Intreduction te: combinatorial eptimization,
modeling and complexity theory.

Part |: Introduction to combinatorial optimization and graph theory
Beginnings ofi Operations Research;
Graph theory: basic notions

« Connectivity, shortest path problems, algorithms, applications in routing in
Internet,

Modeling combinatorial problems through LP, examples
Integer linear programming
EXErCISES;

Part II: Introduction to Computational Complexity Theory
= Algorithmic complexity
» Notions and evaluation measures, examples
= Problems complexity
« Decision problems, P and NP classes, polynomial reduction;
» NP-completeness, Cook’s Theorem, relation P vs NP, examples, exercises;

» Pseudo-polynomiality, dynamic programming, NP-complete problems in the
strong sense, examples, exercises.




IHIstory...

« |_.éonard EULER: 1707-1783
= Seven Bridges of Konigsberg

¢ Charles BABBAGE: 1791-1871(Ada LOVELACE :
1815-1852)

« Design ofi computers: Babbage sought a method by which
mathematical tables could be calculated mechanically,
removing the high rate of human error.

« Alan TURING: 1912-1954

= [he Turing machine
= Decrypting the Enigma code (Combinatorial),
= COLOSSUS: one of the first computers




IHIstory...

« Léonid KANTOROVITCH': 1912- 1986

= a pioneer of linear programming... transport program,
= Nobel price in economics (1975)

« Georges Bernard DANTZIG : 1914- 2005

= Linear programming

« Jeft HAWKINS : 1957
= Inventor of personnel-assistant (Palm Pilot)




IHIstory...

= Paul ERDOS and Alfred RENYI

« Albert-Lazlo BARABASI, Claude BERGE,
Ken APPEL and Wolfgang HAKEN,

= Jack EDMONS, Bernard Roy, Paul
ROBERTSON et Nell SEYMOUR, Robert
TARJAN




Some propblems ofi Operations
[Research

«  Discrete combinatorial problems
= [lravelling salesman problem,
« Minimum spanning tree

«  Continuous combinatorial problems
« Linear programming,

« Random problems
= Queuing theory
= Equipment replacement

« Compelitive situations
« Game theory




Discrete combinatorial problems
Iravelling salesman pronlemn

TSP. Given a set of n cities and a pairwise distance
function d(u, v), is there a tour of length < D?

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu




Discrete combinatorial problems
Iravelling salesman pronlemn

TSP. Given a set of n cities and a pairwise distance
function d(u, v), is there a tour of length < D?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu




Continuoeus combinatorial problems
Linear programming

Example. Suppose that a farmer has a piece of farm land, say A square
kilometers large, to be planted with; either wheat or cereals or some
combination of the two.

The farmer has a limited permissible amount F of fertilizer and P of
insecticide which can be used, each of whichiis required in different amounts
per unit area for wheat (F1, P1) and cereals (F2, P2).

Let S1 be the selling price of wheat, and S2 the price of cereals. If we denote
the area planted with wheat and cereals by x1 and x2 respectively, then the
optimal number of square kilometers to plant with wheat vs cereals can be
expressed as a linear programming problem:

maximize orEwyEs (maximize the revenue)
subject to:

limit on total area)
(limit on fertilizer)
IETER SRR (limit on insecticide)
SRNVEPPA (cannot plant a negative area)




[Ranaom, provlems

« Queuing theory.
= applications to (Internet) network congestion;
= Ordering the take-off of aircraft.

* Equipment replacement

« Deciding the replacement date for equipments
with: given failture probability.




VWY Using graphs?

Seven bridges of Konigsberg

Given the above graph, is it possible to construct a path (or a cycle, i.e. a path
starting and ending on the same vertex) which visits each edge exactly once?




Basic definitions

« Directed Graphs
* Non-oriented graphs
« walks, cycles, paths, circuits

« Stable, coloring, cligue...




Basic definitions

A directed graph or digraph is a pair G= (X, U) of:

= aset X, whose elements are called vertices or nodes,

= a set U of ordered pairs of vertices, called arcs, directed edges, or arrows.
It differs from an ordinary, or undirected graphiin that the latter one is
defined in terms of edges, which are unordered pairs of vertices.
A valuated graph is G = (X, U, v) where (X, U) is a graph and v an
application fromi U to R (real numbers).

Successors, predecessors, vertex degrees...




Basic definitions

A walk is an alternating sequence of vertices and edges, beginning and
ending with aivertex, where each vertex is incident to both the edge that
precedes it and the edge that follows it in the sequence, and where the
vertices that precede and follow an edge are the end vertices of that edge. A
walk is closed if its first and last vertices are the same (called a cycle), and
open if they are different (called a path).

The length / of a walk is the number of edges that it uses.
A directed path is when edges are “has the same orientation”
A directed cycle: without the arrows, it is just a cycle.

A path is simple (resp. elementary), meaning that no vertices (resp. no
edges) are repeated.

A graph is acyclic if it contains no cycles;

A path or cycle is Hamiltonian (resp. Eulerian) if it uses all vertices (resp.
edges) exactly once.




AsSsociated graphs

« Partiall Graph

« Sub-graph

« Complementary graph




AsSsociated graphs

« I'ransitive closure




Connectivity.

Simple Connectivity: connected component
Strongl ConnectiVvity: strong connected component

Reduced Graph:




Connectivity and strong
connectivity relations

« An equivalence relation is a binary relation on a set
that specifies how: to split up (i.e. partition) the set into
subsets suchi that every element of the larger set is in
exactly one of the subsets.

= reflexive, symmetric and transitive.

« eguivalence class of xin E , denoted R(x), is given by:
R(x)={y: XRy}.

« What can-we say about connectivity and strong
connectivity relations?




Particular Graphs

* Forest 1s a graph without cycle
P D D D
> O (c J
D

* Tree 1s a connected graph without cycle




RParticular Graphs

* In graphitheory, an arborescence is a directed graph in
which, for a vertex v called the root and any other vertex
U, there is exactly one directed path from v to u.

A Dipartite graph i1s a graph whose vertices can be
divided Into two disjoint sets U and V such that every
edge connects a vertex in U to one in V,




RParticular Graphs

* In graphitheory, a planar graph is a graph which, can be
embedded in the plane, I.e., it can be drawn on the
plane in such a way that its edges intersect only at their

endpoints. >

Graph of 3 entreprises () Complete Graph of 5 vertices ()




Basic definitions

An independent set or stable set is a set ofi vertices in a graph
no two of which are adjacent. The size of an independent set is
the number of vertices it contains (c(G)).

= A maximal independent set is an independent set such that adding
any other node to the set forces the set to contain an edge.

A cligue inian undirected graph G, is a set of vertices V, such that
for every two vertices in V, there exists an edge connecting the
two.

A cligue in a graph G gives corresponds to a stable in its complementary graph and vice-versa.




Basic definitions

« Some graph G is called c-chromatic If its vertices can
e colored with ¢ colors such that no two adjacent
vertices have the same color. Similarly, an edge
coloring assigns a color to each edge so that no two
adjacent edges share the same color.

Conjecture of 4 colors (1875 Pertersen) : “all planar graphs are 4-chromatic”




Four colors theorem
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Coding a graph

« Adjacency Matrix




Coding a graph

* Successor queue [3 and o

(2 1y 2 § 2z | % |
M

Exercise: Write an algorithm which allows the passage from the successor
gueue to the adjacency matrix.




Shortest path preblems

= Shortest path properties;

= Polynomial algorithms for shortest path, computation,
examples ana complexity:
+ [Label correcting algorithms : Ford algorithm;

« Label setting algorithms : Dijkstra algorithm, Bellman
algorithm:;




Shortest path preblems

* SOme properties:

s Lemma l

« Any path extracted from a shortest path is also the shortest
one.

= Lemma 2

« A necessary and sufficient condition of existence of shortest
paths is the absence of negative circuits.

= Lemma 3

* Let G be a graph without negative circuits and A, the shortest
path values from x, A necessary and sufficient condition for
that edge (x;, ) Is In a shortest path is : A, - &, = v;.




FEORD Algorithm

Algorithm;:
(10 Initialization
Peser A, = 0 et A, =+ pour i > 0.

(i) Edges examination
for each vertex x;, check all (x;,x;)

from: x; and substitute A, with A, + v
whenii; +v; < ;.

(i) Stop: Test An example
lterate (ii) until some 4, is updated in

(ii).




FEORD Algorithm
an example

End of first iteration




FEORD Algorithm
an example

End of second iteration




FEORD Algorithm
an example

Last iteration




Validity: and complexity
ofi Ford! algorithm

Theorem 1:

[Fordl computes values of the shortest path fromi X, when
the graph is without negative circuits.

Theorem 2:

The complexity of Ford algorithm is in O(nm) where n = |X|
and m = |U].




DIJKSTRA Algorithm

Algorithm
set S ={Xg}, Lo = 0, A; =vy;, If (Xq, X; )€U, and A,=+co,
otherwise.
(i) while'S = X do:
choeese x; € X - S of L. minimum.
setS =S +{ x }.
For any x,e( X - S ), successor of x;,

set: A, = min( A; + v, A ).




DIJKSTRA Algorithm
an example




DIJKSTRA Algorithm
an example

End of the first iteration




DIJKSTRA Algorithm
an example

End of the second iteration




DIJKSTRA Algorithm
an example

End of the third iteration




DIJKSTRA Algorithm
an example

End of the forth iteration




DIJKSTRA Algorithm
an example

End of the last iteration




Validity: and complexity
ofi Dijkstra algorithm

Lemma 4
Dijkstrai algorithm isi of complexity O(n?).

Theorem 3

A;: obtained at the end of the algorithm are the
shortest path values from X,.




Bellman algorithm

Algorithm:

(i) enumerate all vertex of the graph, set A,= 0.

(iforj=1ton—1set: A =min (L, + Vv, )over the set of
predecessors X, of x;.

Theorem 4:

Bellman algorithm computes the shortest path
values A; from X, In O(m).




Some path problems

ne longest pathicomputation problem:;
ne maximum probability path;
ne maximum capacity path value;

= EXxercise : compute the shortest path among these of
maximum capacity.




Exerncise: The itinerary off Michel
Strogofii (from ROSEAUX)

Leaving from Moscow, Michel STROGOFF, courier of the tsar, was supposed
to reach IRKUTSK. Before leaving, he had consulted a fortune teller who told
him, amongst other things : "After KAZAN beware of the sky, in OMSK
beware of the tartars, in TOMSK beware of the eyes, after TOMSK beware of
water and, above all, always be careful of a large brown-haired person with
black boots. * STROGOFF had therefore written on a map his "chances” of
success for each route betweentwo towns : these chances were represented
by a number between 1 and 10 (measuring the number of chances of success
out oft 10). Ignoring prebability calculation, he had therefore chosen his route
by maximising the total sum of the chances.

The numbers of the cities are: MOSCOW (1), KAZAN (2), PENZA(3), PERM
(4), OUFA (5), TOBOLSK (6), NOVO-SAIMSK (7), TARA (8), OMSK (9),
TOMSK (10), SEMIPALATINSK(11), IRKOUTSK (12).

1. Determine the route of Michel Strogoft.
2. What was the probability, with the assumption of the independence of the
random variables, that Strogoff would succeed?

3. What would have been his route if he had known the principles of
probability calculation?




sShortest path algorithms and
applications to networks

[Routing protocols are implemented in a distributed
way. in IP networks.;

What Is routing ...




Wihat Is routing?

« The term routing corresponds to the mechanisms used
by a host to transfer data to its destination by examining
the infermation in the data.

Routing is a key element of level network of TCP/IP
stack. It uses information stocked in routing tables in
each node-router.

= The routing table stores the routes (and in some cases, metrics
associated with those routes) to particular network destinations.
It is frequent that in a routing table we find only the information
about the gateway number toward the destination and not the
entirely route.




[Routing Protocols in Internet

Fouting Protocols

Intericor Exterior

Two main groups:

— Distance-Vector protocols: RIP, IGRP, BGP.
— Link-State protocols: OSPF, IS-IS




Routing Infermatien Pretocol (RIP)
(RFC 2453)

Let D(1,)) represent the metric of the best route from entity I to entity J. It
Should be defined for every pair of entities. d(l,j) represents the costs of the
individual steps. Formally, let d(i,j) represent the cost of going directly from
entity I to entity.J. It Is infinite If [ and J are not immediate neighbors. Since
tc)osts are additive, it Is easy to show. that the best metric must be described
VG
D(r,1) = 0, allj

D(1.J) = min, [d(i,k) + D(k.j)], otherwise

and. that the best routes start by going from i to those neighbors k for which
d(i,k) + D(k,j) has the minimum value.




Implementing RIP

The Routing Information Protocol is a dynamic routing protocol used in local
and wide area networks. As suchi it is classified as an interior gateway.
protocol (IGP) using the distance-vector routing algorithm.

Each router keeps a distance table for all destinations in the network. This table
stores all shortest distance to any destination and the next neighbor to
reach each ofi them according to the distance.

Periodically, each router announces its distance table to its direct neighbors;
Any time some update is announced from a neighbor, do:
compute the new distance D’;

i D’ < D keep the new value and the neighbor announcing it;

The update procedure is in origine of some limitations of the protocol...




RIP: how: it wWorks?










Link-State protocols
OSPE (Open Shortest Path First)

* Principle:

= All nedes do have a map of the entire network.
+ Determining| the neighbors of each node
« Distributing the information for the map (flooding)
« Creating the map

« Computing the shortest paths

« Each node independently runs an algorithm (generally
Dijkstra’s algorithm is used) over the map to determine the
shortest path from itself to every other node in the network.




Intreauction te linear
programming

linear programming (LP) is a technigue for optimization of a linear
objective function of variables x., X,, ...x., subject to linear equality and
linear inequality constraints.

The simplex algorithm (1951, 1963), developed by George Dantzig,
solves LP problems by constructing an admissible solution at a vertex of
the polyhedron and then walking along edges of the polyhedron to
vertices with successively higher values of the objective function until
the optimum is reached. (CPLEX, EXPRESS-MP, etc.).

Alternative methods :
» the ellipsoid method by Leonid Khachiyan in 1979

* In 1984, N. Karmarkar proposed a new interior point projective
method for linear programming. (Karmarkar's algorithm)



Intreduction| to Integer: linear
programming

An Integer linear program is a linear programming problem with
variables taking values in Z.

Binary or O-1 linear programming problems are a special case.

Branch and bound methods, branch and cut...




Pealing withi the TSP problem

History
19th century

= [I'he first methods are proposed by Sir William Rowan Hamilton et Thomas
Penyngton Kirkman.

1930

= [Ihe TSP has been deeply studied by Karl Menger a Harvard.
1954

= Solution for TSP with 49 cities by Dantzig, Fulkerson et Johnson.
19175

= Solution for TSP with 100 cities by Camerini, Fratta et Maffioli
1987

= Solution for TSP with 532 cities and next with 2392 cities par Padberg and
Rinaldi

1998
= Solution for TSP with 13 509 cities of US.
2001

= Solution for TSP with 15112 cities of Germanyt by Applegate, Bixby, Chvatal and
Cook from universities of Rice and Princeton.




Tihe TSP problem

In 1859, the mathematician Sir W. R. Hamilton built a puzzle dodecahedron
in wood. This dodecahedron has 20 vertices and 12 faces:

Rio de Janeiro

Londan Fretona

Canberra Washington OC

Find a Hamiltonian circuit.




Tthe TSP problem, mathematical
fermulation

« [LP'Formulation:
= Toeach arc (1,), associate variables x; taking 1 if

Included in the circuit and 0 otherwise.




A naive method

« et P=Ax = b, (x20, et A=0) a max. problem (cx, cz0),
and x% a continue solution of relaxed problem.
« | x2| is a feasible solution, [ x°| no.

* In general « rounding » the relaxed solution can lead
to feasible or unfeasible solutions.
« Example:

Maximize x, + 2x,
4x, + 3x, <12 Relaxed solution (0.9, 2.8)

2x,+x, £ 1; Integral solution (1, 2);
3x, < 5
x, 20 et x, 2 0, x,, X, Integers.




EXact reselution methods
« Branch and Bound method (B&B).

s Principle . build a research tree where the Initial node
corresponds to the relaxed problem (min).

s Decompose the problem to sub-problems : the
optimal solution should be in one of these sub-

problems.
* Any infeasible problem should be removed;
« [fpossible, find the exact solution.

« Otherwise find a lower bound., if it is larger than the best
obtained solution the sub-problem should be discarded.

« For the remaining cases, re-decompose the problem...




Exact resolution methods

. Dakin Procedure (19695), and Lang & Doig (1960)
Max cx =z,
Ax=Db
x.eN, j=1..n

« [nitiation : initial' arborescence. node. SO

= Solve the associated relaxed problem. If the obtained solution is

Integer, END.
= Otherwise, an evaluation by excess is obtained, separate the

problem again.




Separation and Evaluation

« Separation. :

= Separate onl continuous variable x, : x, <| x| and x,
>| x, +1 lwhich gives twoinodes S’ et S’

* Evaluation by excess :
= Solve the two « continuous » linear programs:
«PLg, =PLs+x, <|x;
s PLo.=PLg+x, 2| x +1];




Separation and evaluation

« Node choice
= Depth first

« Default evaluation
* Best known solution z,

» Abandon the search on S If V(S)sv(z,).
= Stop when all hodes are abandoned.




Linear pregramming modeling

Suppose that a linear programming is composed of :
The objective function of nivariables x; (maximization) ;
All' variables take positive values.
The constraints are linear functions bounded by some constant

Thatis :




Simplexe algorithm:
geometrcal interpretation

maximize: Z = 2x,; + X,

Subject to: X, +2x, <7
XX, <5
X, =1
X, <4
X; =20




Linear pregramming modeling

Modeling : importance of linearity;

Linearity of objective function:
=  Maxmin or minmax functions
= With absolute values
= Objective function « rapport » or product

« Linearity of constraints :
= Capacity constraints
= Demand constraints
= Mass balance constraints
= Proportion constraints




P meadelling

Example. Look at the case of production problem where one should
find the quantities to be produced under capacity constraints.
Suppose that some factory produces two products A and B, each of
them passing through cutting process (C) and refinement (R) :

|process Cutting Refinement

Time for processing A 2 hours 3 hours

Time for processing B 2 hours 1 hour

IMaximal capacity 200 hours |100 hours

Knowing that the profit for each product A and B are 20 € and 10 €, find
the quantities to be produced in order to maximize the profit ?




P Vieaelling

Three TV models A, B et C providing profits of 160, 300 et 400
francs. Each TV requires some time Fi for processing pieces,
some time Ai for assembling and some Ei time for refining. In
one week there is 150 available hours for processing, 200 for
assembling and 60 refining. Propose an LP model for the
production planning that maximizes the overall profit.

A C
3




Linear pregramming modeling

Modeling examples :
lower and upper bounds;
render inequalities to equalities;
express unsigned variables as nonnegative ones;
express the absolute value;
express minmax and maxmin functions...

Logic constraints:
If A then B; A iff B; If A not B; If not A then B; If B and C then A;

if two or more variables in {B, C, D, E} then A;
If M or more over N variables B, C, D, ..., then A;




Viedeling by binary: variables

At most one of A, B a+b+c+d+e+f+g+h <1
Exactly two of A, B,...,.H a+b+c+d+e+f+g+h=12
If AthenB b>a
Not B b=1-b
If Athen not B a+b<1
If not A then B a+b>=1
If A then B, and if B then A a=>b
If AthenBand C b>raandc>a
If AthenBorC b+c>a
If B or C then A a>banda>c
or alternatively: 3 = 1 - (b+¢)
If B and C then A a=b+c—1
If two or more of B, C, D or E then A az%-{b+c+d+e—1}

. b+ord+. —M+1
If M or more of N projects (B, C, D, ...) then A 8=




Linear pregramming modeling

Viodeling examples :
disjunctive constraints :
Constraint, = b, or Constraint, = b, b, b, > 0;

conjunctive constraints;
task A before task B, or task A before B and C...

Express in a linear form the following model:
Min {(c"™x+d)/(fTx+g) | Ax <b, f'x+g > 0, x >0};




LP modelling : Exercices




Introduction torcomputational
complexity theory

« Complexity theory deals with two aspects:
= Algorithm’s complexity.
= Problem’s complexity.

« References

= S. Cook, « The complexity of Theorem Proving Procedures », 1971.

= Garey et Johnson, « Computers and Intractability, A guide to the theory of
NP-completeness », 1979.

= J. Carlier et Ph. Chrétienne « Problemes d’ordonnancements : algorithmes
et complexite », 1988.




Basic Notions

« Some problem is a “question” characterized by
parameters and needs an answer.

= Parameters description;

= Properties that a solutions must satisfy;

= An instance is obtained when the parameters are fixed to
some values.

« An algorithm: a set of instructions describing how some
task can be achieved or a problem can be solved.

« A program : the computational implementation of an
algorithm.




Algorithm's complexity: (1)

« There may exists several algorithms for the
same problem

« Raised questions:
= Whichione to choose ?
= How they are compared ?
= How measuring the efiiciency ?

« What are the most appropriate measures, running
time, memory space ?




Algorithim's complexity: (1)

Running time depends on:
= ['he data of the problem,
Quality of program...,
Computer type,
Algorithm’s efficiency,
= efc.

Proceed by analyzing the algorithm:
= Search for some n characterizing the data.
= Compute the running time in terms of n.

= Evaluating the number of elementary operations,
(elementary. operation = simple instruction of a programming
language).




Algoerithmrs evaluation (1)

* Any algorithm Is composed of two main stages:
Initialization and computing one

« TThe complexity parameter is the size data n (binary coding).

Definition:

et be n>0 and T(n) the running time of an algorithm expressed in
terms of the size data n, T(n) is of O(f(n)) iff 7 n, and some
constant ¢ such that:

vn = n,, we have T(n) <c f(n).
Iff(n) Is a polynomial then the algorithm is of polynomial complexity.

« Study the complexity in the worst case.

« Study the complexity in average : tm(n) is the mean value of execution
time when the data and the associated distribution law are given.




Algerithmrs evaluation (11)

example

Given N numbers a,, a,, .

The algorithm MIN finds the minimum value.
Algorithm MIN
Begin
foriI=1 to n read a;
B:=a,, i=1;

for i=2 to n do :
if B=1 then |:=n;
elseif a, < B then
begin
Ji=5;
B:=a;
end;
write : the min value is aj;
End.




Algenthmrs evaluation (1)

« Study the complexity of algoerithm: MIN.

Propesition 1. The complexity of Algorithm MIN is in O(n).

Proposition 2. i numbers a, are independent random values
and iffany a. has some probability 1/K to be equal to 1, the
complexity in average of algorithm MIN, apart the reading
data phase, is in O(1).




Imporiance or polynomial
algorithms (I

n=10 n=20 n=30

=40 n=50

0.00001" | 0.00002 | 0.00003 |0.00004 | 0.00005
Sec Sec Sec sec sec

0.0001 0.0004 | 0.0009 0.0016 | 0.0025
Sec sec Sec sec sec

0.001 0.008 0.027 0.064 0.125
Sec sec Sec sec sec

0.001 1 sec 17.9 min | 12.7 35.7
sec days years

0.059 58 min 6.5 years | 3.855 2*108
Sec centurie | centurie
S S

An elementary operation 1s run in one microsecond.




Imporiance or polynomial
algorithms, (1)

Tlodays 100 times | 1000 times
computers | faster faster

N1 100 N1 1000 N1

N2 10 N2 31.6 N2

N3 4.64 N3 10N3

N4 N4 +6.64 N4 + 9.97

NS NS5 +4.19 | NS +6.29

Problem’s sizes solved in one hour run time




Computational complexity
theory

» The decision problem is some mathematical
guestion requiring seme answer yes or no.

« Computational Complexity Theory is concerned with
the question: for which decision problems do
efficient algorithms exist




SAT

«  Satisfiability is the problem ofi determining if the variables of a
given boolean formula can be assigned in such a way as to
make the formula evaluate to TRUE.

In complexity theory, the Boolean satisfiability problem (SAT) is
a decision problem, whose instance Is a Boolean expression
written using only AND, OR, NOT, variables, and parentheses.

TThe guestion is: given the expression, is there some assignment
of TRUE and FALSE values to the variables that will make the
entire expression true?

A formula of propositional logic is said to be satisfiable if logical
values can be assigned to its variables in a way that makes the
formula true.




Iravelling salesman problem

Given a weighted graph G=(X,E,v)
X = Vertices (= Cities)

E = Edges (pair of cities)
v. = Distances between cities

Find the shortest tour that visits all cities




Partition problems

« Partition problem
= [Data: given a set A={a. | il } of niinteger numbers.

= Question : is-there some partition of A in two subsets A1 and A2
ofi equal weight ?

* Tripartition problem

= Data: given a set A={a. | iel } of n=3q integer numbers such that
Y...@=gB and B/4<a<B/2 and B some positive integer.

= Question : Is-there some partition of A in g subsets of cardinal 3
and weight B?




SOMme equivalent problems

« Vertex covering.

« Data: a graph G =(V,E) with' V' a set of vertex, E a set of edges
and some positive integer B < |V].

= Question : Is-there some subset V'cV such that [V’| < B, and
for each edge (i,))eE, ieV or jeV ?

* Independent set

=« Data: a graph G =(V,E) with the set of vertex V and E the set of
edges and some positive integer B < |V/|.

= Question : Is-there some V'&V |V’| 2 B such that for any (i,j)eE,
igV' orjeV’ ?

« Maximal cligue.

« Data: agraph G = (V,E) where V is the vertex set and E the
set of edges, and a positive integer B.

Question : Is-there some V' = V such that the corresponding
sub-graph is complete and of size greater or equal to B?




Scheduling problems

One machine problem

= [Data: a set | of niindependent and indivisible tasks; for each task iel
we have its duration p,, availability date r; and its deadline d..

= Question : is-there some scheduling ¢ of these n tasks one a single
machine that satisfies the availability and deadline dates?

« Two processors problem

= Data: aset | of nindependent and indivisible tasks , durations p, and a
positive integer B.

= Question : Is-there a scheduling ¢ of these n tasks on two processors
of duration less or equal to B ?

« NTRM
= Data: aset |={1,2,.. n} of tasks of durations 1 and deadlines d,, d, ..,
d_, a partial order < on |, and a positive integer B.

Question : Is-there a scheduling ¢ of these tasks on one machine
satisfying the partial order and such that the number of delayed tasks
is < B.




Complexity theory: basic
notions

« Why using the decision problems?

= lointroduce a simple formalism and facilitating the comparison
between problems.

«  The complexity theory relies on Turing Machine. ..




The class NP

* Alternatively:

« We distinguish the following complexity classes:

= Class P': some problem is in P if it can be solved in
polynomiall time to the size of data by a determinist
algorithm.

= A problem is said to be in NP if and only if for a
guessed solution there exists a polynomial time
algorithm verifying the solution.

Class NP : it groups all decision problems such that an answer
yes can be decided by a non-determinist algorithm in polynomial
time to the size of data.




NP-completeness

Paper of Stephen Cook, «The complexity of
TTheorem Proving Procedures», 1971.

= Defines the polynomial reduction
= Defines the decision problems and the class NP.

= Shows that the problem SAT is at least as difficult
as all the others in NP > NP-complete




Complexity theory
polynemiali reduction

Polynomial reduction allows to. compare NP problems in terms of
computational complexity:

Definition: P Is: polynomially reduced to P, (P, oP,) if P, is
polynomial there exists a polynomial algorithm A that builds for

any. d. of P, some data d, of P, such that d, has answer YES iff
d,=A(d,) has answer YES.

« Some problem is said NP-Complete if he is in NP, and any NP-
Complete problem can be polynomially reduced to this problem.

« The polynomial reduction defines a pre-order relation on NP.
« Cook’sTheorem : SAT is NP-Complete.




NEP-completeness
demonstration technigues (1)

« Tihe generallmethod:
= 1) show first that Il € NP
= 2) show that there exists P'e NP-complete such that P’ oc IT.

« The following problems are NP-complete.
= TSP,
Partition problems,
Exact cover
Clique




Demonstration technigues (1)

* TThree main techniques are used to show the
NP-completeness of combinatorial problems.

=« Restriction
» examples : minimal covering, knapsack, etc.

= Local replacement
» examples : 3SAT, X4C...

« Component design
« example : NTRM...




PDemonsirating the NP-
completeness

«  Show! the three following propositions:

» Proposition 1. The two-processors problem is NP-complete.
* Show partition oc two-processors.

= Proposition 2. The one machine problem is NP-complete.
* partition oc one machine problem.




Exercises

1) Show: that the knapsack problem is NP-complete.

= Data: A finite set X, for any x.e X, there is some weight w(x.) and profit
p(x), and B and K two positive integers.

= Question : Is—there seme X" = X such that >,._, w(x,) < B and
2yiexP(X) = K?

2) Show the NP-completeness of the following problems:
- Data : a graph G=(V,E) and some positive number K < |V]-1.

- Question : is there some spanning tree of G with all vertex degrees
less or equal to K; in other words: some subset E” = E such that
|IE’|=|V|-1, and G'(V,E") is connected and no vertex is incident to more
than K arcs ?

suggestion : TSP




NP-completeness . conjecture

« Fundamental Conjecture: P=NP.

You win 1000000 USD if You show that P=NP
or P=NP.




Pseude-polynemial algerithms (1)

« Dynamic programming

« ldea : breaking down the initial problem in a
sequence of simpler problems, solving the n-the
problem can be done by recurrence on this of (n-1)-

the one.

= WESS problem (weight of a subset)
« Data : a finite set A composed of n elements a,eZ+ and a
positive integer K.
* Question : is-there a subset of A of weight K ?




Pseudoe-polynemial algoerithms: (1)

Algorithm WESS
Begin
for k=01to X A2
for =1 ton do :
WEIGHT (k,j):=false;
end for;
end for;
set WEIGHT(0,0) := true;
for =1 to n
for k=01to >, _,2,do :
If (k=a; and WEIGHT(k-a;, j-1)=true) or WEIGHT(k, j-1)=true
then WEIGHT(k, j)=true:;
end for;
end for;
end.

Proposition : Algorithm WESS is of complexity O(n2.,;.»a;) and assigns true to WEIGHT(K,
n) if there exists some subsets of n numbers a,, a,, .., a, of weight K,




Exercise: AN INVES TMEN T
PROBILLEM

1) An example. 6 million is at our disposal, to invest in 3 regions. The following table shows the
benefits given by the invested sums.

Region I Region I1 Region 111

1 million 0.2 0.1 0.4
2 million 0.5 0.2 0.5
3 million 0.9 0.8 0.6
4 million 1 1 0.7

Determine the optimal investment policy for the three regions using a "dynamic programming”
method. The idea is to associate a graph with levels to the data. Level 0 contains only the vertex
(0,0), (because no money has been invested yet). Level 1 contains the vertices (1,0) (1,1) (1,2) (1,3)
(1 4) WhICh correspond to the cumulated amounts invested in region 1. Level i contains the vertices
(| 0), (i, 1), (i, 2), (i, 3), (i, 4), (i, 5), (i, 6), which correspond to the sums invested in the regions 1 .. i (i

. The arcs are placed between the levels i and i +1, valuated by the sums invested in the
reglon i +1. The last vertex is (3,6). The goal is to seek a maximum value path in this graph.

2) The general case. More generally, we have B million to invest in n regions. We shall set fi(y), the
optimal profit for a cumulative investment of a sum y in the regions 1, 2, .., i. We have f0(0) = 0.
Determine a recurrence formula connecting fi to fi-1 for i from 1 to n.

3) What is the complexity of the dynamic programming method in function of n and B, and
complexity of enumerating all'possible solutions.




L]

Strong NP-completeness (1)

Binary code is the system of representing text or computer processor
instructions by the use of the Binary number system'’s two-binary digits
“0" and “1".
Binary code of a - log,(a) places

example : the size of 2°! is log,(2°") + 1 = 32, thus we need 32 bits to code it in machine;
Inicomputationall complexity theory, a numeric algorithm runs in pseudo-
polynomial time if its running time is polynomial in the numeric value
(unary code) of the input.

An NP-complete problem with known pseudo-polynomial time algorithms
is called weakly NP-complete. An NP-complete problem is called
strongly NP-complete if it is proven that it cannot be solved by a pseudo-
polynomial time algorithm.




Strong NP-completeness (I

« Definition : some problem: is strongly. NP-complete, if it is
NP-complete and ifi the existence of a solution pseudo-
polynomial algorithm yields this of a polynomial
algorithm.

= Examples : TSP, tripartition, cliqgue, sat.

= What about partition, two-processors ?

= Proposition. The one machine problem is strongly NP-complete.




