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Abstract

We consider the migration of a WDM telecommunication network to a new tech-
nology. In the course of the migration process, shared network resources must be
temporarily shut down, affecting the network connections that use them. In this pa-
per we describe an ILP-based approach to find a migration schedule that minimizes
the total service disruption occurring in the network.
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1 Introduction

A critical challenge for telecommunication networks is standing the pace of the
rapidly evolving technological context, in which new technologies and updates
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of technological standards are frequently made available. Service providers
cannot neglect such advances, as these provide drastic increases in operational
efficiency. However, the implementation of technological upgrades is not a
trivial task: new hardware components need to be installed in the network,
and during the installation network connectivity may be compromised. The
Wavelength Division Multiplexing (WDM) technology, which we take as the
basis for our problem, shares links among several connections, and tearing
down a single link might affect several connections at once. When the upgrades
involve large parts of the network, not all operations can be done in parallel,
as the number of available technicians is limited. A bad scheduling of the
endeavor can thus dramatically increase the disconnection time of parts of
the network, causing extended service disruption. In this work, we study the
problem of defining a schedule of network upgrades that minimizes the total
service disruption time. To the best of our knowledge, this problem has not
yet been investigated. The aim of our work is to close this gap. Our work has
also been driven by real needs of the German National Research and Education
Network (DFN). Specifically, DFN is interested in optimizing the migration
of the Germany-wide fixed network, in order to contain service disruption.

We formally define the problem in Section 2, and give an ILP model in
Section 3. To strengthen the model, we consider lower bounding techniques
and an extended formulation in Sections 4 and 5, respectively. In Section 6
we present computational results.

2 The Network Migration Problem

A telecommunication network can be essentially described as a set of links
connecting a set of nodes. We consider the problem of updating the technology
installed on the links: each link is based on an old technology A and is to be
updated to a new technology B, within a time horizon [T ] = {0, 1, . . . , T} of
elementary time periods. The network is modeled as a graph G(V,E), with
V denoting the set of nodes and E the set of links, where a link e ∈ E is a
two-element subset of V , e.g. e = {i, j} ⊆ V . Updating a link e ∈ E requires
two technicians operating at the end nodes of the link, plus a number αe ∈ N

of additional technicians, depending on the length of the link, the presence
of signal regenerators etc. There needs to be at most one worker present at
a node, regardless of the number of incident links that are scheduled at that
time. The number of updates scheduled in a period of the migration horizon
is limited by the number K of available technicians. Formally, a link subset
F ⊆ E may only be upgraded in a single period if

∑
e∈F αe + |V (F )| ≤ K.
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A set P of fixed paths is given that models the connections realizing the users’
traffic demands. A path p is active, when all its links are based on the same
technology, i.e., either A or B. When at some point in time, p contains links
in technology A, as well as links in technology B, the path is disrupted.

The WDM Fiber Replacement Scheduling Problem (WDM-FRS) consists
in finding a schedule S : E → [T ], that maps each link e ∈ E to a time
S(e) ∈ [T ], so that all links are migrated at time T , the work budget is
respected at all times, and the overall service disruption is minimized.

3 A Time-Indexed ILP Formulation

Our model for WDM-FRS is based on time-indexed decision variables. We
assume that we can migrate at least one link per period, otherwise the problem
is infeasible. Hence, |E| is an upper bound for the length of any optimal
schedule. We can derive another upper bound by considering the amount of
work that is performed in consecutive periods. If the work in two consecutive
periods sums up to at most K, the two periods can be collapsed into one,
without increase in disruption. Thus the average amount of work per period
must be at least (K + 1)/2, and if W is an upper bound for the total work
that has to be performed, 2W/(K+1) is an upper bound for the length of the
schedule. We use T := min {|E|, �2W/(K + 1)�} periods in our model, where
we set W :=

∑
e∈E αe+2|E|, taking into account that we might not be able to

migrate coincident links in the same period, in which case we have to pay for
a node in every period an incident link is scheduled. The problem of finding
a migration schedule minimizing the total disruption can then be formulated
as an integer program, as given in Figure 1 on the following page.

We use four groups of binary variables in the model: xt
e = 1, iff link e is

based on technology B at the end of period t, ytCp = 1, iff path p is active on
technology C ∈ {A,B} at the end of period t, zti = 1, iff i ∈ (V ∪ E) is being
worked on in period t, and dtp = 1, iff path p is disrupted at the end of period
t. The objective function (1) minimizes the disruption that is experienced
throughout the migration. The constraints (2) express that a path is either
active in one of the two technologies, or it is disrupted. Constraints (3) and (4)
express the fact that in the first period, t = 0, all the links are based on the old
technology A and must be migrated to the new technology B by the last period
of the time horizon. The constraints (5) and (6) establish the relation between
the link technology variables xt

e of a path p and the activation variables ytσp
of this path. Specifically, a path p is active if and only if all of its fibers
are based on the same technology. The constraints (7) ensure that the work
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min
∑

p∈P

∑
t∈[T ]

dtp (1)

s.t. dtp + ytAp + ytBp = 1, p ∈ P, t ∈ [T ], (2)

x0
e = 0, e ∈ E, (3)

xT
e = 1, e ∈ E, (4)

ytAp ≤ 1− xt
e, p ∈ P, e ∈ p, t ∈ [T ], (5)

ytBp ≤ xt
e, p ∈ P, e ∈ p, t ∈ [T ], (6)

xt
e − xt−1

e = zte, e ∈ E, 0 < t ∈ [T ], (7)

zte ≤ zti , e ∈ E, i ∈ e, 0 < t ∈ [T ], (8)∑
i∈V ∪E

αiz
t
i ≤ K, 0 < t ∈ [T ]. (9)

xt
e, y

tC
p , zte, d

t
p ∈ {0, 1}, e ∈ E, p ∈ P, (10)

t ∈ [T ], C ∈ {A,B}.
Fig. 1. A time-indexed ILP formulation for WDM-FRS.

indicator variables zt are set to 1 for all the links that are upgraded during
period t, while the inequalities (8) require that a link can only be migrated
when there are workers present at its end nodes at the same time. Finally,
the budget constraints (9) ensure that the number of technicians required for
the upgrades does not exceed the given budget at any time.

As is, the above formulation for WDM-FRS has an extremely weak LP
relaxation that allows for trivial solutions without any service disruption: A
fractional solution can migrate a fraction of 1/T of each link e ∈ E in each
period t ∈ [T ] by setting xt

e = t/T , leading to no service disruption at all, and
thus leaving us with a useless bound. This in turn makes the solution of larger
problems hopeless and causes the generation of huge branch-and-bound trees.
There is a simple remedy though: The LP cannot spread the work evenly
throughout the time horizon once we fix the migration of a single fiber to a
particular period, i.e., if we fix zte = 1 for some e ∈ E, t ∈ [T ]. When e has to
be migrated in period t, links that have a path in common with e will likely
be placed close to e in a good schedule. To see that we can perform such a
fixing without loss of generality, consider the following simple observation:

A. Bley et al. / Electronic Notes in Discrete Mathematics 41 (2013) 189–196192



Proposition 3.1 The value and feasibility of a schedule are invariant under
inversion and translation, i.e., if S is a feasible schedule, then

SR : E → [T ],
and

Sτ : E → [T ]

e 	→ T + 1− S(e), e 	→ S(e) + τ,

are feasible schedules, provided that S(e) + τ ∈ [T ] for each link e ∈ E.

If we fix zte = 1, we have to make sure that the time horizon is long enough to
schedule the remaining links. Without loss of generality we can assume that
not more than T/2 periods t′ < t are used in an optimal schedule (or else,
we could reverse the schedule). Hence, we set t = 
T/2�. By extending the
time horizon to T ′ = 
3T/2�, we assure that there is enough time to schedule
all remaining links. In fact, our experiments show that the LP bound of the
altered model is quite usable as a starting point for a branch-and-bound phase.
The choice of the fixed link affects the LP bound. Our experiments suggest
that it is reasonable to choose a link that belongs to many paths.

4 Obtaining Lower Bounds

To speed up the branch-and-bound process, we would like to start it with
a good lower bound on the overall disruption. To this end, we add valid
inequalities of the form

∑
p∈M

∑
t∈[T ] d

t
p ≥ l(M) to the model, where M is a

set of paths, and l(M) is a lower bound for WDM-FRS restricted to M .

The simplest case to consider is when M = {p} contains only a single
path. Clearly, to migrate p, we have to migrate all its links and have to work
on each node on p at least once. Hence, α(p) :=

∑
e∈p αe + |V (p)|, is a lower

bound on the work that has to be performed to migrate p, and∑
t∈[T ]

dtp ≥ 
α(p)/K� − 1

is a valid inequality. However, we can do better. Assigning the links to
periods with a constant budget of K is similar to a bin packing problem, with
the difference that a node v has to be packed twice, if its incident links on p,
{u, v} and {v, w}, are not assigned to the same period. If, for each node u, we
assign its cost arbitrarily to one of its incident links, we obtain a bin packing
problem that is a relaxation of the original problem. Let α′

e be the cost of link
e in the bin packing instance. Note that

∑
e∈p α

′
e = α(p), since the node costs

are already included in the new link costs. Therefore, L1 := 
α(p)/K� is a
lower bound also for the number of needed bins. The worst-case ratio of this
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lower bound is 1/2, meaning that the optimal number of bins is at most twice
L1. There exist stronger bounds, such at the bound L2 given in [3], which is
computable in time proportional to |p| and has a worst-case ratio of 2/3.

Now suppose that L is a lower bound on the number of periods needed to
migrate p. Clearly, this means that the links on the path need to be partitioned
into at least L subsets. Then, at least L − 1 nodes have to be worked on in
two different periods. The cost of those nodes therefore has to be paid twice.
The actual work that has to be performed is then at least α(p) + L − 1. We
obtain a lower bound on the migration time by adding L − 1 new items of
weight 1 to the bin packing instance. If L′ is a lower bound on this altered
instance,

∑
t∈[T ] d

t
e ≥ L′ − 1 is a valid inequality for our model.

It is also possible to obtain lower bounds from path sets containing more
than one path. Let M = {p1, . . . , pm}, and let p1 := p, p−1 :=

(⋃
q∈M q

) \ p.
The set

N :=
{⋂m

i=1
pvi | v ∈ {−1, 1}m

}
\ {∅},

is a partitioning of the links in M , e.g., if M = {p, q}, then
N = {(p1 ∩ q−1), (p1 ∩ q1), (p−1 ∩ q1}) = {(p \ q), (p ∩ q), (q \ p)}.

We consider a time-continuous relaxation of WDM-FRS, that defines the dis-
ruption of a path p as disr(p) := max{0, rp − lp − 1}, where lp and rp are the
start time and completion time for path p, respectively. It is not too difficult
to show that there is always an optimal time-continuous schedule that sched-
ules the sets in N in a non-preemptive fashion, e.g., in the previous example,
the schedule might first work on the links in (p \ q), then on the intersection
(p∩ q), and finally on (q \p). In general, we can assume that an optimal time-
continuous schedule is essentially a permutation of the elements of N . When
there are at least three paths in M , such a schedule will most of the time work
on some I ∈ N , while some path p is not functional, where p ∩ I = ∅. Using
this observation we can derive valid inequalities of the form

∑
p∈M

∑
t∈[T ]

dtp ≥
⌈∑

p∈M
α(p)/K + κp

⌉
− |M |,

where κp is the additional disruption on path p that arises while p is inactive,
and work is done on sets I ∈ N that do not intersect with p, i.e., p ∩ I = ∅.
Finding correct values for κp has been proven quite tricky, and any formula
that takes the sets in N explicitly into account is not likely to be useful.
However, we have computed lower bounds for the case |M | = 3, and they are
very useful to increase the lower bound at the root node.
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5 Betweenness Variables

Motivated by the results in [4], we considered the extension of our model by
a set of so-called betweenness variables μefg, representing the situation that
link f is migrated between e and g. We use the new variables to impose a
strict linear ordering ≺ on the links. In our case, μefg = 1, if for the migration
times e, f, and g, either e ≺ f ≺ g, or g ≺ f ≺ e holds. I.e., μefg = 1 implies
that S(e) ≤ S(f) ≤ S(g) or S(e) ≥ S(f) ≥ S(g). We model the consistency
between the betweenness variables as explained in [4], and couple them to our
original problem variables via the constraints

xt
e − xt

f + xt
g ≤ 2− μefg, t ∈ [T ], {e, f, g} ⊂ E.

The above constraints express that, if e and g are active in technology B at
time t and f is not, f cannot lie between e and g in the linear ordering.

The new variables allow us to express stronger conditions for the model,
but the number of introduced constraints and variables is rather large. We
decided not to enforce integrality on the betweenness variables, and to use
Benders’ decomposition to handle all constraints involving them in a client
LP to generate cuts for the master ILP.

6 Computational Results

We have implemented the model described in this paper using SCIP 3.0 [5]
with CPLEX 12.4 [6] as LP solver. All experiments have been conducted
running on a single core of a PC with an AMD Phenom II X6 1090T processor
and 8GB of RAM. The model implemented is the one described in Section 3
with the valid inequalities from Section 4 added. We report both the results
with and without the cuts from Benders’ decomposition described above.

Table 1 lists the problem instances that we have considered in our ex-
periments. We report the lower bound after the root node, the value of the
solution, the number of nodes in the branch and bound tree, and the time
needed. The BC column indicates how many Benders cuts were applied in the
root node. All instances are subnetworks of the “full” instance, comprising
64 nodes, 84 links, and 105 paths. The addition of the Benders cuts seems
advisable once the instances get bigger. Yet, a decrease in the number of
branch-and-bound nodes can be observed in all instances. Especially the big-
ger instances benefit immensely from the stronger relaxation in the root node,
and only half as many nodes are explored.
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Instance |V| |E| |P| BC root sol nodes time

Han10 10 10 32 0 49.0 62 215 00:00:04.91

Han10 10 10 32 66 51.0 62 179 00:00:07.34

Fra20 20 22 51 0 45.7 59 409 00:00:41.11

Fra20 20 22 51 169 47.0 59 352 00:00:48.78

Stu25 25 28 52 0 78.2 135 15314 00:29:45.51

Stu25 25 28 52 628 84.6 135 8334 00:20:20.59

Des30 30 37 60 0 75.2 140 23976 01:04:58.17

Des30 30 37 60 555 81.8 140 11799 00:40:59.47

Table 1

7 Further Work

The integrality gap of our model is still significant, leaving a lot of room
for improvement, be it through additional valid inequalities for our model or
through a different model. To close that gap, specialized branching schemes
need to be investigated. We have begun implementing several heuristics with
encouraging results. In practice, finding tight lower bounds seems to be much
more difficult than finding good (i.e. near-optimal) solutions.
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