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Abstract We provide an overview of new theoretical results that we obtained while
further investigating multiband robust optimization, a new model for robust opti-
mization that we recently proposed to tackle uncertainty in mixed-integer linear
programming. This new model extends and refines the classical Γ -robustness model
of Bertsimas and Sim and is particularly useful in the common case of arbitrary
asymmetric distributions of the uncertainty. Here, we focus on uncertain 0-1 pro-
grams and we analyze their robust counterparts when the uncertainty is represented
through a multiband set. Our investigations were inspired by the needs of our indus-
trial partners in the research project ROBUKOM [2].

1 Introduction

Over the last years, professionals dealing with real-world optimization problems
have increased their interest in embedding uncertainty in their decision process,
showing particular attention to tractable robust optimization (RO) techniques. The
goal of RO is to find an optimal solution that is deterministically protected against
the worst coefficient deviations specified by an uncertainty set (we refer the reader
to [3,4] for a comprehensive introduction to theory and applications of RO). Among
the RO models proposed over the years, the Γ -robustness model of Bertsimas and
Sim (Γ -Rob) [5] was a breakthrough in the development of tractable robust coun-
terparts and has without doubt been the most successful and widely applied model.
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However, as pointed out by its authors, the assumptions at the basis of Γ -Rob may
sensibly limit the possibility of modeling arbitrary-shaped distributions of the uncer-
tainty that are commonly found in real-world problems, and lead to overconservative
robust solutions (for a more detailed discussion of the limits of Γ -Rob, we refer the
reader to [2, 6, 7]).

Starting with the work [6], we have studied the possibility of refining Γ -Rob
by exploiting a very simple operation: partitioning the single deviation band into
multiple bands, each with its own parameters. This operation is at the basis of the
general theoretical study that we have started to fill the gap of knowledge about the
use of a multiband uncertainty set in RO.

2 Multiband Uncertainty

We consider a generic uncertain mixed-integer linear program (MILP):

max ∑
j∈J

c j x j s.t. ∑
j∈J

ai j x j ≤ bi , i ∈ I = {1, . . . ,m},

x j ≥ 0 , j ∈ J = {1, . . . ,n}, x j ∈ Z+, j ∈ JZ ⊆ J .

where we assume without loss of generality that uncertainty only affects the co-
efficients ai j. We model the uncertainty through a multiband uncertainty set SM ,
a natural generalization of Γ -Rob (see [6, 7] for a comparison between the two
models). Specifically, we assume that for each coefficient ai j we are given its
nominal value ai j and maximum negative and positive deviations dK−

i j ,dK+

i j from

ai j. The actual value ai j then lies in the interval [āi j + dK−
i j , āi j + dK+

i j ]. We derive
the generalization of Γ -Rob by partitioning the single deviation band [dK−

i j ,dK+
i j ]

for each coefficient ai j into K bands, defined on the basis of K deviation values:
−∞ < dK−

i j < · · ·< d−1
i j < d0

i j = 0 < d1
i j < · · ·< dK+

i j <+∞.
We use these deviation values to define: 1) a set of positive deviation bands,

such that each band k ∈ {1, . . . ,K+} corresponds to the range (dk−1
i j ,dk

i j]; 2) a set of
negative deviation bands, such that each band k ∈ {K−+1, . . . ,−1,0} corresponds
to the range (dk−1

i j ,dk
i j] and band k = K− corresponds to the single value dK−

i j (note
that the interval of each band except k = K− is therefore open on the left). With a
slight abuse of notation, we denote a generic deviation band by the index k, with
k ∈ K = {K−, . . . ,−1,0,1, . . . ,K+} and the corresponding range by (dk−1

i j ,dk
i j].

In order to complete the description of the uncertainty set, for each band k ∈ K,
we introduce two values lk,uk ∈ Z+: 0 ≤ lk ≤ uk ≤ n, which respectively represent
a lower bound and an upper bound on the number of deviations that may fall in
k. As additional assumptions, we do not limit the number of coefficients that may
take their nominal value, i.e. u0 = n, and we impose that ∑k∈K lk ≤ n, to ensure the
existence of a feasible realization of the coefficient matrix.
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The robust counterpart of the program MILP can be defined by inserting in each
constraint i ∈ I the term DEVi(x,SM) that represents the maximum deviation al-
lowed by the multiband uncertainty set for a solution x , (i.e., a robust constraint
looks like ∑ j∈J ai j x j +DEVi(x,SM) ≤ bi). The term DEVi(x,SM) is equal to the
optimal value of a 0-1 linear maximization program that finds the worst coefficient
distribution over the deviation bands for x (see [6] for details). The resulting robust
counterpart is thus non-linear. However, using duality theory, we proved that this
problem can be reformulated as a compact and linear problem, as stated in the fol-
lowing theorem (we refer the reader to [6,7] for the formal complete statements and
proofs of the theorems presented in this section).

Theorem 1 (Büsing & D’Andreagiovanni, 2012). The robust counterpart of MILP
under the multiband uncertainty set is equivalent to a compact mixed-integer linear
program, which includes K ·m+ n ·m additional variables and K · n ·m additional
constraints.

In the case of large uncertain programs, the increase in size of the robust counterpart
may represent an issue for obtaining a robust optimal solution quickly. We have thus
investigated the possibility of developing a cutting-plane algorithm based on the
separation of robustness cuts, that is, cuts that impose robustness. The basic question
is simple: we are given a solution to the considered problem and we desire to check
whether the solution is robust and feasible. If this is not the case, we separate a
robustness cut and we add it to the problem, solving the new resulting problem.
This step can be iterated as in a typical cutting-plane approach, until no robustness
cut is needed and thus the generated solution is robust and optimal. In the case of
Γ -Rob, the separation of a robustness cut is trivial and just consists in sorting the
deviations and choosing the worst Γ > 0 [11]. This straightforward approach is not
valid for multiband uncertainty, but we proved anyway that the separation can be
done efficiently (see [6, 7] for the formal statement and the detailed description of
how the min-cost flow instance is built):

Theorem 2 (Büsing & D’Andreagiovanni, 2012). Under multiband uncertainty,
the separation of a robustness cut for a constraint of MILP can be done in polyno-
mial time by solving a min-cost flow problem.

3 Multiband Robustness for 0-1 Programs

We now focus attention on the following 0-1 linear program:

max ∑
j∈J

c j x j (BP)

x j ∈ X ⊆ {0,1}n j ∈ J ,

in which the cost coefficients c j are supposed to be non-negative (important op-
timization problems, like the shortest path problem and the minimum spanning
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tree problem, present this structure). Furthermore, we assume that the cost coef-
ficients are subject to uncertainty and that uncertainty is modeled by a multiband
set as follows: for each cost coefficient, we are given the nominal cost c̄ j and
a sequence of K+ + 1 deviation values dk

j , with k ∈ K = {0, . . . ,K+}, such that
0 = d0

j < d1
j < .. . < dK+

j < ∞ (we remark that in contrast to the previous section, we
consider here without loss of generality only positive deviations). Through these val-
ues, we define: 1) the zero-deviation band corresponding to the single value d0

j = 0;
2) a set K+ of positive deviation bands, such that each band k ∈ K\{0} corresponds
to the range (dk−1

j ,dk
j ]. Finally, we introduce values lk,uk ∈ Z, with 0 ≤ lk ≤ uk ≤ n,

to represent the lower and upper bounds on the number of deviations falling in each
band k ∈ K.
As BP is a special case of MILP, by Theorem 1, the compact and linear robust
counterpart of BP is (see [7] for details):

max ∑
j∈J

c j x j + ∑
k∈K

θk wk + ∑
j∈J

z j (Rob-BP)

wk + z j ≥ dk
j x j j ∈ J,k ∈ K (1)

wk, z j ≥ 0 j ∈ J,k ∈ K (2)
x j ∈ X ⊆ {0,1}n j ∈ J ,

in which we note i) the presence of additional non-negative variables (1); ii) the
presence of additional constraints (1); iii) the insertion of additional terms in the
objective function. The coefficients θk ≥ 0 constitute the so-called profile of the
multiband uncertainty set and are equal to the number of coefficients that must fall
in the band k to maximize the deviation (the values θk are derived from the values
lk,uk exploiting domination between feasible realizations of the uncertainty set [7]).

A robust optimal solution can be computed by solving Rob-BP or by adopting
the cutting-plane approach based on robustness cuts and presented in the previous
section. Anyway, as an alternative to these two general approaches, we proved the
following special result (see [7] for details):

Theorem 3. The robust optimal solution of BP with cost uncertainty modeled through
a multiband set can be computed by solving a polynomial number of nominal
problems BP with modified objective function, if the number of bands is constant.
Tractability and approximability of BP are maintained.

In addition to these results, we characterized a new family of valid inequalities for
the robust counterpart of BP, by adopting a proof strategy similar to that of Atamtürk
for Γ -Rob [1] (see [10] for the proof).

Proposition 1. For any k ∈ K and subset T = { j1, j2, . . . , jt} ⊆ J with 0 = dk
j0 ≤

dk
j1 ≤ ·· · ≤ dk

jt , the following inequality is valid for problem (Rob-BP):

∑
jl∈T

(dk
jl −dk

jl−1
)x jl ≤ wk + ∑

j∈T
z j

Additionally, if 0 = d j0 < · · ·< d jt , then the previous inequalities are facet-defining.
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4 Robust Wireless Network Design

We used our new results about uncertain 0-1 programs in a set of preliminary ex-
periments considering a central problem in wireless network design: the power as-
signment problem (PAP). The PAP considers the design of a wireless network made
up of a set of transmitters T providing a telecommunication service to a set of users
U . It essentially consists of setting power emissions of the transmitters, while mini-
mizing a function of emitted powers. For an exhaustive introduction to the wireless
network design problem and to the PAP, we refer the reader to [8, 12]. The PAP has
recently regained attention, due to ongoing switches from analog to digital television
that have taken place in many countries over the last years. Here, we consider a vari-
ant of the PAP that has been recently brought to our attention from our partners in
former industrial cooperations: instead of minimizing the simple summation of the
power emission, we multiply the power of each transmitter by the price paid to buy
the power (big network operator can indeed profit from special energy fees, which
usually vary from transmitter to transmitter). This variant of the PAP can be mod-
eled as follows: we use a vector of non-negative continuous variables p to represent
the power emissions of transmitters. Then we introduce 1) a vector π to represent
the price of a energy unit for each transmitter, 2) a matrix A to represent signal atten-
uation for each transmitter-user pair, 3) a vector δ to represent the minimum power
that guarantees service coverage for a user (signal-to-interference threshold). Using
these elements, the PAP can be written in the following matrix form:

min
p

{π ′p : Ap ≥ δ , p ≥ 0|U |}.

Because of the presence of the attenuation coefficients that may vary in a very wide
range, this formulation is known to lead to numerical instability in the solution
process, which may greatly reduce the effectiveness of commercial optimization
solvers. As a remedy, in our computational study, we have considered a tighter pure
0-1 formulation, the so-called power-indexed formulation, based on the use of dis-
crete power variables and of a special family of generalized upper bound cover
inequalities (see [8, 9] for details).

The energy price coefficients of the objective function are supposed to be subject
to uncertainty: a big wireless operator can indeed establish energy contracts based
on favorable prices that may however fluctuate (within limits) due to load condi-
tions of the energy network and to variability of price formation dynamics of the
energy market. Under these conditions, professionals would be interested in getting
robust solutions to the PAP, namely power configurations satisfying the coverage
constraints, while minimizing the total power expense and taking into account price
deviations specified by an uncertainty set reflecting their risk aversion. If the uncer-
tainty is modeled by a multiband set, the resulting robust counterpart of the problem
can be solved by adopting the sequential solution approach sketched in Theorem
3: indeed, we face a (pure binary) power-indexed formulation of the PAP, where
the uncertainty only affects the price coefficients in the objective function. Based
on a series of discussions with experts, we suppose that each price coefficient is
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distributed according to a histogram resembling the shape of an exponential dis-
tribution. The adoption of the Bertsimas-Sim Γ -robustness model would provide a
low-resolution modeling of such histogram. The multiband uncertainty model grants
in contrast a more accurate representation that reduces conservatism. Based on dis-
cussions aimed at pointing out the risk aversion of the professionals, we adopted a
system of 5 deviation bands. Our experiments considered a set of 15 realistic net-
work instances of increasing size (including up to 150 users and 10 transmitters), all
based on the WiMAX technology. All the experiments were made on a 2.70 GHz
machine with 8 GB RAM and using IBM ILOG Cplex 12.1 as optimization solver.

The main purpose of our tests was to compare the efficiency of solving directly
the compact formulation (Rob-BP) with that of the sequential approach sketched in
Theorem 3 and formalized in [7]. The sequential approach performed slower in the
case of 5 instances, while in all the other cases it reduced the solution time of 12% on
average. Taking into account the computational challenge of a power-indexed PAP,
we consider this reduction significative and we believe that it could be enhanced
by a smart exploitation of the new family of (strong) valid inequalities identified in
Proposition 1, which will be the object of future experimentation. From the point of
view of the price of robustness, the refined representation of the uncertainty granted
by the multiband set guaranteed a reduction of up to 15% in the conservatism of
the robust optimal solution with respect to Γ -robustness (thus sensibly reducing the
increase in power expense that a network operator must face to protect against price
fluctuations).
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