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Abstract. We investigate the problem of optimally placing virtual net-
work functions in 5G-based virtualized infrastructures according to a
green paradigm that pursues energy-efficiency. This optimization prob-
lem can be modelled as an articulated 0-1 Linear Program based on a
flow model. Since the problem can prove hard to be solved by a state-
of-the-art optimization software, even for instances of moderate size, we
propose a new fast matheuristic for its solution. Preliminary computa-
tional tests on a set of realistic instances return encouraging results,
showing that our algorithm can find better solutions in considerably less
time than a state-of-the-art solver.
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1 Introduction

The Fifth Generation of wireless telecommunications systems, widely known as
5G, has attracted a lot of attention in recent times, since it is largely considered
a crucial element for a full realization of a digital society and a critical technol-
ogy to support the deployment of smart cities [1]. 5G is going to offer enhanced
service performances unknown to previous wireless technologies, such as data
rates of at least 40 Mbps for tens of thousands of users, data rates of 100 Mbps
for metropolitan areas, enhanced spectral efficiency and a dramatic reduction
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of latency (see e.g., [1]). In particular, 5G will be strongly based on Network
Function Virtualization, according to which network functions run on a set of
virtual machines (VMs) that are hosted in cheap commodity hardware servers
[2]. This will considerably reduce the cost of network infrastructures, decreasing
the need for expensive dedicated hardware. The problem of optimally designing
virtual networks, allocating Virtual Network Functions Components (VNFCs)
to physical servers and managing the data flows between servers has received
great attention in recent times, in particular focusing on adopting a green net-
working perspective aimed at minimizing the overall power consumption (see
e.g., [3–8]). However, while in the available literature purely heuristic solution
approaches for virtual network design have been quite widely investigated, the
development of hybrid exact-heuristic algorithms exploiting the potentialities of
mathematical programming (so-called matheuristic - see [9]) has received very
limited attention. By this work, we aim to start to fill this gap by proposing
a new matheuristic for the green placement of virtual network function in 5G,
while taking into account the uncertainty of function requests (see e.g., [4,6]).

The remainder of this short paper is organized as follows: in Sect. 2, we
describe a Binary Linear Programming model for modelling the green and robust
placement of VNCFs; in Sect. 3, we present a new matheuristic to fast solve
the placement problem: finally, in Sect. 4, we report preliminary computational
results and derive some conclusions.

2 A Binary Linear Program for VNFC Placement

From a modelling point of view, we can essentially describe the topology of the
5G network that we consider through a graph G(N,L), where N is the node
set and L is the link set. Each link � ∈ L corresponds to a pair (i, j), where
i, j ∈ N are the nodes it connects. Each link is associated with a bandwidth b�.
The network interconnects a set of servers S and the node to which a server s is
connected is denoted by n(s) ∈ N . Each server offers an amount of computational
resources (e.g., CPU and RAM): denoting by R the set of resource types, the
amount of resources available for each type r ∈ R at a server s ∈ S is denoted by
asr. The set of VNFCs is denoted by V and the set of service chains offered in
the network is denoted by C. When executed, a VNFC v ∈ V requires an amount
avr of each resource type r ∈ R. Each chain C ∈ C corresponds to a subset of
pairs (v1, v2) belonging to V × V . The exchange of data between v1 and v2 in
a pair (v1, v2) requires an amount of bandwidth bv1v2 in each traversed network
link. Concerning power consumption, every node n ∈ N and link � ∈ L consumes
Pn and P� when used, respectively. Each server s ∈ S has a consumption that is
a linear function in the range [Pmin

s , Pmax
s ].

The optimization problem related to VNFC placement that we consider can
be resumed as follows: given a 5G network interconnecting a set of servers,
we want to decide how to establish a set of virtual chains in the network,
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respecting the available resource budget of the servers, while minimizing the
overall power consumption. The decisions taken are modelled by the following
decision variables:

(1) variables ys ∈ {0, 1}, ∀s ∈ S representing the activation of a server (ys = 1
if s is turned on and 0 otherwise);

(2) variables xvs ∈ {0, 1}, ∀v ∈ V, s ∈ S representing the allocation of a VNFC
v to server s (xvs = 1 if v is allocated to s and 0 otherwise);

(3) variables zn ∈ {0, 1}, ∀n ∈ N representing the activation of a node n (zn = 1
if n is turned on and 0 otherwise);

(4) variables wij ∈ {0, 1}, ∀(i, j) ∈ L representing the activation of a link � =
(i, j) (wij = 1 if � = (i, j) is turned on and 0 otherwise);

(5) variables f
(v1,v2)
ij ∈ {0, 1}, ∀(i, j) ∈ L, (v1, v2) ∈ ⋃

C∈C representing that link
(i, j) is used for data exchange between v1 and v2 belonging to some C ∈ C.

These variables are employed in the following Binary Linear Program, denoted
by BLP-VP, modelling the VNFC optimal placement problem:

max
∑

s∈S

[

Pmin
s · ys + (Pmax

s − Pmin
s ) · 1

ars
·
∑

v∈V

avr · xvs

]

+
∑

n∈N

Pn · zn +
∑

(i,j)∈L

Pij · wij (with r = CPU) (BLP-VP) (1)

∑

s∈S

xvs = 1 v ∈ V (2)

ys ≤
∑

v∈V

xvs s ∈ S (3)

xvs ≤ ys s ∈ S, v ∈ V (4)
∑

v∈V

avr · xvs ≤ ars · ys s ∈ S, r ∈ R (5)

∑

(n,i)∈L

bv1,v2 · fv1,v2
ni −

∑

(i,n)∈L

bv1,v2 · fv1,v2
in =

∑

s∈S:n(s)=n

bv1,v2 · (xv1s − xv2s) n ∈ N, (v1, v2) ∈
⋃

C∈{C}
C (6)

∑

(v1,v2)∈
⋃

C∈{C} C

bv1,v2fv1,v2
ij ≤ Bijwij (i, j) ∈ L (7)

wij ≤ zi and wij ≤ zj (i, j) ∈ L (8)

fv1,v2
ij ≤ zi and fv1,v2

ij ≤ zj (i, j) ∈ L (9)
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ys, xvs, zn, wi,j , f
v1,v2
i,j ∈ {0, 1} s ∈ S, v ∈ V, n ∈ N,

(i, j) ∈ L, (v1, v2) ∈
⋃

C∈{C}
C.

The previous model is based on the model proposed in [6], to which we refer
the reader for a detailed description of all its elements. The objective function (1)
pursues the minimization of the total power consumption, expressed as the sum
of the power consumed by servers, nodes and links. The constraints (2) impose
that each VNFC must be allocated on exactly one server. The constraints (3) and
(4) logically link the values of the server activation and VNFC allocation decision
variables. The constraints (5) model the resource capacity for each server and
resource type, imposing that the overall resource usage of all the VNFCs cannot
exceed the capacity of each server. The constraints (6) express the usage of band-
width on links of the network, under the form of flow conservation constraints
with a flow balance in the right hand side that takes into account the variable
allocation of VNFCs to servers. The bandwidth capacity of links is modelled by
the constraints (7). Finally, the constraints (8) and (9) link the link and node
activation decision variables, imposing that links are activated if and only if the
corresponding nodes are activated.

Protecting Against Resource Uncertainty. As in [6], we make the resource
capacity constraints (5) robust against fluctuations in the resource requests avr.
Indeed, the resource need for virtual chains requests is typically not exactly
known in advance. Taking into account such data uncertainty in the model is
very important, since by neglecting the possibility of variations in the input data
we risk to obtain design solutions that are of bad quality and even infeasible in
practice. For a discussion about the effects of the presence of data uncertainty in
mathematical optimization and (telecommunications) network design, we refer
the reader to the works [10,11]. In order to protect against resource uncertainty,
we adopt a Robust Optimization (RO) paradigm (see e.g., [10]). RO, which
has been highly appreciated for its high computational efficiency with respect
to more traditional paradigms like Stochastic Programming, essentially takes
into account data uncertainty by including additional hard constraints in the
optimization problem. These constraints have the task of excluding solutions
that are vulnerable to input data deviations, maintaining only robust solutions.
The data deviations that are relevant to the decision maker and against which
protection is needed are specified through a so-called uncertainty set. The specific
RO model that we consider is Γ -Robustness [12], which belongs to the family of
cardinality-constrained uncertainty sets and, adapting to our case, assumes that
each value avr may vary in a range [āvr−Δavr, āvr+Δavr] centered on a reference
value āvr that may deviate up to Δavr > 0. Furthermore, the uncertainty model
assumes that at most Γ coefficients in every (5) may vary.

Under these modelling assumptions, the robust version of the constraints
(5) can be obtained according to the procedure detailed in [6]. Specifically, each
constraint (5) must be replaced by the following set of constraints and additional
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decision variables:

∑

v∈V

āvr · xvs +

(

Γ · vrs +
∑

v∈V

wrsv

)

≤ ars · ys

vrs + wrsv ≥ Δavr · xvs v ∈ V

vrs ≥ 0
wrsv ≥ 0 v ∈ V. (10)

The robust model that we solve in what follows is thus (BLP-VP) with (5)
replaced with (10). We denote such robust model by (ROB-BLP-VP).

3 A Matheuristic for ROB-BLP-VP

We present here a new matheuristic for optimal VNFC placement that is based
on the integration of a Genetic Algorithm (GA) with an exact large neighbor-
hood search, namely a search formulated as an optimization problem solved by
a state-of-the-art solver such as CPLEX [13]. The solver is also used for com-
pleting partial solutions of (ROB-BLP-VP) in an optimal way: for a fixed value
configuration of a subset of decision variables, we employ the solver to find a
feasible valorization of all the remaining variables while optimizing the objective
function. At the basis of this matheuristic there is the consideration that, while
a state-of-the-art solver may find difficulties in identifying good quality solu-
tions for ROB-BLP-VP, it is instead able to efficiently identify good solutions
for appropriate subproblems of ROB-BLP-VP, derived by fixing the value of a
consistent subset of variables.

GAs are widely known metaheuristics that draw inspiration from the evolu-
tion of a population (see [14] for an exhaustive introduction to the topic). The
individuals of the population represent solutions of the optimization problem
and the chromosome of an individual corresponds to a valorization of decision
variables of a solution. The quality of an individual/solution is assessed through
a fitness function. A GA begins with the definition of an initial population that
then changes through evolutionary mechanisms like crossover and mutation of
individuals, until some stopping criterion is met.

3.1 Initialization of the Population

Solution Representation. The first step consists of establishing what the
individuals of the population represent. We decided that the chromosome of an
individual corresponds with a valorization of the decision variables (y, x) (of
ROB-BLP-VP), which represent the server activation and the VNFC allocation.
Indeed, such variables are particularly critical for the problem: once their values
have been fixed, we obtain a subproblem of (ROB-BLP-VP) that reduces to a
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kind of robust network flow problem and is easier to be solved by a state-of-the-
art optimization solver, returning an optimal solution for (ROB-BLP-VP) using
the valorization of (y, x) as basis.

Fitness Function. To assess the quality of an individual, we adopt a fitness
function that corresponds to the objective function (1) of (ROB-BLP-VP).

Initial Population. The strategy that we explored to generate the initial group
of individuals relies on the following principles: to generate an individual, we ran-
domly activate a number σ < |S| of servers and then we randomly assign each
VNFC in V to one single activated server, checking that the resource constraints
(5) are not violated. In this way, we obtain a valorization (ȳ, x̄) of the server and
allocation variables that we can then complete by solving the remaining sub-
problem of (ROB-BLP-VP) through a state-of-the-art solver. By this strategy,
we can obtain the optimal solution of (ROB-BLP-VP) for a fixed (ȳ, x̄). We
denote the set of individuals constituting the population at a generic iteration
of the algorithm by POP .

3.2 Evolution of the Population

Selection. The individuals chosen for being combined and generating the new
individuals are chosen according to a tournament selection principle: we first
create a number β of (small cardinality) groups of individuals by randomly
selecting them from POP. Then the γ individuals in each group associated with
the best fitness value are combined through crossover.

Crossover. We form the couples that generate the offsprings according to the
following procedure. From the tournament selection, we obtain β · γ individuals
that are randomly paired in couples, each generating one offspring. Assuming
that the two parents are associated with chromosomes/partial solutions (y1, x1)
and (y2, x2), the chromosome of the offspring (yoff, xoff) is defined according to
two rules: (1) if the parents have the same binary value in a position j, then
the offspring inherits such value in its position j (i.e., if (y1, x1)j = (y2, x2)j

then (yoff, xoff)j = (y1, x1)j); (2) if the parents have distinct binary values in a
position j, then the offspring inherits a null value (i.e., if (y1, x1)j �= (y2, x2)j

then (yoff, xoff)j = 0). Possible violations in the constraints (2) and (5) associ-
ated with (yoff, xoff) are then repaired. The main rationale at the basis of this
procedure is assuming that two solutions having the same valorization of a vari-
able is a good indication that such valorization should be maintained also in the
offspring.

3.3 Exact Improvement Search

We attempt at improving the best solution found by the GA through an exact
large neighborhood search, namely a search that is formulated as a suitable
Binary Linear Programming problem solved by a state-of-the-art optimization
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solver [9]. The search is based on using the effective heuristic RINS (Relax-
ation Induced Neighborhood Search - we refer the reader to [15] for an exhaus-
tive description of it). Specifically, given a partial solution (ȳ, x̄) of (ROB-BLP-
VP) and (yLR, xLR) an optimal solution of a Linear Relaxation (i.e., a solution
obtained by removing the integrality requirements on the binary variables), we
solve a subproblem of (ROB-BLP-VP) where the value of the j-th component
of the vectors (y, x) is fixed according to the following two rules:

IF (ȳ, x̄)j = 0 ∧ (yLR, xLR) ≤ ε THEN (y, x)j = 0

IF (ȳ, x̄)j = 1 ∧ (yLR, xLR) ≥ 1 − ε THEN (y, x)j = 1

The subproblem of (ROB-BLP-VP) subject to such variable fixing is then solved
by the state-of-the-art solver, running with a time limit.

4 Preliminary Computational Results

We preliminary assessed the performance of the proposed matheuristic by consid-
ering 10 instances that refer to a network made up of 10 nodes to which 50 servers
are connected and that are defined for different VNFC features, defined refer-
ring to the works [6,8]. To execute the tests, we employed a Windows machine
with 2.70 GHz processor and 8 GB of RAM. As optimization solver, we relied on
IBM ILOG CPLEX 12.5, which is interfaced through Concert Technology with
a C/C++ code. The global time limit imposed to CPLEX to solve (ROB-BLP-
VP) is set to 3600 s. The same time limit is set for the matheuristic (denoted
here by MatHeu), assigning 3000 s to the GA phase and 600 to the improvement
phase based on RINS (in which we set ε = 0.1). The initial population includes
100 individuals/solutions and, at each iteration, we consider β = 10 groups from
each of which γ = 2 individuals are chosen.

The results of the computational tests are presented in Table 1, where: ID
identifies the instance; T ∗ (CPLEX) and T ∗ (MatHeu) are the time (in seconds)
that CPLEX and MatHeu needs to find the best solution within the time limit,
respectively, whereas ΔT ∗% is the percentage reduction in time that MatHeu
grants to find a solution that is at least as good as the best solution found by
CPLEX. Finally, ΔP ∗% is the reduction in power consumption that the best
solution found by MatHeu grants with respect to the best solution found by
CPLEX within the time limit.

As highlighted in several works, such as [5,6] even simplified deterministic
versions of (ROB-BLP-VP) may prove difficult to solve for state-of-the-art opti-
mization solvers also in the case of instances. We confirm such behaviour in
the case of our instances, which highlights the need for fast (heuristic) solution
algorithms. On the basis of the results, we can say that MatHeu, for all the
instances, is able to return a solution that is at least as good as the best solution
found by CPLEX within the time limit in 20% less time, on average. Concerning
the reduction in consumed power, we can instead notice that MatHeu allows
to find better quality solution than CPLEX within the time limit, with a reduc-
tion in power consumption that can reach 10% and on average is equal to 7.3%.
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Table 1. Preliminary computational results

ID T ∗ (CPLEX) T ∗ (MatHeu) ΔT ∗% ΔP ∗%

I1 3322 2580 22.3 5.4

I2 3194 2742 14.1 6.8

I3 3157 2335 26.0 6.2

I4 3552 2905 18.2 10.2

I5 3513 2536 27.8 6.9

I6 3402 2892 14.9 5.8

I7 3475 2642 23.9 8.6

I8 3362 3041 9.5 9.3

I9 3595 2587 28.0 7.6

I10 3488 2769 20.6 5.5

We consider such results remarkable: as future work, they encourage to refine
the solution construction mechanism, better exploiting the specific features of
(ROB-BLP-VP) to define the rules adopted to generate the initial population
and the offspring solutions by crossover. Furthermore, we intend to investigate
also the integration of the GA construction phase with other ad-hoc exact large
neighborhood search procedures besides RINS.

References

1. Larsson, C.: 5G Networks - Planning, Design and Optimization. Academic Press,
Cambridge (2018)

2. Abdelwahab, S., Hamdaoui, B., Guizani, M., Znati, T.: Network function virtual-
ization in 5G. IEEE Commun. Mag. 54(4), 84–91 (2016)

3. Herrera, J., Botero, J.: Resource allocation in NFV: a comprehensive survey. IEEE
Trans. Netw. Serv. Manage. 13(3), 518–532 (2016)

4. Baumgartner, A., Bauschert, T., D’Andreagiovanni, F., Reddy, V.S.: Towards
robust network slice design under correlated demand uncertainties. In: IEEE Inter-
national Conference on Communications (ICC), pp. 1–7 (2018)

5. Luizelli, M.C., Bays, L.R., Buriol, L.S., Barcellos, M.P., Gaspary, L.P.: Piecing
together the NFV provisioning puzzle: efficient placement and chaining of virtual
network functions. In: IFIP/IEEE International Symposium on Integrated Network
Management (IM), pp. 98–106 (2015)

6. Marotta, A., D’Andreagiovanni, F., Kassler, A., Zola, E.: On the energy cost of
robustness for green virtual network function placement in 5G virtualized infras-
tructures. Comput. Netw. 125, 64–75 (2017)

7. Mechtri, M., Ghribi, C., Zeghlache, D.: A scalable algorithm for the placement of
service function chains. IEEE Trans. Netw. Serv. Manage. 13(3), 533–546 (2016)

8. Marotta, A., Zola, E., D’Andreagiovanni, F., Kassler, A.: A fast robust approach
for green virtual network functions deployment. J. Netw. Comput. Appl. 95, 42–53
(2017)



438 T. Bauschert et al.

9. Blum, C., Puchinger, J., Raidl, G., Roli, A.: Hybrid metaheuristics in combinatorial
optimization: a survey. Appl. Soft. Comput. 11, 4135–4151 (2011)

10. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton Uni-
versity Press, Princeton (2009)
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