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Email: d.andreagiovanni@hds.utc.fr

∗Technische Universität Chemnitz, Chair of Communication Networks, 09126, Chemnitz, Germany
Email: andreas.baumgartner | thomas.bauschert | srva@etit.tu-chemnitz.de

Abstract—Network Slicing is envisaged as a key component
to address the challenges arising in next generation networks
concerning the deployment, control and management of services.
Besides, it promotes concurrent operation of multiple logical
networks with diverging requirements on a common substrate
platform. In this regard, the problem of designing individual
logical network slices and mapping them onto the underlying
substrate network gains significance. We denote this problem
as the Network Slice Design Problem. In this work, we first
consider the general network slice design problem. Adopting the
robust optimisation approach of Bertsimas and Sim [1], [2], we
then develop two additional formulations: i) to handle traffic
demand uncertainties, and ii) to account for the correlations
among the uncertain traffic demands. Finally, we present an
extensive evaluation of the proposed formulations using realistic
network instances.

I. INTRODUCTION

Driven by the need to enable a connected society, the
Internet is currently witnessing rapid proliferation. Cisco’s
Visual Networking Index forecasts a threefold increase in the
global IP traffic over the coming 5 years [3]. Such a growth
in traffic volume is meant to exert a lot of stress on the
performance of the underlying network infrastructure, mainly
composed of legacy hardware-based network appliances. In
order to meet the increasing QoS requirements of emerging
traffic-intensive network services, telecom service providers
(TSPs) have to spend large investments on their network
infrastructures. Network Softwarisation is anticipated to act
as a catalyst to transform the present-day telecommunication
networks into cloud-based networks where virtual software-
based network functions replace the legacy hardware-based
network elements. It further enables the TSPs to build and
host a multitude of diverse logical networks on a common
substrate network infrastructure thereby promoting new busi-
ness opportunities in the ICT sector.

Considering this, the NGMN alliance puts forth the con-
cept of Network Slicing which conforms with the telecom
service providers’ view of multi-tenancy in next generation
networks [4]. Network Slicing provides a basis for optimally

This work was supported by Celtic-Plus cluster project SENDATE Secure-
DCI (ID C2015/3-1).

partitioning the substrate network resources among different
virtual network slices with the purpose of enabling indepen-
dent control over the resources allocated to the respective
slices. Each logical slice corresponds to an abstraction of
a subset of physical substrate network resources tailored to
meet customer-specific QoS requirements. While the topic of
network slicing is well investigated in the context of wireless
networks (see [5] for an overview), its extension to fixed
networks is currently limited to partitioning the substrate
network resources to match the resource requirements of
network slice requests with pre-defined topologies as in the
Virtual Network Embedding (VNE) problem addressed in [6],
[7], [8]. We remark that the problem statement for network
slicing must not be merely confined to the assignment of
resources to pre-defined network slice requests but must also
encompass the design of the individual network slices as well
(i.e., the network slice topology, the number of required virtual
functions, their dimensioning, and the interconnections). We
refer to this problem as the Network Slice Design Problem
(NSDP).

Public safety and emergency services that form an integral
part of our day-to-day lives are expected to withstand the
impacts of unpredictable events and provide robust commu-
nication services during times of distress. Usually, the traffic
demand in the aforementioned circumstances is much higher
compared to normal situations due to the large number of users
simultaneously accessing the services. Thus, network slices
supporting lifeline communications for emergency prediction,
disaster relief etc., must be robustified in order to handle
the unprecedented rise in traffic demand following unfore-
seen natural disasters [4]. To provide robust communication
services in such situations, the design of such network slices
has to consider the information about traffic demand fluctua-
tions/parametric deviations. Robust Optimisation has emerged
as an important mathematical tool for network planners to
take into account the uncertain nature of traffic demands [9],
[10], [11]. While most of the work concerning robust network
planning assumes independence among the end-to-end traffic
demand variations, for scenarios such as lifeline communica-
tions, it is very likely that they are spatially correlated. Conse-
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quently, the knowledge about correlation among the uncertain
traffic demands should be included in the problem formulation.
Ignoring this aspect may compromise the operation of critical
public safety services. Some of the contributions that address
the aspect of correlation among parametric uncertainties in-
clude robust portfolio selections [12], demand response models
for energy consumption scheduling [13], robust energy and
reserve scheduling [14], among others.

In this paper, we first consider the general network slice
design problem proposed in [15]. Following the robust opti-
misation approach of Bertsimas and Sim [1], [2], we develop
two different robust formulations: i) an optimisation model
to handle uncertainties in traffic demands, and ii) an alternate
optimisation model that builds on the previous model by
considering the inclusion of spatial correlation among the
uncertain traffic demands in the proposed formulation . For
each of these problem formulations, we first present a simple
exponential model which can be solved using separation
routines. We then derive a compact reformulation of the
exponential model by exploiting the property of LP duality.

The paper is structured as follows: In Section II, we formally
introduce the general network slice design problem. In Section
III, we develop robust network slice design models to handle
traffic demand uncertainties. In Section IV, we present an
extensive computational evaluation of the proposed approaches
using realistic network topologies from SNDlib [16]. Section
V concludes the paper summarising the findings and outlining
possible directions for future work.

II. THE NETWORK SLICE DESIGN PROBLEM

A network slice can be fundamentally described as a self-
contained collection of traffic flows traversing an ordered set
of service-specific virtual functions within a physical substrate
network infrastructure, intended to act as an autonomous net-
work. In the view of this, we formalise the general capacitated
network slice design problem. The physical substrate network
is represented by an undirected graph G(Ns, Ls) composed of
physical substrate nodes, and substrate links interconnecting
them, with κ̄ns

≥ 0 for all ns ∈ Ns, and κ̄ls ≥ 0 for
all (ns1 , ns2) = ls ∈ Ls denoting their respective residual
capacities. The costs per unit occupancy of the substrate node
and link resources are indicated by c̄ns

≥ 0 resp. c̄ls ≥ 0.
In the event of insufficient spare resources in the substrate
network, the node and link resources can be expanded in
discrete steps of size κns

∈ Z+ resp. κls ∈ Z+, incurring
a fixed cost of cns ≥ 0 resp. cls ≥ 0.

For a network slice to establish an end-to-end service for a
set T of point-to-point demands, the traffic volume dt ∈ R+

for all t ∈ T must traverse from source i(t) to destination e(t),
an ordered set of service-specific virtual functions Nv(t). The
order of precedence - i.e., the logical interconnections between
the virtual functions is indicated by (nv1 , nv2) ∈ Lv(t) and can
be derived from the corresponding service graph [17]. These
virtual functions can be instantiated on substrate nodes and
consume substrate resources when processing/routing the traf-
fic demands. They must thus be dimensioned according to the

volume of traffic routed through them. However, restrictions
regarding their placement have to be taken into consideration
which may arise due to technological, economic, geographical
or security constraints. Accordingly, we introduce a parameter
ϕnv
ns
∈ {0, 1} indicating the ability of the substrate node ns

to host the respective virtual function nv . Similarly, virtual
IP links must be established (between substrate nodes hosting
the virtual functions) and consume substrate link resources
proportional to the volume of the traversing traffic.

Decision variables xt,nv
ns
∈ R[0,1] indicate the fraction of

demand t ∈ T processed/routed through a virtual function
nv ∈ Nv(t) residing on a substrate node ns ∈ Ns. Flow
variables f t,lvls

∈ R[0,1] indicate the fraction of demand t ∈ T
between the virtual functions (nv1 , nv2) ∈ Lv(t) routed over
the physical link ls ∈ Ls. Variables ynv

ns
∈ Z≥0 specify the

number of capacity modules of size κnv
∈ Z+ assigned to the

virtual function nv residing on the substrate node ns. Variables
uns ∈ R≥0 and uls ∈ R≥0 indicate the utilisation of the
substrate node and link resources, respectively. Let yns ∈ Z≥0

and yls ∈ Z≥0 denote the number of capacity modules of
size κns

and κls that have to be additionally installed at the
substrate nodes and links, respectively to accommodate the
network slice in case of insufficient substrate network capacity.

In the following, we outline the formulation of the general
network slice design problem as a mixed integer program:

min
∑

ns∈Ns

c̄ns
uns

+ cns
yns

+
∑
ls∈Ls

c̄lsuls + clsyls (1a)

s.t.
∑

ns∈Ns

ϕnv
ns
xt,nv
ns

= 1 ∀t ∈ T, nv ∈ Nv(t) (1b)∑
t∈T

dtx
t,nv
ns
≤ κnvy

nv
ns

∀nv ∈ Nv, ns ∈ Ns (1c)∑
nv∈Nv

κnv
ynv
ns
≤ uns

∀ns ∈ Ns (1d)∑
t∈T

∑
lv∈Lv(t)

dtf
t,lv
ls
≤ uls ∀ls ∈ Ls (1e)

uns
≤ κ̄ns

+ κns
yns

∀ns ∈ Ns (1f)
uls ≤ κ̄ls + κlsyls ∀ls ∈ Ls (1g)∑
j∈Ns(ns)

(f t,lv(ns,j) − f
t,lv
(j,ns)) = x

t,nv1
ns − xt,nv2

ns

∀t ∈ T, lv ∈ Lv(t), ns ∈ Ns (1h)

xt,nv
ns

, f t,lvls
∈ R[0,1], y

nv
ns
, yns , yls ∈ Z≥0,

uns , uls ∈ R≥0 (1i)

where f t,lvls
:= f t,lv(ns1

,ns2
) + f t,lv(ns2

,ns1
) for all ls ∈ Ls. Objec-

tive function (1a) minimises the combined costs of substrate
resource utilisation and potential capacity installation when
hosting the network slice. Constraints (1b) ensure that demand
t is routed in its entirety through an ordered set of virtual
functions Nv(t) hosted on suitable substrate nodes. Constraints
(1c) denote the capacity requirements of the virtual functions.
Constraints (1d) guarantee that the capacities reserved at the
substrate nodes are higher than the capacity requirements of
the virtual functions. Analogously, constraints (1e) ensure the



capacities reserved at the substrate links are higher than the
volume of traffic routed through them. Constraints (1f) resp.
(1g) impose that the reserved capacities at the substrate nodes
resp. links do not exceed the total available capacities (i.e.,
the residual capacities and the additionally installed capacity
modules). Constraints (1h) conserve flow at the substrate
nodes.

III. ROBUST NETWORK SLICE DESIGN MODELS

We previously introduced the deterministic version of the
general network slice design problem. This is appropriate
under the assumption that the forecast traffic demands are
accurate. In practice, however, the task of accurately estimating
the future traffic behaviour is challenging due to the dynamic
nature of next generation network services [4]. This clearly
poses a problem for the operation of network slices, espe-
cially for services supporting lifeline communications where
maintaining service continuity is of paramount importance.
It is thus imperative that the information regarding traffic
uncertainty is incorporated into the model formulation to be
able to cope with the stochastic nature of the traffic demands.
Robust Optimisation (RO) has been increasingly adopted to
address the challenges arising from parametric uncertainties.
By choosing an appropriate uncertainty set to model the
parametric uncertainties, RO makes it possible to obtain cost-
effective solutions that are deterministically feasible for any
realisation of the uncertain parameters within the contours of
the defined uncertainty set. For an expansive treatment on RO,
we refer the reader to [18]. Recent applications of RO in the
field of network optimisation include [9], [10], [11].

In this work, we consider the widely adopted robust op-
timisation approach proposed by Bertsimas and Sim [1],
[2] to model uncertainties in the traffic demands. The Γ-
robust approach is favourable because of two reasons: First,
it allows the feasibility level to be easily adjusted by tuning
the parameter Γ, which corresponds to the number of simul-
taneous parametric deviations against which we intend to be
protected. Secondly, the resulting reformulations of the robust
counterparts are computationally tractable, thereby making it
appealing from a practitioner’s perspective.

A. The Robust Network Slice Design Problem: Uncorrelated
Demand Uncertainties

We model the traffic demands as symmetric and independent
random variables bound by the interval [d̄t−d̂t, d̄t+d̂t], where
d̄t denotes the nominal value of the forecast traffic volume,
and d̂t, in turn, denotes the maximum deviation from the
forecast traffic volume. Assuming at most Γ ∈ Z|T | demands
simultaneously attain their worst-case realisations, we can
now replace the capacity constraints (1c) and (1e) with the
following non-linear robust counterparts:∑
t∈T

d̄tx
t,nv
ns

+ max
D⊆T :
|D|≤T

∑
t∈D

d̂tx
t,nv
ns
≤ κnv

ynv
ns

∀nv ∈ Nv, ns ∈ Ns (1c’)

∑
t∈T

∑
lv∈Lv(t)

d̄tf
t,lv
ls

+ max
D⊆T :
|D|≤T

∑
t∈D

∑
lv∈Lv(t)

d̂tf
t,lv
ls
≤ uls

∀ls ∈ Ls (1e’)

The non-linear robust capacity constraints can be linearised
by casting them as exponential many linear constraints, each
accounting for a possible realisation of the uncertain demand
scenario. Thus, the exponential model for the Γ-robust network
slice design problem for uncorrelated demand uncertainties
takes the form:

(1a), (1b), (1d), (1f), (1g), (1h), (1i)∑
t∈T

d̄tx
t,nv
ns

+
∑
t∈D

d̂tx
t,nv
ns
≤ κnv

ynv
ns

∀nv ∈ Nv, ns ∈ Ns (2a)∑
t∈T

∑
lv∈Lv(t)

d̄tf
t,lv
ls

+
∑
t∈D

∑
lv∈Lv(t)

d̂tf
t,lv
ls
≤ uls

∀ls ∈ Ls (2b)

where constraints (2a), (2b) are applicable for every demand
subset D ⊆ T provided |D| ≤ Γ. The problem of having to
include an exponential set of constraints in the optimisation
model (2) can be circumvented as follows: For a solution
(x, f) to problem (1), we compute the violated inequalities
of capacity constraints (2a), (2b) for the obtained solution by
reverting to separation procedures elaborated in the works of
[9], [19]. We subsequently add these violated inequalities to
model (1) and repeat the procedure until no more violations
are observed.

An alternate approach to the above method is to employ
the dualisation technique proposed by Bertsimas and Sim
[1], [2] in order to obtain a tractable reformulation of the
exponential Γ-robust NSDP. By virtue of LP duality, the inner
maximisation problem in constraint (1c’) for a fixed xt,nv

ns
can

be replaced with its corresponding dual equivalent:

max
D⊆T :
|D|≤Γ

∑
t∈D

d̂tx
t,nv
ns

= min
∑
t∈T

ρt,nv
ns

+ Γπnv
nv

s.t. ρt,nv
ns

+ πnv
ns
≥ d̂txt,nv

ns
∀t ∈ T

ρt,nv
ns

, πnv
ns
∈ R≥0 ∀t ∈ T

where ρt,nv
ns

, πnv
ns

are the dual variables. The dual equivalent
of the inner maximisation problem in constraint (1e’) can be
obtained in a similar manner.

The compact reformulation of the Γ-robust network slice
design problem for uncorrelated demand uncertainties reads:

(1a), (1b), (1d), (1f), (1g), (1h), (1i)∑
t∈T

d̄tx
t,nv
ns

+
∑
t∈T

ρt,nv
ns

+ Γπnv
ns
≤ κnvy

nv
ns

∀nv ∈ Nv, ns ∈ Ns (3a)

ρt,nv
ns

+ πnv
ns
≥ d̂txt,nv

ns
∀t ∈ T, nv ∈ Nv(t), ns ∈ Ns (3b)∑

t∈T

∑
lv∈Lv(t)

dtf
t,lv
ls

+
∑
t∈T

ρtls + Γπls ≤ uls ∀ls ∈ Ls (3c)



ρtls + Γπls ≥
∑

lv∈Lv(t)

d̂tf
t,lv
ls

∀t ∈ T, ls ∈ Ls (3d)

ρt,nv
ns

, πnv
ns
, ρtls , πls ∈ R≥0 (3e)

Note that the spatial correlations between the uncertain traffic
demands are not explicitly included in the definition of the
uncertainty set, and hence we term the model uncorrelated.
This may however have consequences on the robustness of the
network slice design solutions if the uncertain traffic demands
exhibit strong correlation, as we will show in Section IV-B.

B. The Robust Network Slice Design Problem: Correlated
Demand Uncertainties

Recall that, in Section III-A, we modelled the demands as
independent and symmetrically distributed random variables
in the pre-defined interval [d̄t − d̂t, d̄t + d̂t]. We now con-
sider the scenario where the uncertain traffic demands are
no longer independent, but possibly correlated. This reflects
the case of lifeline communications, where the unforeseen
events occurring at certain locations clearly have an impact
on the independence of the uncertain traffic demands. Such a
scenario potentially resembles a flash-crowd or a traffic surge
where some spatial correlation exists between different traffic
demands. Hence, our previous assumption of independence
among the uncertain traffic demands no longer holds true
and this requires us to re-define our uncertainty set so as
to explicitly include the correlation between the demands.
Bertsimas and Sim [2] propose an alternate model to handle
correlated parametric uncertainties, which seeks to identify
a subset of uncertain sources of cardinality Γ ∈ Z|K| that
have the worst impact on each parameter. On the contrary,
we intend to be protected against a subset of demands that
assume their worst-case realisations due to the impact of a set
K of uncertain sources. As a result, we apply refinements to
the definition of the uncertainty set as outlined in the work of
Gregory et al [12].

We now characterise the uncertainty set for correlated
traffic demands: The uncertain traffic demands are modelled
as symmetric and independent random variables bound by
[d̄t −

∑
k∈K gk,t, d̄t +

∑
k∈K gk,t], where d̄t corresponds to

the nominal value of the forecast traffic volume, and gk,t
refers to the impact of the uncertainty source k on demand
t. Note that by explicitly incorporating the impact of the
uncertainty sources on each demand t, we guarantee that the
correlation among the traffic demands is now accounted for
in the subsequent robust formulations. We assume at most
Γ ∈ Z|T | demands deviate from their nominal value dt
simultaneously. Hence, we replace the nominal constraints
(1c), (1e) with their respective robust counterparts:∑

t∈T
d̄tx

t,nv
ns

+ max
D⊆T
|D|≤Γ

∑
t∈D

∑
k∈K

gk,tx
t,nv
ns
≤ κnv

ynv
ns

∀nv ∈ Nv, ns ∈ Ns (1c”)∑
t∈T

∑
lv∈Lv(t)

d̄tf
t,lv
ls

+ max
D⊆T
|D|≤Γ

∑
t∈D

∑
k∈K

∑
lv∈Lv(t)

gk,tf
t,lv
ls
≤ uls

∀ls ∈ Ls (1e”)

Analogous to the previous section, we can replace the non-
linear robust capacity constraints (1c”), (1e”) with an expo-
nential family of linear inequalities, each corresponding to a
possible realisation of the uncertain demand scenario. We now
present the exponential model for the Γ-robust network slice
design problem for correlated demand uncertainties:

(1a), (1b), (1d), (1f), (1g), (1h), (1i)∑
t∈T

d̄tx
t,nv
ns

+
∑
t∈D

∑
k∈K

gk,tx
t,nv
ns
≤ κnvy

nv
ns

∀nv ∈ Nv, ns ∈ Ns (4a)∑
t∈T

∑
lv∈Lv(t)

d̄tf
t,lv
ls

+
∑
t∈D

∑
k∈K

gk,tf
t,lv
ls
≤ uls

∀ls ∈ Ls (4b)

where constraints (4a), (4b) hold true for every subset of traffic
demands D ⊆ T and |D| ≤ T . Notwithstanding the presence
of exponential many constraints, we can employ separation
oracles to solve the exponential model for the Γ-robust NSDP
for correlated demand uncertainties.

Exploiting LP duality, and fixing xt,nv
ns

, the inner maximi-
sation problem in (1c”) can be linearised as follows:

max
D⊆T :
|D|≤Γ

∑
t∈D

∑
k∈K

gk,tx
t,nv
ns

= min
∑
t∈T

ρt,nv
ns

+ Γπnv
ns

s.t. ρt,nv
ns

+ πnv
ns
≥

∑
k∈K

gk,tx
t,nv
ns

∀t ∈ T
ρt,nv
ns

, πnv
ns
∈ R≥0 ∀t ∈ T

where ρt,nv
ns

, πnv
ns

are the dual variables. Constraints (1e”) can
be linearised in a similar fashion.

The exponential Γ-robust NSDP (4) can now be reformu-
lated as the compact Γ-robust network slice design problem
for correlated demand uncertainties:

(1a), (1b), (1d), (1f), (1g), (1h), (1i)∑
t∈T

d̄tx
t,nv
ns

+
∑
t∈T

ρt,nv
ns

+ Γπnv
ns
≤ κnvy

nv
ns

∀nv ∈ Nv, ns ∈ Ns (5a)

ρt,nv
ns

+ πnv
ns
≥

∑
k∈K

gk,tx
t,nv
ns

∀t ∈ T, nv ∈ Nv(t), ns ∈ Ns (5b)∑
t∈T

∑
lv∈Lv(t)

d̄tf
t,lv
ls

+
∑
t∈T

ρtls + Γπls ≤ uls ∀ls ∈ Ls (5c)

ρtls + πls ≥
∑
k∈K

∑
lv∈Lv(t)

gk,tf
t,lv
ls

∀t ∈ T, ls ∈ Ls (5d)

ρt,nv
ns

, πnv
ns
, ρtls , πls ∈ R≥0 (5e)

IV. PERFORMANCE EVALUATION

In this section, we analyse the performance of the proposed
robust models (2)-(5) in terms of their solution quality. We
then evaluate the relative costs and the robustness of the
solutions obtained from these models, and investigate the



benefits of explicitly considering the spatial correlations within
the uncertainty set construction.

Instances: We construct problem instances similar to that
of [15] while suitably modifying them to account for spa-
tially correlated traffic uncertainties. For the physical sub-
strate network, we consider three sample network topologies
from SNDlib [16]: NOBEL-DE (17, 26), NOBEL-US (14, 21),
POLSKA (12, 18). The spare physical substrate network re-
sources (node/link) are randomly drawn from the value set
(300.0, 400.0, 500.0) weighted by (0.3, 0.4, 0.3) while the cost
per occupied unit of these resources is set to 2.5 units. The
size and cost of a capacity module is set to 250 units. The
cost to install a capacity module on either a substrate node or
link is set to 250 units as well.

TABLE I
SUBSTRATE NETWORK EXAMPLES

Network NOBEL-DE NOBEL-US POLSKA

Topology

|Ns| 17 14 12
|Ls| 26 21 18
|T | 34 28 24

We consider the use case of a generic network slice design
where the set of virtual functions is given as Nv ={VF1,
VF2, VF3, VF4, VF5} while the sequence in which the end-
to-end traffic flows traverse the virtual functions is expressed
as: Lv ={(i(t), VF1), (VF1, VF2), (VF2, VF3), (VF3, VF4),
(VF4, VF5), (VF5, e(t))}. As for the set of traffic demands
T , we generate 2 · |Ns| demands whose source nodes i(t)
and sink nodes e(t) are drawn from the set Ns of physical
substrate nodes uniformly at random while ensuring a non-zero
hop count. For our evaluation, it is assumed that all substrate
network nodes have the capability to host a virtual function
of any type nv ∈ Nv . The resource allocation granularity κnv

for all virtual functions nv ∈ Nv is set to 100 units.
Due to the unavailability of spatially correlated traffic

datasets, we generate synthetic traffic traces by applying
the following four-step procedure: First, for each demand
t ∈ T , we randomly draw a value from (20.0, 30.0, 40.0) with
probability (0.3, 0.4, 0.3). Second, to ensure that the traffic
coefficients dt are normally distributed, for each t ∈ T , we
draw 1440 samples at random from a normal distribution with
mean 0 and standard deviation of 50% of the respective value
chosen in the first step. At this stage, a quick verification of the
traffic traces reveal - as expected - negligible correlations. To
enforce spatial correlation among the demands, the samples
generated in the second step are scaled by the Cholesky
factorisation of a manually-built correlation matrix such that
%t,t′ = 0.99 for all t, t′ ∈ T : t 6= t′. Finally, for every
t ∈ T , the value determined in the first step is added to
each of these 1440 samples to obtain spatially correlated
synthetic traffic snapshots. We now determine the nominal (d̄t)

and uncertain (d̂t) volume of each demand as the arithmetic
mean and 3σ of the generated traffic traces, respectively. For
the case of the correlated models (4), (5), however, the task
of precisely identifying the set K of uncertain sources and
their impact gk,t on the uncertain traffic demands is indeed
challenging. Alternatively, we use the correlations among the
traffic demands under the assumption that the covariance
matrix Σ of the uncertain traffic demands is available [20].
We then apply Cholesky decomposition to obtain the lower
triangular matrix L, wherein each element Lt,t′ captures the
impact of the source of traffic uncertainty t′ on the demand t
which is suitably scaled by a factor of 3.

Setting: We implemented compact reformulations (3) and
(5) in JuMP v0.18 [21] - a modelling language for mathe-
matical optimisation embedded in Julia v0.6 [22] using the
Gurobi Optimizer v7.0.0 [23] as the underlying MIP solver.
For the exponential formulations (2) and (4), the violated
robust inequalities are separated on-the-fly as lazy constraints
which are then added to the formulations using the solver
callback functionality supported by JuMP.

The computations are performed on a Linux machine with
Intel® Core™ i7-4770K CPU @ 3.40 GHz and 32 GB RAM.
We set a time limit of 3600 seconds for solving each problem
instance. For each of the considered network topologies, mod-
els (2), (3), (4) and (5) are solved for Γ = 0, · · · , 15 leading
to a total of 192 network slice design problem instances.

A. Separation vs. Reformulation

To study the computational performance of the proposed so-
lution methodologies - separation method (for models (2), (4))
and compact reformulation (for models (3), (5)) - we compare
the solutions obtained from the respective methodologies in
terms of their optimality gaps. The optimality gap is defined
as the relative gap between the best integer objective and the
best lower bound attained by the solver and is often used
as a qualitative indicator of the obtained solution. A positive
optimality gap indicates the distance of the obtained solution
from optimality whereas a solution with an optimality gap of
0 is interpreted as the optimal solution.

Figure 1 depicts the optimality gaps of the solutions ob-
tained from the separation method against those of compact
reformulation for both the uncorrelated and correlated models.
Every mark in the figure corresponds to a robust network slice
design for a specific configuration of (nominal, uncertain, Γ).
With the increment in the protection level Γ, the resulting
problem instances become harder to solve leading to higher
optimality gaps (which are consequently represented by darker
marks). The marks lying on the bisecting line, however,
represent solutions of the same quality irrespective of the
adopted solution methodology.

For each network topology, we observe a higher presence
of the marks to the left of the bisecting line indicating that the
solutions obtained from the separation method are of inferior
quality compared to the compact reformulation method. The
reason for this behaviour is mainly attributed to the time
spent by the separation routines to identify violated robust
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Fig. 1. Comparison of optimality gaps of the solutions obtained via separation and reformulation methods for all problem instances.

inequalities at the active nodes of the branch-and-bound tree.
In particular, of the considered 96 problem instances for each
of the methods, the compact reformulation always returned a
solution with an average optimality gap of 2.17%. On the
contrary, the separation method was not able to solve 23
of the considered problems within the imposed time limit,
notably for the NOBEL-DE problem instance for the case of
both the uncorrelated and correlated models. This behaviour
is manifested by the sparsely distributed markers for the
problem instance NOBEL-DE. Interestingly, we did not notice
a considerable difference (< 1.6%) in the optimality gaps of
the solutions obtained for both the uncorrelated and correlated
models irrespective of the solution method implying that the
inclusion of correlation within the uncertainty set doesn’t
increase the problem complexity.

To summarise, the compact reformulation proves to be a
computationally viable alternative to the separation method,
yielding solutions of lower optimality gap for most of the
problem instances (in our case 92 of the considered 96 problem
instances) whereas the separation procedure fails to return a
non-trivial solution for 23 instances. Henceforth, we employ
the compact reformulation method to evaluate the performance
of the (uncorrelated and correlated) robust NSDP models in
the subsequent section.

B. Cost vs. Realised Robustness

In our second study, we evaluate the performance of the
proposed robust network slice design models in terms of the
relative costs and the realised robustness of the obtained solu-
tions. Consistent with the earlier works of [8], [9], we define
price of robustness as the percentual increase in the cost of the
solution to provide robustness guarantees while the realised
robustness is defined as the percentage of snapshots/traffic
matrices for which the obtained solution is still feasible.

In Figure 2, we illustrate the results obtained for the NOBEL-
US problem instance from models (3) and (5). Every mark
represents the relative cost and the robustness of the obtained
network slice design solution for a particular (nominal, un-
certain, Γ) configuration. As anticipated, when increasing the
protection factor Γ, the robustness of the solutions improve,
and as a result, the cost to provide robustness increases.

While this trend remains irrespective of the considered robust
model, we notice that the conservativeness (i.e. the cost
vs. robustness tradeoff) of the solutions obtained from both
models are quite similar. This implies that despite the inclusion
of correlation into the uncertainty set, the solutions from the
correlated model do not add significantly to the conservative-
ness. However, an interesting observation is that for a fixed
(nominal, uncertain, Γ) setting, the correlated model yields
solutions that are more robust compared to the uncorrelated
model. Encouraged by this observation, in the following, we
investigate in further detail, the robustness of the solutions
obtained from the uncorrelated and correlated models.
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Fig. 2. Relative cost (w.r.t. the non-robust model (1)) vs. realised robustness
for NOBEL-US.

Figure 3 visualises the realised robustness of the obtained
solutions for both the uncorrelated and correlated network
slice design models. Each mark in the figure indicates the
robustness of the network slice design solution obtained for the
uncorrelated and correlated models for a particular (nominal,
uncertain, Γ) setting. As mentioned earlier, we observe that
for every increase in the protection factor Γ, the robustness
of the obtained solution improves which is reflected by the
color of the marks. For all networks, except for Γ = 0 whose
mark is located on the bisecting line, the marks are positioned
above the bisecting line indicating that the network slice design
solutions obtained from the correlated model provide a higher
degree of robustness (at most 9 percentage points) compared to
the uncorrelated model. This is an expected yet predominant
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Fig. 3. Realised robustness (correlated) vs. realised robustness (uncorrelated) for all problem instances.

consequence of including the correlation information in the
construction of the uncertainty set as outlined in Section III.

V. CONCLUSIONS

In this paper, we consider the network slice design prob-
lem outlined in [15]. We suitably extend its formulation to
account for i) traffic demand uncertainties by adopting the
Γ-robust uncertainty set of Bertsimas and Sim [1], [2], and
ii) correlation among the uncertain traffic demands by explic-
itly including the correlation information in the uncertainty
set construction. We then present two solution approaches -
separation method and compact reformulation - to solve the
robust network slice design models with and without traffic
demand correlation.

Our computational study shows that the compact reformu-
lation outperforms the separation method, yielding solutions
of lower optimality gaps for the majority of the considered
problem instances. In a further step, we evaluate the robustness
of the solutions obtained from the uncorrelated and correlated
robust NSDP models. As an outcome of explicitly integrating
the information of traffic demand correlations into the un-
certainty set, the correlated model is able to yield solutions
that are more robust against uncertain traffic demands while
maintaining a similar level of conservativeness. In future,
we plan to investigate an alternative method based on the
histogram model to characterise the correlation in the uncertain
traffic demands.
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