UAV-Assisted Disaster Management: Applications and Open Issues

Milan Erdelj and Enrico Natalizio

Laboratory HEUDIASYC
Université de Technologie de Compiègne, France

ICNC 2016, Wireless Sensor and Robot Networks (WiSARN) Workshop
February 15th, 2016.
Loss events worldwide 1980 – 2014
Number of events

© 2015 Münchener Rückversicherungs-Gesellschaft, Geo Risks Research, NatCatSERVICE – As at January 2015

Geophysical events
(Earthquake, tsunami, volcanic activity)

Meteorological events
(Tropical storm, extratropical storm, convective storm, local storm)

Hydrological events
(Flood, mass movement)

Climatological events
(Extreme temperature, drought, forest fire)
Introduction

- Number of natural disasters increased up to 150% in last 30 years

- Efforts to recognize and forecast the disaster, react efficiently, assess the damage, and restore normal state

- We analyze applications of UAV-assisted systems in disaster management, and discuss about open issues and challenges
Contents

- Introduction
- Disaster management
- UAV-assisted applications
- Open issues
- Conclusion
Why UAVs?

- The most important issue that needs to be solved is to preserve human lives.
- The first 72 hours after the disaster hit are the most critical
- UAVs can provide fast overview of the situation
Disaster management stages

In this paper, we envision a three-stage operational lifecycle where UAVs participate in natural disaster management:

- **pre-disaster preparedness** – concerning surveying-related events that precede the disaster, static WSN-based threshold sensing and setting up Early Warning Systems (EWS)

- **disaster assessment** – providing situational awareness during the disaster in *real time* and completing damage studies for logistical planning

- **disaster response and recovery** – including SAR missions, forming the communications back-bone, insurance-related field surveys
Disaster management stages

Stage I: Preparedness
- Static threshold sensing
- Controller-directed surveying

Stage II: Assessment
- Real-time situational awareness
- Damage study for logistical planning

Stage III: Response & Recovery
- Supporting SAR missions
- Building communication links to RAN
- Insurance/governmental policy–related surveying

WSN Effectiveness

UAV Effectiveness
WSN and robot network for disaster management
Contents

- Introduction
- Disaster management
- UAV-assisted applications
- Open issues
- Conclusion
UAV-assisted applications in disaster management

<table>
<thead>
<tr>
<th>Related works</th>
<th>Disaster stages</th>
<th>Technology</th>
<th>UAV-assisted applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Year</td>
<td>Pre-disaster preparedness</td>
<td>Disaster assessment</td>
</tr>
<tr>
<td>Chen et al [5]</td>
<td>2013</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Kumar et al [16]</td>
<td>2004</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Sardouk et al [27]</td>
<td>2010</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>George et al [13]</td>
<td>2010</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Murphy et al [21]</td>
<td>2008</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Wada et al [31]</td>
<td>2013</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fujiwara and Watanabe [12]</td>
<td>2005</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fragkiadakis et al [10]</td>
<td>2011</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nelson et al [22]</td>
<td>2011</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tuna et al [29]</td>
<td>2012</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Morgenthaler et al [19]</td>
<td>2012</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Marinho et al [17]</td>
<td>2013</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Minh et al [18]</td>
<td>2014</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Robinson and Lauf [26]</td>
<td>2013</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Nourbakhsh et al [23]</td>
<td>2005</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Tuna et al [28]</td>
<td>2014</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>
UAV-assisted applications in disaster management

WSN and UAV-assisted applications in disaster management that are taken into account in this work are the following:

- monitoring, forecast and early warning systems,
- disaster information fusion,
- situational awareness and logistics,
- damage assessment,
- standalone communication system,
- search and rescue missions.
Monitoring, Forecast, and EWS

- Predicting the disaster by structural and environmental monitoring, and information analysis
- Disaster detection with early warning systems
- Dominant role of WSN
- Problem if the WSN does not have an appropriate reconfiguration mechanisms in case of faults caused by disasters – UAVs for WSN reconfiguration
Disaster information fusion

- Combining different sources of information available and/or making a bridge between different information technologies

- Becomes more important with the use of social networks for disaster management

- Example integration of smart data gathering and analysis system, communication system, WSN, social networks, etc.
Situational awareness and logistics

- Gathering precise information on the disaster scale and the situation on the field

- UAVs play critical role

- High volume data, low latency
Damage assessment

- Gathering information on the damage, structural inspection

- UAVs play important role, WSN usability questionable

- Speedup achieved by the simultaneous use of multiple UAVs
Search and rescue missions

- Searching for people affected by the disaster
- UAVs play important role, WSN usability questionable
- Accent put on different detection technologies
Standalone communication systems

- Application that get the most attention

- Establishing or re-establishing damaged or destroyed parts of the communication infrastructure

- Problems:
 - Maintaining the connection during longer periods of time
 - Capacity of such network
Other applications

- Infrastructure reconstruction
- First aid and supply delivery
- Real-time media coverage
Contents

- Introduction
- Disaster management
- UAV-assisted applications
- Open issues
- Conclusion
Open issues (i)

- UAV precise localization (indoor or urban environments)
- Multiple UAV control techniques and algorithms
- Sustainability of the network - handover issues, automatic charging
Sustainable UAV station
Open issues (ii)

- UAV physical constraints (resistance to weather conditions)
- UAV network security and robustness
- Privacy and trust issues
Challenges

- Performing optimal handoffs between the roles of surveying, communication with users, and data relaying

- Choosing the charging duration, i.e., making tradeoff decisions on whether charging instants should be proactive, even if their battery is not completely depleted

- Optimizing the number of hops by building accurate 3-D channel models for various weather conditions and land topologies

- Designing distributed control algorithms at different layers of the UAV-assisted disaster management system
Contents

- Introduction
- Disaster management
- UAV-assisted applications
- Open issues
- Conclusion
Conclusion

- UAV is a promising technology that can be used for disaster management
- Open issues have to be addressed properly in order for the technology to be fully adopted
- Perspectives of the use of UAVs largely depend on the legislation
Acknowledgements

Mahalo!

Milan Erdelj
milan.erdelj@hds.utc.fr

Enrico Natalizio
enrico.natalizio@hds.utc.fr

This work has been carried out in the framework of the project IMATISSE, which is funded by the Region Picardie, France, through the European Regional Development Fund (FEDER).