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Abstract We provide an overview of our main results about studying Linear Pro-
gramming Problems whose coefficient matrix is subject to uncertainty and the un-
certainty is modeled through a multi-band set. Such an uncertainty set generalizes
the classical one proposed by Bertsimas and Sim [3] and is particularly suitable in
the common case of arbitrary non-symmetric distributions of the parameters. Our
investigations were inspired by practical needs of our industrial partner in ongoing
projects with focus on the design of robust telecommunications networks.

1 Introduction

A central assumption in classical optimization is that all parameters describing the
problem are known exactly. However, many real-world problems consider data that
are uncertain or not known with precision (for example, because of measurement
methodologies which introduce an error or because of approximated numerical rep-
resentations). Neglecting the uncertainty may have dramatic effects and turn optimal
solutions into infeasible or very costly solutions. Since the groundbreaking inves-
tigations by Dantzig [11], many works have thus tried to find effective ways to
deal with uncertainty (see [2] for an overview). During the last years, Robust Op-
timization (RO) has attracted a lot of attention as a valid methodology to deal with
uncertainty affecting optimization problems. A key feature of RO is to take into ac-
count uncertainty as hard constraints, which are added to the original formulation
of the problem in order to cut off solutions that are not robust, i.e. protected from
deviations of the data. For an exhaustive introduction to the theory and applications
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of RO, we refer the reader to the book by Ben-Tal et al. [1], to the recent survey by
Bertsimas et al. [2] and to the Ph.D. Thesis [6].

An approach to model uncertain data that has been highly successful and has been
adapted to several applications is the so-called Γ -scenario set (BS) by Bertsimas and
Sim [3]. The uncertainty model for a Linear Program (LP) considered in BS assumes
that, for each coefficient a we are given a nominal value a and a maximum deviation
d and that the actual value lies in the symmetric interval [a− d,a+ d]. Moreover,
a parameter Γ is introduced to represent the maximum number of coefficients that
deviate from their nominal value and to control the conservativeness of the robust
model. A central result of BS is that, under the previous characterization of the
uncertainty set, the robust counterpart of an LP can be formulated as a compact
linear problem. However, the use of a single and symmetric deviation band may
greatly limit the power of modeling uncertainty, as it becomes evident when the
deviation probability sensibly varies within the band: in such a case, if we neglect
the inner-band behavior and we just consider the extreme values like in BS, we
obtain a rough estimation of the deviations and thus an unrealistic uncertainty set.
Reaching a higher modeling resolution would therefore be very desirable, as also
highlighted and requested by our industrial partners. This can be accomplished by
breaking the single band into multiple and narrower bands, each with its own Γ
value. Such model is particularly attractive when historical data on the deviations are
available, a very common case in real-world settings. Thus, a multi-band uncertainty
set can effectively approximate the shape of the distribution of deviations built on
past observations, guaranteeing a much higher modeling power than BS. The multi-
band idea was first exploited by Bienstock for the special case of Robust Portfolio
Optimization [4]. However, a general definition of the multi-band model applicable
also in other contexts and a deep theoretical study of its properties have not yet been
done. The main objective of our original study is to fill such a gap.

We remark that, while the present work was under revision, we have refined and
extended our results, realizing a new paper [8] that include additional results about
dominance among uncertainty scenarios, uncertain Binary Programs and probability
bounds of constraint violation.

2 Multi-band uncertainty in Robust Optimization

We study the robust counterpart of a Linear Programming Problem (LPP) whose co-
efficient matrix is subject to multi-band uncertainty. The deterministic Linear Pro-
gram that we consider is of the form:

max ∑
j∈J

c j x j (LPP)

∑
j∈J

ai j x j ≤ bi i ∈ I (1)

x j ≥ 0 j ∈ J
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where I = {1, . . . ,m} and J = {1, . . . ,n} denote the set of constraints and variable
indices, respectively. We assume that the value of each coefficient ai j is uncertain
and that such uncertainties are modeled through a set of scenarios S . A scenario
S ∈ S specifies the deviation dS

i j experienced by each coefficient of the problem
with respect to its nominal value ai j. The actual value ai j is thus equal to ai j =
ai j + dS

i j. The robust counterpart of (LPP) is the optimization problem providing
robust solutions that are protected against deviations of a specified scenario set S . A
natural formulation of the robust counterpart of (LPP) can be obtained by replacing
each constraint (1) with its counterpart which considers the deviations allowed by
S , namely ∑ j∈J ai j x j +dS

i j x j ≤ bi, i ∈ I,S ∈ S .
One of the purposes of our work is to characterize the robust counterpart of (LPP)

when the set of scenarios corresponds to what we call a multi-band uncertainty set.
This set is denoted by SM and generalizes the Bertsimas-Sim uncertainty model.
Specifically, we assume that, for each coefficient ai j, we are given its nominal value
ai j and maximum negative and positive deviations dK−

i j ,dK+

i j from ai j, such that the

actual value ai j lies in the interval [āi j +dK−
i j , āi j +dK+

i j ] for each scenario S ∈ SM .
Moreover, we derive a generalization of the Bertsimas-Sim model by partitioning
the single deviation band [dK−

i j ,dK+
i j ] of each coefficient ai j into K bands, defined on

the basis of K deviation values:
−∞ < dK−

i j < · · ·< d−2
i j < d−1

i j < d0
i j = 0 < d1

i j < d2
i j < · · ·< dK+

i j <+∞.
Through these deviation values, we define: 1) a set of positive deviation bands,

such that each band k ∈ {1, . . . ,K+} corresponds to the range (dk−1
i j ,dk

i j]; 2) a set of
negative deviation bands, such that each band k ∈ {K−+1, . . . ,−1,0} corresponds
to the range (dk−1

i j ,dk
i j] and band k = K− corresponds to the single value dK−

i j (the
interval of each band but k = K− is thus open on the left). With a slight abuse of
notation, in what follows we indicate a generic deviation band through the index k,
with k ∈ K = {K−, . . . ,−1,0,1, . . . ,K+} and the corresponding range by (dk−1

i j ,dk
i j].

Additionally, for each band k ∈ K, we define a lower bound lk and an upper
bound uk on the number of deviations that may fall in k, with lk,uk ∈ Z satisfying
0 ≤ lk ≤ uk ≤ n. In the case of band k = 0, we assume that u0 = n, i.e. we do not
limit the number of coefficients that take their nominal value. We also assume that
∑k∈K lk ≤ n, so that there exists a feasible realization of the coefficient matrix.

The robust counterpart of (LPP) under a multi-band uncertainty set defined by
SM can be equivalently written as:

max ∑
j∈J

c j x j (2)

∑
j∈J

ai j x j +DEVi(x,SM)≤ bi i ∈ I

x j ≥ 0 j ∈ J,

where DEVi(x,SM) is the maximum overall deviation allowed by the multi-band
scenario set SM for a feasible solution x when constraint i is considered. Finding
the value DEVi(x,SM) can be formulated as a 0-1 linear maximization problem,
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whose optimal solution defines a distribution of the coefficients among the bands
that maximizes the deviation w.r.t. the nominal values, while respecting the bounds
on the number of deviations of each band (see [7] for details about this problem). As
a consequence, the robust counterpart (2) is actually a max-max problem. However,
we prove that (2) can be reformulated as a compact and linear problem (we refer the
reader to [7] for the complete proofs of the results presented in this section).

Theorem 1. The robust counterpart of problem (LPP) under the multi-band sce-
nario set SM is equivalent to the following compact Linear Program:

max ∑
j∈J

c j x j (Rob-LP)

∑
j∈J

āi j x j − ∑
k∈K

lk vk
i + ∑

k∈K
uk wk

i + ∑
j∈J

z j
i ≤ bi i ∈ I

−vk
i +wk

i + z j
i ≥ dk

i j x j i ∈ I, j ∈ J,k ∈ K

vk
i , wk

i ≥ 0 i ∈ I,k ∈ K

z j
i ≥ 0 i ∈ I, j ∈ J

x j ≥ 0 j ∈ J.

In comparison to (LPP), this compact formulation uses 2 ·K ·m+n ·m additional
variables and includes K ·n ·m additional constraints.

As an alternative to the direct solution of (Rob-LP), we also investigated the
possibility of adopting a cutting-plane approach [16]: in this case, given a solution
x ∈Rn we want to test if x is robust feasible, i.e. aS

i x ≤ bi for every scenario S ∈SM
and i ∈ I. Specifically, our solution strategy is the following: we start by solving the
nominal problem (LPP) and then we check if the optimal solution is robust. If not,
we add a cut that imposes robustness (robustness cut) to the problem. This initial
step is then iterated as in a typical cutting plane method [16].

In the case of the Bertsimas-Sim model, the problem of separating a robustness
cut for a given constraint is very simple and essentially consists in sorting the de-
viations in increasing-order and choose the worst Γ > 0 (see [12] for details). In
the case of multi-band uncertainty, this simple approach does not guarantee the ro-
bustness of a computed solution. However, we prove that the separation can be done
in polynomial time by solving a min-cost flow problem (see [7] for the the detailed
description of how we build the instance of this problem and structure the corre-
sponding proof), as formalized in the following theorem.

Theorem 2. Let x ∈ Rn
+ and let SM be a multi-band scenario set. Moreover, let

(G,c)i
x be the min-cost flow instance corresponding to a solution x and a constraint

i ∈ I of (LPP). The solution x is robust for constraint i w.r.t. SM if and only if
ā′ix− c∗i (x)≤ bi, where c∗i (x) is the minimum cost of a flow of the instance (G,c)i

x.

The proof is based on showing the existence of a one-to-one correspondence be-
tween the integral flows and the non-dominated feasible solutions of the binary pro-
gram expressing the maximum deviation allowed by the multi-band uncertainty set.



A new theoretical framework for Robust Optimization under multi-band uncertainty 5

3 Application to Wireless Network Design

We applied our new theoretical results about Robust Optimization to the design of
wireless networks, considering the Power Assignment Problem (PAP): this is the
problem of dimensioning the power emission of each transmitter in a wireless net-
work, to provide service coverage to a number of users, while minimizing the over-
all power emission. The PAP is particularly important in the (re)optimization of
networks that are updated to new generation digital transmission technologies. For
a detailed introduction to the PAP and the general problem of designing wireless
networks, we refer the reader to [9, 10, 15].

A classical LP formulation for the PAP can be defined by introducing the follow-
ing elements: 1) a vector of non-negative bounded continuous variables p that rep-
resent the power emissions of the transmitters; 2) a matrix A of the coefficients that
represent signal attenuation (fading coefficients) for each transmitter-user couple; 3)
a vector of r.h.s. δ (signal-to-interference thresholds) that represents the minimum
power values that guarantee service coverage. If the objective is to minimize the
overall power emission, the PAP can be written as: min 1′p s.t. Ap≥ δ , 0≤ p≤PM,
where exactly one constraint a′i p ≥ δi is introduced for each user i to represent the
corresponding service coverage condition.

Each fading coefficient of the matrix A summarizes the different factors which
influence propagation (e.g., distance between transmitter and receiver, terrain fea-
tures) and is classically computed by a propagation model. However, the exact prop-
agation behavior of a signal cannot be evaluated and thus each fading coefficient
is naturally subject to uncertainty. Neglecting such uncertainty may lead to unex-
pected coverage holes in the resulting plans, as devices may be actually uncovered
for bad deviations affecting the fading coefficients. For a detailed presentation of
the technical aspects of propagation, we refer the reader to [17]. Following the ITU
recommendations (e.g., [13]), we assume that the fading coefficients are mutually
independent random variables and that each variable is log-normally distributed.
The adoption of the Bertsimas-Sim model would provide only a very rough mod-
eling of the deviations associated with such distribution. Contrarily, the multi-band
uncertainty model provides a much more refined representation of the fading coef-
ficient deviations. In our computational study, we considered realistic instances cor-
responding to region-wide networks based on the Terrestrial Digital Video Broad-
casting technology (DVB-T) [13] and were taken as reference for the design of the
new Italian DVB-T national network. We built the uncertainty set taking into ac-
count the ITU recommendations [13] and discussions with our industrial partners
in past projects about wireless network design. For a description of our benchmark
instances and the corresponding computational results, we refer the reader to [7].
The main purpose of our tests was to compare the efficiency of solving directly
the compact formulation (Rob-LP) with that of a cutting-plane method based on
the robustness cuts presented in the previous section. For the Bertsimas-Sim model,
such comparison led to contrasting conclusions in past works (e.g., [12, 14]). In our
case, we found that the cutting-plane approach produced optimal solutions in less
time for the bigger instances, while in all the other cases the compact formulation
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performed better. Concerning the price of robustness, we noted that imposing ro-
bustness with the multi-band model led to a sensible increase in the overall power
emission, that was anyway lower than that of the Bertsimas-Sim model in all but
two cases. On the other hand, the power increase under multi-band uncertainty was
compensated by a very high average protection factor against deviations. The good
overall performance encourages further investigations. In particular, future research
will be focused on refining the cutting plane method and enlarging the computa-
tional experience to other relevant real-world problems.
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