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Abstract—We target the problem of providing 5G network
connectivity in rural zones by means of Base Stations (BSs)
carried by Unmanned Aerial Vehicles (UAVs). Our goal is to
schedule the UAVs missions to: i) limit the amount of energy
consumed by each UAV, ii) ensure the coverage of selected zones
over the territory, ii) decide where and when each UAV has to be
recharged in a ground site, iii) deal with the amount of energy
provided by Solar Panels (SPs) and batteries installed in each
ground site. We then formulate the RURALPLAN optimization
problem, a variant of the unsplittable multicommodity flow
problem defined on a multiperiod graph. After detailing the
objective function and the constraints, we solve RURALPLAN
in a realistic scenario. Results show that RURALPLAN is able to
outperform a solution ensuring coverage but not considering the
energy management of the UAVs.

I. INTRODUCTION

According to different studies, at least two billions people
are experiencing a complete lack of Internet coverage [1].
Such people are mostly living in rural zones, where the
network operators are not generally keen to invest, due to
the prohibitive deployment costs, as well as very low Return
on Investment (RoI) rates. This includes current technologies
for deploying access networks, such as 3G/4G and FTTx,
and the forthcoming 5G technology. Nevertheless, the lack
of Internet connectivity is one of the major impairments for
the development of the United Nations (UNs) Sustainable
Development Goals (SDGs) [2], [3].

Among the different solutions to reduce the Internet connec-
tivity divide in rural and low income areas, one of the most
promising is the exploitation of Unmanned Aerial Vehicles
(UAVs) providing 5G coverage (see e.g., [4], [5], [6], [7]). The
main idea behind most of such approches is the deployment of
an opportunistic network, where the users associate to the Base
Stations (BSs) carried by the flying UAVs. A radio network
based on UAVs, in fact, introduces several advantages, inclu-
ding: i) the possibility to cover only the zones of the territory
where (and when) the users are located, ii) a general decrease
of the installation costs, thanks to the fact that multiple UAVs
can share the same ground site to recharge themselves and
to exchange data with the core of the network, and iii) the
adoption of short-distance Line-of-Sight (Los) communication
channels between the users and the UAV covering them.

Even though the deployment of UAV-based 5G network
architectures is a promising solution, its actual evaluation in
real-life scenarios is only at the early stage. In particular,
when an UAV-based 5G architecture is assumed, different
key questions arise, such as: i) How to cover a set of areas
with a set of UAV-based BSs? ii) How to efficiently manage
the energy consumed by the UAV-based BSs? iii) How to
manage the energy coming from the Solar Panels (SPs) and
the batteries installed at the ground sites? iv) Is it possible
to define a model to take into account all the aforementioned
aspects? The goal of this paper is to shed light on these issues
by:

1) considering a scenario in which a set of ground sites, a
set of UAVs, and a set of areas that need to be covered
are given as input;

2) targeting the energy efficient management of the UAVs
missions, in order to minimize the energy that is con-
sumed by the UAVs;

3) ensuring the coverage of the areas by efficiently sche-
duling the UAVs missions over a set of multiple Time
Slots (TSs);

4) dealing with the battery levels of each ground site to
decide where and when each UAV is recharged.

More in detail, we define an optimization problem, called RU-
RALPLAN, with the goal of minimizing the energy consumed
by the UAVs during the moving operations, while ensuring
coverage, energy consumption, and battery levels constraints.
Results, obtained over a representative scenario, clearly show
that RURALPLAN is able to outperform a solution focused
solely on the problem of providing coverage over the territory.

In recent times, the optimal planning and management of
networks made up of drones aimed at providing various kind
of services such as surveillance, package delivery and network
connectivity has received a lot of attention (see e.g., [8], [9],
[10], [11]). Such optimization problems are closely related
to the general problem of multi-period capacitated network
design, involving flow models on a graph [12]. In line with
this trend, RURALPLAN exploits a graph-based structure to
model the UAVs missions.

The closest paper to our present work is [6], in which



Site Battery Level at (t− 1)

+

SPs Energy at t

−

UAVs Recharging Energy at t

=

Site Battery Level at t

Fig. 1. Computation of the battery levels for one site at TS t
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Fig. 2. An example of an UAV mission composed of recharging, moving and
covering actions.

authors define an UAV-based 5G-architecture, and evaluate
its feasibility in terms of economic metrics. However, the
scheduling of the UAVs missions, as well as their evaluation in
terms of consumed energy, is not taken into account at all. In
this work, we go two steps further from [6], by: i) providing an
optimization framework to schedule the UAVs missions across
a set of Time Slots (TSs) and ii) targeting the minimization
of the energy wasted by the UAVs during their operation.

Even though the results presented in this paper are promi-
sing, we point out that this work is an initial step towards
a more complex framework. In particular, the definition of
fast algorithms, able to solve the problem for scenarios more
complex than the one considered here, as well as the study of
the impact on the user Quality of Service, are two important
aspects that are left for future work.

The rest of the paper is organized as follows. Sec. II
describes the UAV-based 5G architecture and the relevance
of this work. Sec. III derives the problem formulation. The
scenario under investigation is described in Sec. IV. Results
are discussed in Sec. V. Eventually, Sec. VI reports the
conclusions and possible future work.

II. UAV-BASED 5G ARCHITECTURE DESCRIPTION AND
WORK RELEVANCE

We concisely review the UAV-based 5G architecture defined
in [6], [13], referring the reader to these papers for a more
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Fig. 3. Computation of the energy levels for one UAV at TS t

detailed description of the architecture. In brief, we assume
that most of BS equipment, and in particular the dedicated
HW one, is carried on board of the UAV. The dedicated HW
includes a Remote Radio Head (RRH) and part of the Base
Band Unit (BBU) in order to perform low-level operations
over the received/transmitted bits between the UAV-based BS
and the covered users. Clearly, each RRH is connected to a set
of antennas that are also carried by the UAV. The remaining
operations (e.g., the ones performed at upper layers) are
performed by virtualized elements installed on the commodity
HW, which is placed at a ground site. The separation between
high-level and low-level functionalities allows to reduce the
amount of HW carried by the UAV, and consequently the
moving of the UAV over the territory in order to ensure the
5G coverage. The communication between the high-level HW
functionalities hosted at the ground site and the low-level ones
carried on board of the UAV is realized by means of a radio
link, which has to ensure high levels of reliability.

Apart from hosting the commodity HW, each site is con-
nected to a set of SPs and batteries, which are installed in
the same site location. In particular, we assume that SPs
and batteries are the only sources of energy. In this way the
considered architecture is completely self-sustainable, i.e. no
power is requested to the electricity grid. In the following, we
assume that time horizon is discretized in TSs. In each TS, the
battery level at current TS is computed as the composition of
different terms, as reported in Fig. 1. In particular, the UAVs
can recharge themselves in a site, and their requested energy
decreases the battery level. On the other hand, the levels can
be increased by the energy produced by the SPs during the
current TS. The resulting battery level is then the composition
of the different terms. In addition to this, the battery level is
kept between a minimum level and a maximum one. Ensuring
a minimum level tends to reduce the impact of battery failures
[14]. On the other hand, each battery has a maximum capacity.

We then move our attention to the UAVs and their features.
Fig. 2 reports an example of a typical mission performed by
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Fig. 4. Possible transitions between two sites and two areas. Each arc
consumes one TS.

an UAV carrying a 5G BS. Initially, the UAV is recharged at
a ground site, in order to ensure that the UAV has a sufficient
energy level to complete the mission. Similarly to the ground
site, each UAV stores the energy in a set of batteries. In the
following, the UAV moves towards an area, and this operation
consumes an amount of energy which is proportional to the
distance between the site and the covered area. The UAV then
remains over the area, and the 5G coverage is provided by
the BS equipment carried on board of the UAV. Clearly, also
this operation consumes an amount of energy, which depends
on the amount of time the UAV-based BS covers the area.
Eventually, the UAV moves back to the ground site, thus
consuming an amount of energy which is again proportional
to the distance between the area and the site. In a more general
case, composed of multiple ground sites and multiple areas,
the UAVs’ missions can be even more complex, with multiple
areas that may be covered during the same mission. Fig. 3
reports the computation of the energy levels for one UAV in
one TS. In particular, starting from the previous energy level,
the current energy level takes into account the contribution
from recharging (if a recharge has been performed), or the
consumption due to covering/moving operations. Moreover,
also in this case the energy level at current TS t is kept between
a minimum level and a maximum one. Eventually, a minimum
energy level allows the UAV to come back to a site upon an
emergency and/or bad weather condition. On the other hand, a
maximum has to be imposed, since the capacity of the batteries

Ω

p1, T

p2, T

p1, (t + 1)

p2, (t + 1)

p1, t

p2, t

p1, (t− 1)

p2, (t− 1)

MOV

MOV

MOV

MOV

p1, 1

p2, 1

Υ

STAY
REC
COV

COV
REC
STAY

STAY
REC
COV

COV
REC
COV

Ω

Ω

Υ

Υ

Fig. 5. General arc transitions between consecutive TSs. The source node Υ,
a set of two places {p1, p2}, and the final sink node Ω are shown.

installed on the UAV is limited.
In this scenario, reducing the amount of energy consumed

by the UAVs during the moving operations introduces several
advantages, including: i) the reduction of the energy consumed
to recharge the UAVs at the ground sites, ii) the possibility to
exploit part of the saved energy to increase the amount of time
dedicated to cover the territory, and/or iii) the possibility to
proper fulfil the energy requests during emergency situations
(e.g., as a consequence of an UAV failure and/or unexpected
bad weather conditions). In the next section, we report the
problem formulation of the considered problem.

III. PROBLEM FORMULATION

We model the problem through Mixed Integer Linear Pro-
gramming (MILP), tracing it back to a variant of the unsplit-
table multicommodity flow problem defined on a multiperiod
graph (see [15] for the video surveillance case). More formally,
we denote: i) by A the set of areas to be covered; ii) by S
the set of available ground sites; iii) by D the set of UAVs;
iv) by T = {0, 1, 2, . . . , |T |} the set of Time Slots (TSs). We
also define the set of places P , obtained as the union of the
set of areas and sites (i.e., P = A∪S). In each TS each UAV
can perform one among the following actions:
• REC: the UAV is recharged on a given site;
• STAY: the UAV is kept idle at a given site, and it does

not consume any energy;
• MOV: the UAV is moved from one area to one site, or

from one area to another area, or from an area to a site;
• COV: the UAV covers a given area.

Fig. 4 reports a representative example in which the arcs
represent the set of actions that can be performed by an UAV
in a scenario composed by two sites and two areas. In order to
cover Area 1 for an UAV starting from Site 1, the following
actions need to be performed: REC in Site 1, MOV from Site
1 to Area 1, COV from Area 1 to Area 1, MOV from Area 1
to Site 1. Each of the aforementioned actions requires one TS
to be executed.

In order to model the actions performed by the UAVs over
the considered set of TSs, we adopt a multiperiod directed
graph G(N,L). The set of nodes N includes one node (p, t)
for each place p ∈ P and for each TS t ∈ T . We denote a



generic arc l ∈ L by [(p1, t1), (p2, t2)], where t(l) = (p1, t1)
and h(l) = (p2, t2) are the tail and the head of the arc,
respectively. We then introduce the set of arcs LREC , LSTAY ,
LMOV and LCOV to denote the admissible transitions between
each place p1 at TS t1 and each other place p2 at TS t2 for the
recharging, staying, moving and coverage actions, respectively.

Fig. 5 shows the admissible arcs for a toy case example
composed of two places. Apart from the nodes defined for
each pair (p, t) the graph also includes the fictitious nodes Υ
and Ω, which are used to keep track of the missions performed
by the UAVs across the set of TSs. Our idea is in fact to
associate a binary flow variable for each arc and each UAV,
and to impose a flow conservation constraint starting in Υ
and ending in Ω. The advantage of using the source node Υ is
that the problem is able to automatically choose the optimal
placement of the UAVs already during the first TS, without
the need of manually specifying it. In other words, we place
a number of tokens in Υ equal to the number of UAVs. In
principle, each token corresponds to an UAV. The problem
then automatically selects which flow variables are activated
in order to preserve the token continuity until the Ω node.
In particular, the Ω node allows to check that all the tokens
are correctly received, i.e., the problem has considered all the
UAVs until the final TS. The connections between the node Υ
and the node Ω are realized through the set or arcs LΥ and LΩ.
The union of sets LREC∪LSTAY ∪LMOV ∪LCOV ∪LΥ∪LΩ

defines the entire set of links L.
In the following, we associate an energy weight for each

arc in L. Fig. 6 reports the admissible arcs and the energy
values for each pair of places and consecutive TSs. More in
detail, two arcs are defined when the UAV is kept on the same
site between TS (t− 1) and TS t, as reported in Fig. 6(a). In
the first case, there is one link l ∈ LREC , whose weight is
equal to the energy consumed for recharging an UAV, denoted
with EREC . Alternatively, there is the possibility to keep the
UAV on the site without any energy consumption through
the link l ∈ LSTAY . In addition, when the UAV is moved
from a site s ∈ S to an area a ∈ A (Fig. 6(b)), an arc
l ∈ LMOV is defined.1 In this case, the weight of the arc
is equal to −EMOV

s,a , where EMOV
s,a denotes the amount of

energy consumed for moving the UAV from site s to area
a. Similarly, when the UAV is moved from an area a to a
site s, another arc l ∈ LMOV is introduced, whose weight is
equal −EMOV

a,s (Fig. 6(c)). On the other hand, when the area
is not changed, a coverage action is performed (Fig. 6(d)). In
this case, the corresponding arc l ∈ LCOV has a weight of
−ECOV , where ECOV denotes the amount of energy spent
to cover an area in one TS. Eventually, when the UAV passes
from area a1 ∈ A to a different area a2 ∈ A (Fig. 6(e)), an
arc l ∈ LMOV with weight −EMOV

a1,a2
is introduced. Finally,

the arcs connecting Υ and Ω to the other nodes are defined in
Fig. 6(f)-6(i). Clearly, such arcs do not consume any amount
of energy since both Υ and Ω are fictitious nodes.

1The set LMOV may not include all the possible links between each pair
of places. This occurs, e.g., when a maximum distance between an UAV and
the ground site has to be ensured.

TABLE I
SETTING OF THE βd(p, t) VALUES

Condition βd(p, t) Value

(p, t) = Ω 1

(p, t) = Υ -1

otherwise 0

The optimization model is based on the following families
of decision variables:

1) a binary flow variable fdl ∈ {0, 1} ∀ l ∈ L, d ∈ D that
is equal to 1 if the UAV d uses the arc l (0 otherwise);

2) a continuous variable bts ≥ 0 ∀ s ∈ S, t ∈ T represen-
ting the energy available at site s at TS t;

3) a continuous variable etd ≥ 0 ∀ d ∈ D, t ∈ T represen-
ting the energy of an UAV d at TS t.

The overall RURALPLAN problem is then formulated as
follows:

min
∑
d∈D

∑
l∈LMOV

|El| · fdl (1)

∑
l∈L:

h(l)=(p,t)

fdl −
∑
l∈L:

t(l)=(p,t)

fdl = βd
(p,t)

∀p ∈ P, d ∈ D, t ∈ T (2)∑
d∈D

∑
l∈LCOV :
h(l)=(p,t)

fdl = 1 ∀p ∈ A, t ∈ T : t ≥ 1 (3)

bts ≤ bt−1
s + Et

s ·NSP
s −

∑
d∈D

El · fdl ∀s ∈ S, t ∈ T,

∀l ∈ LREC : h(l) = (s, t) ∧ t(l) = (s, t− 1) (4)

BMIN ·NB
s ≤ bts ≤ BMAX ·NB

s ∀s ∈ S, t ∈ T (5)

etd ≤ et−1
d +

∑
l∈LMOV ∪LREC∪LCOV :

t(l)=(∗,t−1)
h(l)=(∗,t)

El · fdl

∀d ∈ D, t ∈ T (6)

EMIN ≤ etd ≤ EMAX ∀d ∈ D, t ∈ T (7)

fdl ∈ {0, 1} ∀d ∈ D, l ∈ L (8)

More in depth, the objective function (1) is the minimization
of the energy consumed by drones to move around (expressed
through the product of the flow variables and the energy values
associated with the arcs of the graph belonging to LMOV ).
Constraints (2) impose the conservation of the flow variables
fdl , where the term βd(p, t) appearing in the constraint is
defined in Tab. I. The coverage of each area is imposed by
constraints (3), by considering only the LCOV arcs incoming
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Fig. 6. Admissible arcs and energy values for each pair of places and consecutive TSs.

to each area. Constraints (4) impose the battery balance for
each TS t and for each site s. The balance is computed by
adding to the battery level at previous TS the energy produced
by the SPs minus the energy requested to recharge the UAVs
at current TS. The minimum and the maximum battery levels
are imposed by constraints (5). The UAV energy is then set
through constraints (6) by considering: i) the contributions of
the LMOV ∪LREC∪LCOV energy arcs used by the UAV at the
current TS, ii) the UAV energy at previous TS. The minimum
and the maximum UAV energy levels are then ensured by
Eq. (7). Eventually, (8) declare the binary flow variables.

IV. SCENARIO DESCRIPTION

We consider a rural zone in Frascati, a town located in
the countryside of central Italy. Fig. 7(a) shows the aerial
view. Interestingly, the considered zone is composed of roads,
fields, small houses, and buildings having at most 3-4 floors.
Thanks to the fact that there are not tall obstacles, the zone
can be attractive for the deployment of the UAV-based 5G
architecture. Fig. 7(b) reports the locations of the places, which
are spread over the considered zone. Finally, Fig. 7(c) reports

the locations of the sites, as well as the centers of the areas
to be covered. In particular, we consider a set S composed of
3 sites, and a set A composed of 8 areas.

Tab. II summarizes the setting of the main parameters. The
selection of the sites, as well as the dimensioning of each site
in terms of SPs and batteries, is done by solving the design
problem of [16], in order to minimize the installation costs. In
addition, we have set a number of UAVs larger than the areas
to be covered. In this way, we are able to guarantee coverage
over the territory in each TS, despite the fact that each UAV
may be recharged, moved to an area, or moved to a site during
a given TS.2 Moreover, the BMIN and BMAX parameters are
set in accordance to [14], in order to guarantee the recharge
of the UAVs, as well as avoiding possible battery failures.
Moreover, the energy produced by each SP, reported in Fig. 8,
is taken from historical data from one day in June available
for the location [17]. Focusing on the parameters related to the
energy consumption of the UAVs, we assume that each UAV
can be charged up to EMAX = 1000 [Wh]. Moreover, we as-

2The investigation of the impact of varying |D| is left for future work.
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Fig. 7. The Frascati scenario.

sume that the UAV energy can be decreased up to a minimum
value EMIN = 100 [Wh]. In this way, we assume that each
UAV has an amount of energy sufficiently high to safely land
on a site upon an emergency and/or bad weather condition.
In addition, Fig. 9 reports the energy values of the LMOV

arcs. Intuitively, we have set EMOV
p1,p2

∀p1 ∈ P, p2 ∈ P by
considering an amount of consumed energy proportional to the
distance between p1 and p2. However, an arc is included only
if the distance between p1 and p2 is lower than a maximum
value, which is set equal to 900 [m]. In this way, for example,
the distance between a site and the UAV serving an area can
guarantee an adequate Signal To Interference plus Noise Ratio
(SINR) for the radio link established between the site and the

TABLE II
PARAMETERS SETTING

Parameter Value

A {A8, A9, A10, A11, A12, A13, A15, A16}

|A| 8

S {S9, S10, S15}

|S| 3

T 1 [day] divided in 24 TSs of 1 [h]

D 25 UAVs

ECOV 200 [Wh]

EREC 1000 [Wh]

Et
s see Fig.8

EMOV
p1,p2 see Fig.9

NB
s NB

S9 = 21, NB
S10 = 15 NB

S15 = 15

NSP
s NSP

S9 = 10, NSP
S10 = 8, NSP

S15 = 7

BMIN 720 [Wh]

BMAX 2400 [Wh]

EMIN 100 [Wh]

EMAX 1000 [Wh]
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UAV.3 Consequently, the LMOV graph is not a full mesh (see
the yellow cells of Fig. 9, corresponding to the “NO” label in
the colorbar of the figure). Moreover, there are places p1 and
p2 with EMOV

p1,p2
= 0 [Wh], corresponding to: i) same areas

or same sites pairs, or ii) area-site pairs which are co-located,
and hence not consuming energy values for moving the UAVs
between them (see e.g, the S10-A10 pair).

V. RESULTS

We code the RURALPLAN model by means of the IBM
ILOG CPLEX Optimization Studio software (v.12.7.1) on a
Cloud Azure DS13 machine equipped with 8 virtual cores

3A more detailed evaluation of this aspect is left for future work.
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TABLE III
RURALPLAN AND MAXCOV COMPARISON

RURALPLAN
Metric MAXCOV TL=2 [h] TL=24 [h] TL=48 [h]

ME [Wh] 86982.4 31150.6 29115.7 23858.8

MILP Gap [%] < 10−6 54.6 50.2 38.1

and 56 GB of virtual Random Access Memory (RAM). We
consider as a term of comparison the problem of maximizing
the coverage of the territory, denoted as MAXCOV. More
formally, the MAXCOV problem is defined as follows:

max
∑

l∈COV

fCOV
l (9)

subject to: (2)-(8). More in detail, the goal of MAXCOV is
to ensure that each area is covered by an UAV in each TS,
under the flow conservation, the UAV energy consumption,
and the battery management constraints. Differently from
RURALPLAN, the MAXCOV formulation does not consider
the impact of the activated LMOV arcs on the total energy
consumption, and, hence, it may result in a waste of UAV
energy.

Tab. III reports the comparison of the RURALPLAN and the
MAXCOV strategies over the Frascati scenario. Apart from
the energy consumed for moving the UAVs (expressed as
ME =

∑
d∈D

∑
l∈LMOV |El| · fdl ) we consider also the gap

obtained by setting different Time Limits (TLs) for solving
RURALPLAN. Informally speaking, the MILP gap is a measure
of quality of a feasible solution found by an algorithm,
assessing how far the solution is from an optimal solution. In
particular, when the TL is reached and the optimum has not
been found, the current best solution (and the achieved MILP
gap) are saved. Several considerations hold by examining
in detail Tab. III. For MAXCOV it is possible to obtain an
optimal solution with an energy consumption ME larger than
86 [kWh]. On the other hand, the energy is decreased to less
than 32 [kWh] when RURALPLAN is solved with a strict
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Fig. 10. Type of action vs. TS index for each UAV and for each strategy.

time limit of 2 [h]. Thus, RURALPLAN is able to achieve
a reduction of more than 60% of consumed energy compared
to MAXCOV, even if the obtained solution is retrieved after a
short amount of time. In addition, when the TL is increased,
we can note that the objective function is further reduced.
Clearly, the MILP gap decreases when the TL is increased (as
expected).

To have a better understanding of how the MAXCOV and
the RURALPLAN strategies operate, Fig. 10 reports the type of
actions performed by each UAV in each TS. The RURALPLAN
results are the ones achieved by setting TL=2 [h]. We recall
that the UAV action between one TS and the following one
may be: i) staying in the same place, ii) moving between places
with energy equal to zero (only for co-located sites/areas),
iii) moving between places with energy larger than zero, or
iv) covering an area. For the initial TS, where the UAVs are
moved from the fictitious source node Υ to the areas/sites,
we assume that this action is equivalent to a staying action.
By observing Fig. 10, we can note that the set of UAVs
covering the areas varies over time (as expected). Moreover,
each UAV can be in a coverage state up to 4 consecutive
TSs, in order to have enough energy to always ensure the
minimum energy level of Eq.(7). By comparing the output of



5 10 15 20

TS Index

5

10

15

20

25

U
A

V
 I
D

100

200

300

400

500

600

700

800

900

1000

Fig. 11. Energy consumption vs. time for each UAV.
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Fig. 12. Maximum, minimum and average UAV energy consumption for each
TS.

MAXCOV and RURALPLAN, we can clearly see that the latter
is able to greatly reduce the energy due to moving operations.
This is achieved by increasing the number of actions with
a zero energy consumption, i.e. staying and moving between
co-located areas/sites.

In the following, we concentrate on the RURALPLAN
strategy and its impact on the UAV energy consumption.
Fig. 11 shows the energy consumed by each UAV in each
TS. As expected, the energy of the UAVs ranges between the
EMIN = 100 [Wh] and EMAX = 1000 [Wh] values. In
general, the energy of each UAV is decreased up to EMIN ,
and then it is increased to EMAX when the UAV is recharged.
To give more insight, Fig. 12 reports the minimum, average,
and maximum energy consumed by the UAVs in each TS. At
the initial TS, all the UAVs start with EMAX . Therefore, the
minimum, average and maximum consumption are the same.
Then, as soon as the UAVs start performing the missions, their
average energy consumption is reduced. However, the average
energy is again increased in the middle of the considered
period of time, as a consequence of the recharge operations.
Then, the energy is again decreased, until the EMIN value
is reached. Clearly, in a realistic setting, the solution of the
problem in each day would require to reserve a budget of UAV
energy which should be used to perform the UAV operations in
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Fig. 13. Number of hours in staying state vs. the UAV ID (note: the IDs are
ordered by decreasing hours in the staying state).
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the following day(s). We leave the investigation of this aspect
as future work. Moreover, by observing also the trends of
the maximum and the minimum energy values, we can see
that there are UAVs that are completely charged or kept with
EMIN energy in most of TSs of the considered day.

In the following, we focus on the analysis of staying states
for each UAV. To this aim, Fig. 13 reports the number of hours
in the staying state for each UAV (in decreasing order). Over-
all, we can note that the staying state in not very frequent, i.e.,
less than 3 [h] for most of UAVs. This number suggests that
most of the UAVs perform missions involving the coverage
of the areas, which include recharge/moving/coverage states
rather staying ones.

Fig. 14 shows the positioning of each UAV in each TS.
As expected, the positioning in general change across time.
However, there are cases where an UAV is positioned on the
same site/area for different consecutive TS. For example, the
UAV 7 is positioned over the area A16 for 5 consecutive TSs.
This corresponds to the moving of the UAV to area A16, plus
the covering of the area A16 for 4 consecutive TSs (see also
Fig. 10(a)). Moreover, we can note that the moving between
the area A9 and the site S9, which are co-located, often occurs
(see, e.g, UAV 2).

We then extract from Fig. 14 the number of UAVs posi-
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tioned in each site in each TS. Fig. 15 reports the obtained
results. Interestingly, the number of UAVs per site notably
varies over time. Moreover, the highest peaks are incurred by
site S9. This is due to the fact that this site has a larger number
of deployed SPs and batteries, and hence it is able to recharge
multiple UAVs.

In the last part of our work, we extract from Fig. 14 the
number of UAVs per area, as reported in Fig. V. Overall, the
number of UAVs per area is pretty small, i.e., one or two.
However, the areas that share their location with a site, i.e.,
A9, A19, A15, present a larger number of UAVs. This is due
to the fact that these locations are acting as hubs for the UAVs.
Moreover, the moving between an area and a co-located site
consumes zero energy, and therefore, is equivalent to a staying
state.

VI. CONCLUSIONS AND FUTURE WORKS

We have focused on the problem of minimizing the energy
consumed for moving the UAVs of a 5G architecture when
covering a set of rural areas. After detailing the main features
of the proposed approach, we have presented the RURALPLAN
formulation, which is able to cover a set of areas, while mini-
mizing the energy consumed by the UAVs. Results, obtained
over a representative scenario, reveal that RURALPLAN is able
to reduce the energy consumption more than 60% compared
to the MAXCOV formulation.

As future work, we plan to put into place a number of
activities. First of all, we will design fast algorithms, able
to solve the problem also for larger instances considering
multiple days. In addition, we will consider the impact of
varying the set of available UAVs, as well as introducing a
methodology to evaluate the QoS perceived by users.
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