTRA Algorithm Algorithm 
an examplean example

End of the second iteration



DIJKSTRADIJKSTRA Algorithm Algorithm 
an examplean example

End of the third iteration



DIJKSTRADIJKSTRA Algorithm Algorithm 
an examplean example
End of the forth iteration



DIJKSTRADIJKSTRA Algorithm Algorithm 
an examplean example
End of the last iteration



Validity and complexity Validity and complexity 
of of DijkstraDijkstra algorithmalgorithm

Lemma 4Lemma 4
DijkstraDijkstra algorithm is of complexity O(nalgorithm is of complexity O(n22).).

Theorem 3Theorem 3
ii obtained at the end of the algorithm are the obtained at the end of the algorithm are the 

shortest path values from xshortest path values from x00..



Bellman algorithmBellman algorithm
Algorithm: Algorithm: 
((i) i) enumerateenumerate all vertex of the graph, set all vertex of the graph, set 00= 0.= 0.
(ii) for j = 1 to n (ii) for j = 1 to n –– 1 set : 1 set : jj = min (= min (kk + + vvkjkj ) over the set of ) over the set of 

predecessors predecessors xxkk of of xxjj..

Theorem 4: Theorem 4: 
Bellman algorithm computes the shortest path Bellman algorithm computes the shortest path 

values values ii from xfrom x00 in in O(mO(m).).



Some path problemsSome path problems

The longest path computation problem;The longest path computation problem;
The maximum probability path;The maximum probability path;
The maximum capacity path value;The maximum capacity path value;

 Exercise : compute the shortest path among these of Exercise : compute the shortest path among these of 
maximum capacity.maximum capacity.



Exercise: The itinerary of Michel Exercise: The itinerary of Michel 
StrogoffStrogoff (from ROSEAUX)(from ROSEAUX)

LeavingLeaving fromfrom Moscow, Michel STROGOFF, Moscow, Michel STROGOFF, couriercourier of the tsar, of the tsar, waswas supposedsupposed
to to reachreach IRKUTSK. IRKUTSK. BeforeBefore leavingleaving, , hehe hadhad consultedconsulted a fortune a fortune tellerteller whowho toldtold
himhim, , amongstamongst otherother thingsthings : ": "AfterAfter KAZAN KAZAN bewarebeware of the of the skysky, in OMSK , in OMSK 
bewarebeware of the of the tartarstartars, in TOMSK , in TOMSK bewarebeware of the of the eyeseyes, , afterafter TOMSK TOMSK bewarebeware of of 
water and, water and, aboveabove all, all, alwaysalways bebe carefulcareful of a large of a large brownbrown--hairedhaired personperson withwith
black boots. " STROGOFF black boots. " STROGOFF hadhad thereforetherefore writtenwritten on a on a mapmap hishis "chances" of "chances" of 
successsuccess for for eacheach route route betweenbetween twotwo townstowns : : thesethese chances chances werewere representedrepresented
by a by a numbernumber betweenbetween 1 and 10 (1 and 10 (measuringmeasuring the the numbernumber of chances of of chances of successsuccess
out of 10). out of 10). IgnoringIgnoring probabilityprobability calculationcalculation, , hehe hadhad thereforetherefore chosenchosen hishis route route 
by by maximisingmaximising the total the total sumsum of the chances. of the chances. 

The The numbersnumbers of the of the citiescities are: MOSCOW (1), KAZAN (2), PENZA(3), PERM are: MOSCOW (1), KAZAN (2), PENZA(3), PERM 
(4), OUFA (5), TOBOLSK (6), NOVO(4), OUFA (5), TOBOLSK (6), NOVO--SAIMSK (7), TARA (8), OMSK (9), SAIMSK (7), TARA (8), OMSK (9), 
TOMSK (10), SEMIPALATINSK(11), IRKOUTSK (12). TOMSK (10), SEMIPALATINSK(11), IRKOUTSK (12). 

1. 1. DetermineDetermine the route of Michel the route of Michel StrogoffStrogoff. . 
2. 2. WhatWhat waswas the the probabilityprobability, , withwith the the assumptionassumption of the of the independenceindependence of the of the 
randomrandom variables, variables, thatthat StrogoffStrogoff wouldwould succeedsucceed? ? 
3. 3. WhatWhat wouldwould have been have been hishis route if route if hehe hadhad knownknown the the principlesprinciples of of 
probabilityprobability calculationcalculation??



Shortest path algorithms and Shortest path algorithms and 
applications to networksapplications to networks

Routing protocols are implemented in a distributed Routing protocols are implemented in a distributed 
way in IP networks.;way in IP networks.;

What is routing What is routing ……



What is routing?What is routing?

The term The term routingrouting corresponds to the mechanisms used corresponds to the mechanisms used 
by a host to transfer data to its destination by examining by a host to transfer data to its destination by examining 
the information in the data.the information in the data.

RoutingRouting is a key element of level is a key element of level networknetwork of TCP/IP of TCP/IP 
stack. It uses information stocked in routing tables in stack. It uses information stocked in routing tables in 
each nodeeach node--router.router.
 The routing table stores the routes (and in some cases, The routing table stores the routes (and in some cases, metricsmetrics

associated with those routes) to particular network destinationsassociated with those routes) to particular network destinations. . 
It is frequent that in a routing table we find only the informatIt is frequent that in a routing table we find only the information ion 
about the gateway number toward the destination and not the about the gateway number toward the destination and not the 
entirely route. entirely route. 



Routing Protocols in InternetRouting Protocols in Internet

Two main groups:
– Distance-Vector protocols: RIP, IGRP, BGP.
– Link-State protocols: OSPF, IS-IS



Routing Information Protocol (RIP)Routing Information Protocol (RIP)
(RFC 2453)(RFC 2453)

Let Let D(i,jD(i,j) represent the metric of the best route from entity i to entity) represent the metric of the best route from entity i to entity j. It j. It 
should be defined for every pair of entities. should be defined for every pair of entities. d(i,jd(i,j) represents the costs of the ) represents the costs of the 
individual steps. Formally, let individual steps. Formally, let d(i,jd(i,j) represent the cost of going directly from ) represent the cost of going directly from 
entity i to entity j. It is infinite if i and j are not immediatentity i to entity j. It is infinite if i and j are not immediate neighbors. Since e neighbors. Since 
costs are additive, it is easy to show that the best metric mustcosts are additive, it is easy to show that the best metric must be described be described 
by:by:

D(i,iD(i,i) = 0, all i ) = 0, all i 
D(i,jD(i,j) = min) = minkk [[d(i,kd(i,k) + ) + D(k,jD(k,j)], otherwise )], otherwise 

and that the best routes start by going from i to those neighborand that the best routes start by going from i to those neighbors k for which s k for which 
d(i,kd(i,k) + ) + D(k,jD(k,j) has the minimum value. ) has the minimum value. 



Implementing RIPImplementing RIP
The The Routing Information ProtocolRouting Information Protocol is a dynamic is a dynamic routing protocolrouting protocol used in local used in local 

and wide area networks. As such it is classified as an and wide area networks. As such it is classified as an interior gateway interior gateway 
protocolprotocol (IGP) using the (IGP) using the distancedistance--vector routing algorithmvector routing algorithm. . 

Each router keeps a distance table for all destinations in the nEach router keeps a distance table for all destinations in the network. This table etwork. This table 
stores all shortest distance to any destination and the next neistores all shortest distance to any destination and the next neighbor to ghbor to 
reach each of them according to the distance.reach each of them according to the distance.

Periodically, each router announces its distance table to its diPeriodically, each router announces its distance table to its direct neighbors;rect neighbors;

Any time some update is announced from a neighbor, do:Any time some update is announced from a neighbor, do:
compute the new distance Dcompute the new distance D’’;;
if Dif D’’ < D keep the new value and the neighbor announcing it;< D keep the new value and the neighbor announcing it;

The update procedure is in origine of some limitations of the prThe update procedure is in origine of some limitations of the protocolotocol……



RIP: how it works?RIP: how it works?



RIPRIP



RIPRIP



LinkLink--State protocolsState protocols
OSPF (Open OSPF (Open ShortestShortest PathPath First)First)

Principle:Principle:

 All nodes do have a map of the entire networkAll nodes do have a map of the entire network. . 
Determining the neighbors of each nodeDetermining the neighbors of each node
Distributing the information for the map (flooding)Distributing the information for the map (flooding)
Creating the mapCreating the map

 Computing the shortest pathsComputing the shortest paths
Each node independently runs an Each node independently runs an algorithmalgorithm (generally (generally 
Dijkstra's algorithmDijkstra's algorithm is used) over the map to determine the is used) over the map to determine the 
shortest pathshortest path from itself to every other node in the network.from itself to every other node in the network.



Introduction to linear Introduction to linear 
programmingprogramming

Linear ProgrammingLinear Programming
 linear programminglinear programming (LP) is a technique for (LP) is a technique for optimizationoptimization of a of a linearlinear

objective functionobjective function of variables xof variables x11, x, x22, , ……xxnn, subject to , subject to linear equalitylinear equality and and 
linear inequalitylinear inequality constraintsconstraints. . 

How to solve linear programming :How to solve linear programming :
 The The simplex algorithmsimplex algorithm (1951, 1963), developed by (1951, 1963), developed by George George DantzigDantzig, , 

solves LP problems by constructing an admissible solution at a vsolves LP problems by constructing an admissible solution at a vertex of ertex of 
the polyhedron and then walking along edges of the polyhedron tothe polyhedron and then walking along edges of the polyhedron to
vertices with successively higher values of the objective functivertices with successively higher values of the objective function until on until 
the optimum is reached. (CPLEX, EXPRESSthe optimum is reached. (CPLEX, EXPRESS--MP, etc.). MP, etc.). 

 Alternative methods :Alternative methods :
the the ellipsoid methodellipsoid method by by Leonid Leonid KhachiyanKhachiyan in 1979 in 1979 

In 1984, In 1984, N. N. KarmarkarKarmarkar proposed a new interior point proposed a new interior point projective projective 
methodmethod for linear programming. (for linear programming. (Karmarkar'sKarmarkar's algorithmalgorithm))



Introduction to integer linear Introduction to integer linear 
programmingprogramming

Integer Linear Programming (ILP)Integer Linear Programming (ILP)
 An integer linear program is a linear programming problem with An integer linear program is a linear programming problem with 

variables taking values in Z.variables taking values in Z.
 Binary or 0Binary or 0--1 linear programming problems are a special case.1 linear programming problems are a special case.

How to solve integer linear programming :How to solve integer linear programming :
 Branch and bound methods, branch and cutBranch and bound methods, branch and cut……



DealingDealing withwith the TSP the TSP problemproblem

HistoryHistory
19th 19th centurycentury
 The first The first methodsmethods are are proposedproposed by Sir William by Sir William RowanRowan Hamilton et Thomas Hamilton et Thomas 

PenyngtonPenyngton KirkmanKirkman. . 
19301930
 The TSP has been The TSP has been deeplydeeply studiedstudied by Karl Menger by Karl Menger àà Harvard. Harvard. 

19541954
 Solution for TSP Solution for TSP withwith 49 49 citiescities by Dantzig, by Dantzig, FulkersonFulkerson et Johnson. et Johnson. 

19751975
 Solution for TSP Solution for TSP withwith 100 100 citiescities by by CameriniCamerini, , FrattaFratta et et MaffioliMaffioli

19871987
 Solution for TSP Solution for TSP withwith 532 532 citiescities and and nextnext withwith 2392 2392 citiescities par par PadbergPadberg and and 

Rinaldi Rinaldi 
19981998
 Solution for TSP Solution for TSP withwith 13 509 13 509 citiescities of US.of US.

20012001
 Solution for TSP Solution for TSP withwith 15112 15112 citiescities of of GermanytGermanyt by by ApplegateApplegate, , BixbyBixby, , ChvChvààtaltal and and 

Cook Cook fromfrom universitiesuniversities of of RiceRice and Princeton. and Princeton. 



The TSP The TSP problemproblem

In 1859, the mathematician Sir W. R. Hamilton built a puzzle dodecahedron 
in wood. This dodecahedron has 20 vertices and 12 faces:

Find a Hamiltonian circuit.



The TSP The TSP problemproblem, , mathematicalmathematical
formulationformulation

ILP Formulation:ILP Formulation:
 To each arc (To each arc (i,ji,j), associate variables ), associate variables xxijij taking 1 if taking 1 if 

included in the circuit and 0 otherwise.  included in the circuit and 0 otherwise.  
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A naive methodA naive method

Let P=Ax Let P=Ax ≤≤ bb, (x, (x≥≥0, et A0, et A≥≥0) a max. problem (0) a max. problem (cxcx, c, c≥≥0), 0), 
and xand x00 a continue solution of relaxed problem.a continue solution of relaxed problem.
 xx00 is a feasible solution, is a feasible solution, xx00 no.no.

In general In general «« roundingrounding »» the relaxed solution can lead the relaxed solution can lead 
to feasible or unfeasible solutions.to feasible or unfeasible solutions.
 Example:Example:

Maximize xMaximize x11 + 2x+ 2x22

4x4x11 + 3x+ 3x22 ≤≤ 12; 12; 
--2x2x11 + x+ x22 ≤≤ 1; 1; 
3x3x11 ≤≤ 5;5;
xx11 ≥≥0 et x0 et x22 ≥≥ 0, x0, x11, x, x22 integers.integers.

Relaxed solution (0.9, 2.8) Relaxed solution (0.9, 2.8) 
Integral solution (1, 2);Integral solution (1, 2);



Exact resolution methodsExact resolution methods
Branch and Bound method (B&B)Branch and Bound method (B&B)..
 Principle : build a research tree where the initial node Principle : build a research tree where the initial node 

corresponds to the relaxed problem (min).corresponds to the relaxed problem (min).
 Decompose the problem to subDecompose the problem to sub--problems : the problems : the 

optimal solution should be in one of these suboptimal solution should be in one of these sub--
problems. problems. 

Any infeasible problem should be removed; Any infeasible problem should be removed; 
If possible, find the exact solution.If possible, find the exact solution.
Otherwise find a lower bound , if it is larger than the best Otherwise find a lower bound , if it is larger than the best 
obtained solution the subobtained solution the sub--problem should be discarded. problem should be discarded. 
For the remaining cases, reFor the remaining cases, re--decompose the problem...decompose the problem...



Exact resolution methodsExact resolution methods
..
Dakin Procedure (1965), and Lang & Dakin Procedure (1965), and Lang & DoigDoig (1960)(1960)

Max Max cxcx = z,= z,
Ax = bAx = b
xxjjNN, j=1..n, j=1..n

Initiation : initial arborescence node S0Initiation : initial arborescence node S0
 Solve the associated relaxed problem. If the obtained solution iSolve the associated relaxed problem. If the obtained solution is s 

integer, END.integer, END.
 Otherwise, an evaluation by excess is obtained; separate the Otherwise, an evaluation by excess is obtained; separate the 

problem again.problem again.



SeparationSeparation and Evaluationand Evaluation
Separation :Separation :

 Separate on continuous variable Separate on continuous variable xxkk : : xxkk ≤≤ xxkk and and xxkk
≥≥ xxkk +1+1 which gives two nodes Swhich gives two nodes S’’ et Set S’’’’;;

Evaluation by excess :Evaluation by excess :
 Solve the two Solve the two «« continuouscontinuous »» linear programs:linear programs:

PLPLSS’’ = PL= PLSS + + xxkk ≤≤ xxkk ; ; 
PLPLSS’’’’ = PL= PLSS + + xxkk ≥≥ xxkk +1+1 ; ; 



SeparationSeparation and and evaluationevaluation
Node choiceNode choice
 Depth firstDepth first

Default evaluationDefault evaluation
Best known solution zBest known solution z0.0.

Abandon the search on S if v(S)Abandon the search on S if v(S)≤≤v(zv(z00).).
 Stop when all nodes are abandoned.Stop when all nodes are abandoned.



Linear programming modelingLinear programming modeling
General caseGeneral case

Suppose that a linear programming is composed of :Suppose that a linear programming is composed of :
-- The objective function of The objective function of nn variables variables xxjj ((maximization)maximization) ; ; 
-- All variables take positive values.All variables take positive values.
-- The constraints are linear functions bounded by some constantThe constraints are linear functions bounded by some constant

That is : That is : 
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Simplexe Simplexe algorithmalgorithm: : 
geometricalgeometrical interpretationinterpretation

maximizemaximize: : Z = 2xZ = 2x11 + x+ x22

SubjectSubject to: to: xx11+2x+2x2 2  77
xx11+x+x2 2  55
xx22  11
xx1 1  44
xxi i  00



Linear programming modelingLinear programming modeling

Modeling : importance of linearity;Modeling : importance of linearity;
Linearity of objective function:Linearity of objective function:
 maxminmaxmin or or minmaxminmax functionsfunctions
 With absolute valuesWith absolute values
 Objective function Objective function «« rapportrapport »» or productor product

Linearity of constraints :Linearity of constraints :
 Capacity constraintsCapacity constraints
 Demand constraintsDemand constraints
 Mass balance constraintsMass balance constraints
 Proportion constraintsProportion constraints



LP LP modellingmodelling
Example. Look at the case of production problem where one shouldExample. Look at the case of production problem where one should

find the quantities to be produced under capacity constraints. find the quantities to be produced under capacity constraints. 
Suppose that some factory produces two products A and B, each ofSuppose that some factory produces two products A and B, each of
them passing through cutting process (C) and refinement (R) : them passing through cutting process (C) and refinement (R) : 

processprocess CuttingCutting Refinement Refinement 

Time for processing A Time for processing A 2 hours 2 hours 3 hours 3 hours 

Time for processing B Time for processing B 2 hours 2 hours 1 hour 1 hour 

Maximal capacityMaximal capacity 200 hours 200 hours 100 hours 100 hours 

Knowing that the profit for each product A and B are 20Knowing that the profit for each product A and B are 20 €€ and 10and 10 €€, find , find 
the quantities to be produced in order to maximize the profitthe quantities to be produced in order to maximize the profit ??



LP LP ModellingModelling

Three Three TV models A, B et C providing profits of 160, 300 et 400 TV models A, B et C providing profits of 160, 300 et 400 
francs. Each TV requires some time francs. Each TV requires some time FiFi for processing pieces, for processing pieces, 
some time Ai for assembling and some some time Ai for assembling and some EiEi time for refining. In time for refining. In 
one week there is 150 available hours for processing, 200 for one week there is 150 available hours for processing, 200 for 
assembling and 60 refining. Propose an LP model for the assembling and 60 refining. Propose an LP model for the 
production planning that maximizes the overall profit.production planning that maximizes the overall profit.

AA BB CC
150150
200200
6060332,32,311EiEi

885544AiAi
553,53,533FiFi



Linear programming modelingLinear programming modeling

Modeling examples :Modeling examples :
lower and upper bounds;lower and upper bounds;
render inequalities to equalities;render inequalities to equalities;
express unsigned variables as nonnegative ones;express unsigned variables as nonnegative ones;
express the absolute value;express the absolute value;
express express minmaxminmax and and maxminmaxmin functionsfunctions……

Logic constraints:Logic constraints:
If A then B; AIf A then B; A iffiff B; If A not B; If not A then B; If B and C then A; B; If A not B; If not A then B; If B and C then A; 
if two or more variables in {B, C, D, E} then A;if two or more variables in {B, C, D, E} then A;
If M or more over N variables B, C, D, If M or more over N variables B, C, D, ……, then A;, then A;



Modeling by binary variablesModeling by binary variables



Linear programming modelingLinear programming modeling

Modeling examples :Modeling examples :
disjunctive constraints :disjunctive constraints :
ConstraintConstraint1 1  bb11 or Constraintor Constraint22  bb2, 2, bb1, 1, bb2 2 > 0> 0;;

conjunctive constraints;conjunctive constraints;
task A before task B, or task A before B and C...task A before task B, or task A before B and C...

Express in a linear form the following model: Express in a linear form the following model: 
Min {(Min {(ccTTx+d)/(fx+d)/(fTTx+gx+g) | Ax ) | Ax ≤≤b, b, ffTTx+gx+g > 0, x > 0, x 00};};



LP LP modellingmodelling : : ExercicesExercices

……



Introduction to computational Introduction to computational 
complexity theorycomplexity theory

Complexity theory deals with two aspects:Complexity theory deals with two aspects:
 AlgorithmAlgorithm’’s complexity.s complexity.
 ProblemProblem’’s complexity.s complexity.

ReferencesReferences
 S. Cook, S. Cook, «« The The complexitycomplexity of of TheoremTheorem ProvingProving ProceduresProcedures »», 1971., 1971.
 GareyGarey et Johnson, et Johnson, «« Computers and Computers and IntractabilityIntractability, A guide to the , A guide to the theorytheory of of 

NPNP--completenesscompleteness »», 1979., 1979.
 J. Carlier et Ph. ChrJ. Carlier et Ph. Chréétienne tienne «« ProblProblèèmes dmes d’’ordonnancements : algorithmes ordonnancements : algorithmes 

et complexitet complexitéé »», 1988., 1988.



Basic NotionsBasic Notions
Some problem is a Some problem is a ““questionquestion”” characterized by characterized by 
parameters and needs an answer.parameters and needs an answer.
 Parameters description;Parameters description;
 Properties that a solutions must satisfy;Properties that a solutions must satisfy;
 An instance is obtained when the parameters are fixed to An instance is obtained when the parameters are fixed to 

some values.some values.

An algorithm: a set of instructions describing how some An algorithm: a set of instructions describing how some 
task can be achieved or a problem can be solved.task can be achieved or a problem can be solved.

A program : the computational implementation of an A program : the computational implementation of an 
algorithm. algorithm. 



AlgorithmAlgorithm’’s complexity (I)s complexity (I)

There may exists several algorithms for the There may exists several algorithms for the 
same problem same problem 
Raised questions:Raised questions:
 Which one to choose ? Which one to choose ? 
 How they are compared ? How they are compared ? 
 How measuring the efficiency ? How measuring the efficiency ? 
 What are the most appropriate measures, running What are the most appropriate measures, running 

time, memory space ?time, memory space ?



AlgorithmAlgorithm’’s complexity (II)s complexity (II)

Running time depends on:Running time depends on:
 The data of the problem,The data of the problem,
 Quality of program...,Quality of program...,
 Computer type,Computer type,
 AlgorithmAlgorithm’’s efficiency,s efficiency,
 etc.etc.

Proceed by analyzing the algorithm:Proceed by analyzing the algorithm:
 Search for some n characterizing the data.Search for some n characterizing the data.
 Compute the running time in terms of Compute the running time in terms of nn..
 Evaluating the number of elementary operations, Evaluating the number of elementary operations, 

(elementary operation =  simple instruction of a programming (elementary operation =  simple instruction of a programming 
language).language).



AlgorithmAlgorithm’’s evaluation (I)s evaluation (I)
Any algorithm is composed of two main stages: Any algorithm is composed of two main stages: 
initialization and computing one initialization and computing one 
The complexity parameter is the size data n The complexity parameter is the size data n (binary coding).(binary coding).

Definition:Definition:
Let be Let be n>0n>0 andandT(nT(n)) the running time of an algorithm expressed in the running time of an algorithm expressed in 
terms of  the size data terms of  the size data nn, , T(nT(n)) is of is of O(f(nO(f(n)))) iffiff  nn00 and some and some 
constant constant cc such that:such that:
n n  nn00,, we have we have T(nT(n) )  c c f(nf(n).).

If If f(nf(n) is a polynomial then the algorithm is of polynomial complexity) is a polynomial then the algorithm is of polynomial complexity..

Study the complexity in the worst case.Study the complexity in the worst case.
Study the complexity in average : Study the complexity in average : tm(ntm(n)) is the mean value of execution is the mean value of execution 
time when the data and the associated distribution law are giventime when the data and the associated distribution law are given..



AlgorithmAlgorithm’’s evaluation (II) s evaluation (II) 
exampleexample

Given N numbers aGiven N numbers a11, a, a22, .., a, .., ann in {1,in {1,……, K}., K}.
The algorithm MIN finds the minimum value.The algorithm MIN finds the minimum value.
Algorithm MINAlgorithm MIN

BeginBegin
for i=1 to n read for i=1 to n read aaii;;
B:=aB:=a11, j:=1;, j:=1;
for i=2 to n do :for i=2 to n do :

if B=1 then j:=n;if B=1 then j:=n;
elseifelseif aaii < B then< B then

begin  begin  
j:=i;j:=i;
B:=B:=aaII;;

end;end;
write : the min value is write : the min value is aajj;;

End.End.



AlgorithmAlgorithm’’s evaluation (III) s evaluation (III) 

Study the complexity of algorithm MIN.Study the complexity of algorithm MIN.

Proposition 1.Proposition 1. The complexity of Algorithm MIN is in The complexity of Algorithm MIN is in O(nO(n).).

Proposition 2.Proposition 2. if numbers if numbers aaii are independent random values are independent random values 
and if any and if any aaii has some probability 1/K to be equal to 1, the has some probability 1/K to be equal to 1, the 
complexity in average of algorithm MIN, apart the reading complexity in average of algorithm MIN, apart the reading 
data phase, is in O(1).data phase, is in O(1).



Importance of polynomial Importance of polynomial 
algorithms  (I)algorithms  (I)

2*102*1088
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secsec

33nn
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n=50n=50n=40n=40n=30n=30n=20n=20n=10n=10f(n)f(n)

An elementary operation is run in one microsecond.



Importance of polynomial Importance of polynomial 
algorithms algorithms (II)(II)

N5 + 6.29N5 + 6.29N5 + 4.19N5 + 4.19N5N533nn

N4 + 9.97N4 + 9.97N4 +6.64N4 +6.64N4N422nn

10N310N34.64 N34.64 N3N3N3nn33

31.6 N231.6 N210 N210 N2N2N2nn22

1000 N11000 N1100 N1100 N1N1N1nn

1000 times 1000 times 
fasterfaster

100 times 100 times 
fasterfaster

TodaysTodays
computerscomputers

f(n)f(n)

Problem’s sizes solved in one hour run time



Computational complexity Computational complexity 
theorytheory

The decision problem is some mathematical The decision problem is some mathematical 
question requiring some answer yes or no. question requiring some answer yes or no. 

Computational Complexity Theory is concerned with Computational Complexity Theory is concerned with 
the question: for which decision problems do the question: for which decision problems do 
efficient algorithms exist efficient algorithms exist 



SATSAT
SatisfiabilitySatisfiability is the problem of determining if the variables of a is the problem of determining if the variables of a 
givengiven booleanboolean formula can be assigned in such a way as to formula can be assigned in such a way as to 
make the formula evaluate to TRUE. make the formula evaluate to TRUE. 

In In complexity theorycomplexity theory, the Boolean , the Boolean satisfiabilitysatisfiability problem (SAT) is problem (SAT) is 
a a decision problemdecision problem, whose instance is a Boolean expression , whose instance is a Boolean expression 
written using only AND, OR, NOT, variables, and parentheses. written using only AND, OR, NOT, variables, and parentheses. 

The question is: given the expression, is there some assignment The question is: given the expression, is there some assignment 
of of TRUETRUE and and FALSEFALSE values to the variables that will make the values to the variables that will make the 
entire expression true? entire expression true? 

A formula of A formula of propositional logicpropositional logic is said to be is said to be satisfiablesatisfiable if if logical logical 
valuesvalues can be assigned to its can be assigned to its variablesvariables in a way that makes the in a way that makes the 
formula true. formula true. 



Travelling salesman problemTravelling salesman problem

Given a weighted graph Given a weighted graph G=(G=(X,E,vX,E,v) ) 

X = Vertices (= Cities)X = Vertices (= Cities)
E = Edges   (pair of cities)E = Edges   (pair of cities)
v = Distances between citiesv = Distances between cities

Find the shortest tour that visits all citiesFind the shortest tour that visits all cities



Partition problemsPartition problems
Partition problemPartition problem
 Data: given a set A={Data: given a set A={aaii | | iiII } of n integer numbers.} of n integer numbers.
 Question : isQuestion : is--there some partition of A in two subsets A1 and A2 there some partition of A in two subsets A1 and A2 

of equal weight ?of equal weight ?

TripartitionTripartition problemproblem
 Data: given a set A={Data: given a set A={aaii | | iiII } of n=3q integer numbers such that } of n=3q integer numbers such that 

iiIIaaii==qBqB and B/4<and B/4<aaii<B/2 and B some positive integer.<B/2 and B some positive integer.
 Question : IsQuestion : Is--there some partition of A in q subsets of cardinal 3 there some partition of A in q subsets of cardinal 3 

and weight B?and weight B?



Some equivalent problemsSome equivalent problems
Vertex coveringVertex covering..
 DataData : a graph : a graph GG =(=(VV,,EE) with ) with VV a set of vertex, a set of vertex, EE a set of edges a set of edges 

and some positive integer B and some positive integer B  |V|.|V|.
 QuestionQuestion : Is: Is--there some subset Vthere some subset V’’V such that V such that |V|V’’| |  BB, and , and 

for each edge (for each edge (i,j)i,j)EE, , iiVV’’ or or jjVV’’ ??
Independent setIndependent set
 DataData : a graph : a graph GG =(=(VV,,EE) with the set of vertex ) with the set of vertex V andV and EE the set of the set of 

edges and some positive integer B edges and some positive integer B  |V|.|V|.
 QuestionQuestion : Is: Is--there some Vthere some V’’V V |V|V’’| | ≥≥ B such that for any (B such that for any (i,j)i,j)EE, , 

iiVV’’ or or jjVV’’ ??
MaximalMaximal clique.clique.
 DataData : a graph G = (V,E) where V  is the vertex set and E the : a graph G = (V,E) where V  is the vertex set and E the 

set of edges, and a positive integer B.set of edges, and a positive integer B.
 QuestionQuestion : Is: Is--there some Vthere some V’’  V such that the corresponding V such that the corresponding 

subsub--graphgraph is complete and of size greater or equal to B?is complete and of size greater or equal to B?



Scheduling problemsScheduling problems
One machine problemOne machine problem
 Data : a set I of n independent and indivisible tasks; for each Data : a set I of n independent and indivisible tasks; for each task task iiII

we have its duration pwe have its duration pii, availability date , availability date rrii and its deadline and its deadline ddii..
 Question  : isQuestion  : is--there some scheduling there some scheduling  of these n tasks one a single of these n tasks one a single 

machine that satisfies the availability and deadline dates?machine that satisfies the availability and deadline dates?
Two processors problemTwo processors problem
 Data : a set I of n independent and indivisible tasks , durationData : a set I of n independent and indivisible tasks , durationss ppii and a and a 

positive integer B.positive integer B.
 Question  : IsQuestion  : Is--there a scheduling there a scheduling  of these n tasks on two processors of these n tasks on two processors 

of duration less or equal to B ?of duration less or equal to B ?
NTRMNTRM
 Data : a set I={1,2,.. n} of tasks of durations 1 and deadlines Data : a set I={1,2,.. n} of tasks of durations 1 and deadlines dd11, d, d22, .., , .., 

ddnn, a partial order < on I, and a positive integer, a partial order < on I, and a positive integer B. B. 
 Question : IsQuestion : Is--there a scheduling there a scheduling  of these tasks on one machine of these tasks on one machine 

satisfying  the partial order and such that the number of delayesatisfying  the partial order and such that the number of delayed tasks d tasks 
is is  B.B.



Complexity theory: basic Complexity theory: basic 
notionsnotions

Why using the decision problems?Why using the decision problems?
 To introduce a simple formalism and facilitating the comparison To introduce a simple formalism and facilitating the comparison 

between problems.between problems.

The complexity theory relies on Turing MachineThe complexity theory relies on Turing Machine……
 ……..



The class NPThe class NP
Alternatively:Alternatively:
We distinguish the following complexity classes:We distinguish the following complexity classes:
 Class PClass P : some problem is in P if it can be solved in : some problem is in P if it can be solved in 

polynomial time to the size of data by a determinist polynomial time to the size of data by a determinist 
algorithm.  algorithm.  

 A problem is said to be in A problem is said to be in NPNP if and only ifif and only if for a for a 
guessed solution there exists a polynomial time guessed solution there exists a polynomial time 
algorithm verifying the solution.algorithm verifying the solution.

 Class NPClass NP : it groups all decision problems such that an answer : it groups all decision problems such that an answer 
yes can be decided by a nonyes can be decided by a non--determinist algorithm in polynomial determinist algorithm in polynomial 
time to the size of data.time to the size of data.

Polynomial time verificationPolynomial time verification



NPNP--completenesscompleteness

Paper of Stephen Cook, Paper of Stephen Cook, ««The complexity of The complexity of 
Theorem Proving ProceduresTheorem Proving Procedures»», 1971, 1971..

 Defines the polynomial reductionDefines the polynomial reduction
 Defines the decision problems and the class NP.Defines the decision problems and the class NP.
 Shows that the problem SAT is at least as difficult Shows that the problem SAT is at least as difficult 

as all the others in NP as all the others in NP  NPNP--completecomplete



Complexity theoryComplexity theory
polynomial reductionpolynomial reduction

Polynomial reduction allows to compare NP problems in terms of Polynomial reduction allows to compare NP problems in terms of 
computational complexitycomputational complexity
Definition: PDefinition: P11 is is polynomiallypolynomially reduced to Preduced to P22 (P(P11PP22) if P) if P11 is is 
polynomial there exists a polynomial algorithm A that builds forpolynomial there exists a polynomial algorithm A that builds for
any dany d11 of Pof P1 1 some data dsome data d2 2 of Pof P2 2 such that dsuch that d11 has answer YES has answer YES iffiff
dd22=A(d=A(d11) has answer YES. ) has answer YES. 
Some problem is said NPSome problem is said NP--Complete if he is in NP, and any NPComplete if he is in NP, and any NP--
Complete problem can be Complete problem can be polynomiallypolynomially reduced to this problem.reduced to this problem.
The polynomial reduction defines a preThe polynomial reduction defines a pre--order relation on NP.order relation on NP.
CookCook’’sTheoremsTheorem : SAT is NP: SAT is NP--Complete.Complete.



The general method:The general method:
 1) show first that 1) show first that   NPNP
 2) 2) show that there exists Pshow that there exists P’’NPNP--complete such thatcomplete such that PP’’ ..

The following problems are NPThe following problems are NP--complete. complete. 
 TSPTSP, , 
 Partition problems,Partition problems,
 Exact cover Exact cover 
 CliqueClique

NPNP--completeness completeness 
demonstration techniques (I)demonstration techniques (I)



Demonstration techniques (II)Demonstration techniques (II)
Three main techniques are used to show the Three main techniques are used to show the 
NPNP--completeness of combinatorial problems.completeness of combinatorial problems.

 RestrictionRestriction
examples : minimal covering, knapsack, etc.examples : minimal covering, knapsack, etc.

 Local replacementLocal replacement
examples : 3SAT, X4Cexamples : 3SAT, X4C……

 Component designComponent design
example : NTRMexample : NTRM……



Demonstrating the NPDemonstrating the NP--
completenesscompleteness

Show the three following propositions:Show the three following propositions:

 Proposition 1. The twoProposition 1. The two--processors problem is NPprocessors problem is NP--complete.complete.
show show partitionpartition  twotwo--processors.processors.

 Proposition 2. The one machine problem is NPProposition 2. The one machine problem is NP--complete.complete.
partitionpartition  one machine problemone machine problem..



ExercisesExercises
1) Show that the knapsack problem is NP1) Show that the knapsack problem is NP--complete.complete.

 Data : A finite set X, for any Data : A finite set X, for any xxiiXX, there is some weight , there is some weight w(xw(xii) and profit ) and profit 
p(xp(xii), and B and K  two positive integers. ), and B and K  two positive integers. 

 Question : IsQuestion : Is––there some Xthere some X’’  X such that X such that xixiXX’’w(xw(xii) )  B and B and 
xixiXX’’p(xp(xii) )  K ?K ?

2) Show the NP2) Show the NP--completeness of the following problems:completeness of the following problems:
-- Data : a graph G=(V,E) Data : a graph G=(V,E) and some positive number K and some positive number K  |V||V|--1. 1. 
-- Question : is there some spanning tree of G with all vertex degQuestion : is there some spanning tree of G with all vertex degrees rees 
less or equal to K; in other words: some subset Eless or equal to K; in other words: some subset E’’  E such that E such that 
|E|E’’|=|V||=|V|--1, and G1, and G’’(V,E(V,E’’) is connected and no  vertex is incident to more ) is connected and no  vertex is incident to more 
than K arcs ?than K arcs ?
suggestion : TSPsuggestion : TSP



NPNP--completeness : conjecturecompleteness : conjecture

Fundamental Conjecture: PFundamental Conjecture: PNP.NP.

You win 1000000 USD if You show that P=NP 
or PNP.



PseudoPseudo--polynomial algorithms polynomial algorithms (I)(I)

Dynamic programmingDynamic programming

 Idea : breaking down the initial problem in a Idea : breaking down the initial problem in a 
sequence of simpler problems, solving the nsequence of simpler problems, solving the n--the the 
problem can be done by recurrence on this of (nproblem can be done by recurrence on this of (n--1)1)--
the one. the one. 

 WESS problem (weight of a subset)WESS problem (weight of a subset)
Data : a finite set A composed of n elements Data : a finite set A composed of n elements aaiiZZ++ and a and a 
positive integer K. positive integer K. 
Question : isQuestion : is--there a subset of A of weight K ?there a subset of A of weight K ?



PseudoPseudo--polynomial algorithms (II)polynomial algorithms (II)
Algorithm WESSAlgorithm WESS

BeginBegin
for k=0 to for k=0 to aiaiAAaaii

for j=1 to n do :for j=1 to n do :
WEIGHT(k,jWEIGHT(k,j):=false;):=false;
end for;end for;

end for;end for;
set WEIGHT(0,0) := true;set WEIGHT(0,0) := true;
for j=1 to n for j=1 to n 

for k=0 to for k=0 to aiaiAAaaii do :do :
if (if (kkaajj and and WEIGHTWEIGHT(k(k--aajj, j, j--1)=true) or 1)=true) or WEIGHT(kWEIGHT(k, j, j--1)=true 1)=true 

then then WEIGHT(kWEIGHT(k, j)=true;, j)=true;
end for;end for;

end for;end for;
end.end.

Proposition : Algorithm WESS is of complexity O(naiAaj) and assigns true to WEIGHT(K, 
n) if there exists some subsets of n numbers a1, a2, .., an of weight K.



Exercise: AN INVESTMENT Exercise: AN INVESTMENT 
PROBLEMPROBLEM

1) An example. 6 million is at our disposal, to invest in 3 regi1) An example. 6 million is at our disposal, to invest in 3 regions. The following table shows the ons. The following table shows the 
benefits given by the invested sums. benefits given by the invested sums. 

Determine the optimal investment policy for the three regions usDetermine the optimal investment policy for the three regions using a "dynamic programming" ing a "dynamic programming" 
method. The idea is to associate a graph with levels to the datamethod. The idea is to associate a graph with levels to the data. Level 0 contains only the vertex . Level 0 contains only the vertex 
(0,0), (because no money has been invested yet). Level 1 contain(0,0), (because no money has been invested yet). Level 1 contains the vertices (1,0) (1,1) (1,2) (1,3) s the vertices (1,0) (1,1) (1,2) (1,3) 
(1,4), which correspond to the cumulated amounts invested in reg(1,4), which correspond to the cumulated amounts invested in region 1. Level i contains the vertices ion 1. Level i contains the vertices 
(i, 0), (i, 1), (i, 2), (i, 3), (i, 4), (i, 5), (i, 6), which co(i, 0), (i, 1), (i, 2), (i, 3), (i, 4), (i, 5), (i, 6), which correspond to the sums invested in the regions 1 .. i (i rrespond to the sums invested in the regions 1 .. i (i 
= 2, 3). The arcs are placed between the levels i and i +1, valu= 2, 3). The arcs are placed between the levels i and i +1, valuated by the sums invested in the ated by the sums invested in the 
region i +1. The last vertex is (3,6). The goal is to seek a maxregion i +1. The last vertex is (3,6). The goal is to seek a maximum value path in this graph. imum value path in this graph. 

2) The general case. More generally, we have B million to invest2) The general case. More generally, we have B million to invest in n regions. We shall set in n regions. We shall set fi(yfi(y), the ), the 
optimal profit for a cumulative investment of a sum y in the regoptimal profit for a cumulative investment of a sum y in the regions 1, 2, .., i. We have f0(0) = 0. ions 1, 2, .., i. We have f0(0) = 0. 
Determine a recurrence formula connecting Determine a recurrence formula connecting fifi to fito fi--1 for i from 1 to n. 1 for i from 1 to n. 

3) What is the complexity of the dynamic programming method in f3) What is the complexity of the dynamic programming method in function of  n and B, and unction of  n and B, and 
complexity of enumerating all possible solutions.complexity of enumerating all possible solutions.

0.7114 million

0.60.80.93 million

0.50.20.52 million

0.40.10.21 million

Region IIIRegion IIRegion I



Binary codeBinary code is the system of representing text or computer processor is the system of representing text or computer processor 
instructions by the use of the instructions by the use of the BinaryBinary number system's twonumber system's two--binarybinary digits digits 
"0" and "1"."0" and "1".
Binary codeBinary code of a of a  loglog22(a) places(a) places
 example : the size of 2example : the size of 23131 is logis log22(2(23131) + 1 = 32, thus we need 32 bits to code it in machine;) + 1 = 32, thus we need 32 bits to code it in machine;

In In computational complexity theorycomputational complexity theory, a numeric algorithm runs in pseudo, a numeric algorithm runs in pseudo--
polynomial time if its polynomial time if its running timerunning time is is polynomialpolynomial in the in the numeric valuenumeric value
(unary code) of the input. (unary code) of the input. 
An An NPNP--completecomplete problem with known pseudoproblem with known pseudo--polynomial time algorithms polynomial time algorithms 
is called is called weakly NPweakly NP--completecomplete. An . An NPNP--completecomplete problem is called problem is called 
strongly NPstrongly NP--completecomplete if it is proven that it cannot be solved by a pseudoif it is proven that it cannot be solved by a pseudo--
polynomial time algorithm. polynomial time algorithm. 

Strong NPStrong NP--completeness (I)completeness (I)



Strong NPStrong NP--completeness (II)completeness (II)
DefinitionDefinition : some problem is : some problem is strongly NPstrongly NP--completecomplete, if it is , if it is 
NPNP--complete and if the existence of a solution pseudocomplete and if the existence of a solution pseudo--
polynomial algorithm yields this of a polynomial polynomial algorithm yields this of a polynomial 
algorithm. algorithm. 
 Examples : TSP, Examples : TSP, tripartitiontripartition, clique, sat., clique, sat.

 What about partition, twoWhat about partition, two--processors ?processors ?

 Proposition. The one machine problem is strongly NPProposition. The one machine problem is strongly NP--complete.complete.


