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Abstract. “The Price of Robustness” by Bertsimas and Sim [4] repre-
sented a breakthrough in the development of a tractable robust counter-
part of Linear Programming Problems. However, the central modeling
assumption that the deviation band of each uncertain parameter is sin-
gle may be too limitative in practice: experience indeed suggests that the
deviations distribute also internally to the single band, so that getting a
higher resolution by partitioning the band into multiple sub-bands seems
advisable.

In this work, we study the robust counterpart of a Linear Program-
ming Problem with uncertain coefficient matrix, when a multi-band
uncertainty set is considered. We first show that the robust counter-
part corresponds to a compact LP formulation. Then we investigate the
problem of separating cuts imposing robustness and we show that the
separation can be efficiently operated by solving a min-cost flow problem.
Finally, we test the performance of our new approach to Robust Opti-
mization on realistic instances of a Wireless Network Design Problem
subject to uncertainty.

Keywords: Robust Optimization, Multi-band Uncertainty, Compact
Robust Counterpart, Cutting Planes, Network Design.

1 Introduction

A fundamental assumption in classical optimization is that all data are exact.
However, many real-world problems involve data that are uncertain or not known
with precision, because of erroneous measurements or adoptions of approximated
numerical representations. If such uncertainty is neglected, optimal solutions
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computed for nominal data values may become costly or infeasible. As a conse-
quence, including uncertainty in an optimization model is a critical issue when
dealing with real-world problems.

During the last years, Robust Optimization (RO) has become a valid method-
ology to deal with optimization problems subject to uncertainty. A key concept
of RO is to model uncertainty as hard constraints, that are added to the orig-
inal formulation of the problem. This restricts the set of feasible solutions to
robust solutions, i.e. solutions that are protected from deviations of the data.
Such a robust approach is crucial when dealing with high risk events, such as
aircraft scheduling [12], or sensor placement in contaminant warning systems
for water distribution networks [15]. In such settings, standard approaches like
deterministic optimization or Stochastic Programming fail to protect against
severe deviations, leading to unpredictable consequences. For an exhaustive in-
troduction to theory and applications of RO, we refer the reader to the book by
Ben-Tal et al. [2] and to the recent survey by Bertsimas et al. [3].

An approach to model uncertain data that has attracted a lot of attention
is the so called Γ -scenario set, introduced by Betsimas and Sim (BS) [4] and
then adapted to several applications. The uncertainty model for a Linear Pro-
gram (LP) considered in BS assumes that, for each coefficient a we are given
a nominal value ā and a maximum deviation d and that the actual value lies
in the interval [ā − d, ā + d]. Moreover, a parameter Γ is introduced to repre-
sent the maximum number of coefficients that deviate from their nominal value.
Hence, Γ controls the conservativeness of the robust model and its introduction
comes from the natural observation that it is unlikely that all coefficients devi-
ate from their nominal value at the same time. A central result presented in BS
is that, under the previous characterization of the uncertainty set, the robust
counterpart of an LP corresponds to a linear formulation. This counterpart has
the desirable properties of being purely linear and, above all, compact, i.e. the
number of variables and constraints is polynomial in the size of the input of the
deterministic problem.

The use of a single deviation band may greatly limit the power of modeling
uncertainty. This is particularly evident when the probability of deviation sensi-
bly varies within the band: in this case, neglecting the inner-band behaviour and
just considering the extreme values like in BS may lead to a rough estimate of the
deviations and thus to unrealistic uncertainty set, which either overestimate or
underestimate the overall deviation. Having a higher modeling resolution would
therefore be very desirable. This can be accomplished by breaking the single
band into multiple and narrower bands, each with its own Γ . Such model is
particularly attractive when historical data about the deviations are available,
a very common case in real-world problems. Thus, a multi-band uncertainty set
can effectively approximate the shape of the distribution of deviations built on
past observations, guaranteeing a much higher modeling power than BS.

This observation was first captured by Bienstock and taken into account to
develop an RO framework for the special case of Portfolio Optimization [5]. Yet,
no definition and intensive theoretical study of a more general multi-band model
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applicable in other contexts have been done. The main goal of this paper is to
close such gap.

Contributions and Outline. In this work, we study the robust counterpart
of an LP with uncertain coefficient matrix, when a multi-band uncertainty set is
considered. The main original contributions are:

– a compact formulation for the robust counterpart of an LP;
– an efficient method for the separation of robustness cuts (i.e., cuts that

impose robustness), based on solving a min-cost flow instance;
– computational experiments comparing the performance of solving the com-

pact formulation versus a cutting plane approach on realistic wireless net-
work design instances.

In Section 2, we show that the robust counterpart of an LP under multi-band
uncertainty corresponds to a compact Linear Programming formulation. We then
proceed to study the separation problem of robustness cuts in Section 3. Finally,
in Section 4, we test the performance of our new model and solution methods
to Robust Optimization, to tackle the uncertainty affecting signal propagation
in a set of realistic DVB-T instances of a wireless network design problem.

1.1 Model and Notation

We study the robust counterpart of Linear Programming Problems whose coeffi-
cient matrix is subject to uncertainty and the uncertainty set is modeled through
multiple deviation bands. The deterministic Linear Program is of the form:

max
∑

j∈J

cj xj (LPP )

∑

j∈J

aij xj ≤ bi i ∈ I

xj ≥ 0 j ∈ J

where I = {1, . . . ,m} and J = {1, . . . , n} denote the set of constraint and
variable indices, respectively. We assume that the value of each coefficient aij
is uncertain and that such uncertainties are modeled through a set of scenarios
S. Each scenario S ∈ S defines a different coefficient matrix AS . The robust
counterpart of (LPP) thus corresponds to the following problem:

max
∑

j∈J

cj xj

∑

j∈J

aSij xj ≤ bi i ∈ I, S ∈ S

xj ≥ 0 j ∈ J.

We note that uncertainty on the cost c and on the r.h.s. b can be included in a
very straightforward way in the coefficient matrix, as explained in [3].
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One of the purpose of this paper is to characterize the robust counterpart of
(LPP) when the set of scenarios corresponds to what we call a multi-band uncer-
tainty set. This set is denoted by SM and generalizes the Bertsimas-Sim uncer-
tainty model. Specifically, we assume that, for each coefficient aij , we are given

a nominal value āij and maximum negative and positive deviations dK
−

ij , dK
+

ij

from āij , such that the actual value aSij lies in the interval [āij + dK
−

ij , āij + dK
+

ij ]
for each scenario S ∈ SM . Moreover, we define a system of deviation bands by
partitioning the single deviation band [dK

−
ij , dK

+

ij ] into K bands, defined on the
basis of K + 1 deviation values:

−∞ < dK
−

ij < · · · < d−2
ij < d−1

ij < d0ij = 0 < d1ij < d2ij < · · · < dK
+

ij < +∞.

Through these deviation values, we define: 1) the zero-deviation band corre-
sponding to the single value d0ij = 0; 2) a set of positive deviation bands, such

that each band k ∈ {1, . . . ,K+} corresponds to the range (dk−1
ij , dkij ]; 3) a set of

negative deviation bands, such that each band k ∈ {K−, . . . ,−1} corresponds
to the range [dkij , d

k−1
ij ) (the interval of each band is thus closed on the endpoint

with the higher absolute value). With a slight abuse of notation, in what follows
we indicate a generic deviation band by k ∈ K = {K−, . . . ,−1, 0, 1, . . . ,K+}.

Additionally, for each band k ∈ K, we define a lower bound lk and an upper
bound uk on the number of deviations that may fall in k, with lk, uk satisfying
0 ≤ lk ≤ uk ≤ n. In the case of band 0, we assume that u0 = n, i.e. we do not
limit the number of coefficients that take their nominal value. Furthermore, we
assume that

∑
k∈K lk ≤ n so that there always exists a feasible realization of

the coefficient matrix. On the basis of these parameters, we formalize the set of
scenarios SM : a scenario S ∈ SM is feasible if and only if aSij ∈ [āij + dK

−
ij , āij +

dK
+

ij ] and lk ≤ |{j ∈ J | aSij lies in band k}| ≤ uk for every k ∈ K, i ∈ I. In
other words, we require that the deviations satisfy the system of multi-band
uncertainty and thus the number of deviations falling in each band must satisfy
the corresponding bounds.

We remark that, in order to avoid an overload of the notation, we assume that
the number of bands K and the bounds lk, uk are the same for each constraint
i ∈ I. Anyway, it is straightforward to modify all presented results to take into
account different values of those parameters for each constraint. We now proceed
to study the robust counterpart of (LPP) under multi-band uncertainty.

2 A Compact Robust LP Counterpart

The robust counterpart of an (LPP) under a multi-band uncertainty set defined
by SM can be equivalently written as:

max
∑

j∈J

cj xj

∑

j∈J

āij xj +DEVi(x, d) ≤ bi i ∈ I

xj ≥ 0 j ∈ J
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where DEVi(x, d) is the maximum overall deviation allowed by a system of
deviation bands d for a feasible solution x when constraint i is considered. Note
that we replace the actual value of a coefficient aij with the summation of the
nominal value āij and a deviation dij falling in exactly one of the K bands. The
computation of DEVi(x, d) corresponds to the optimal value of the following
pure 0-1 Linear Program (note that in this case index i is fixed):

DEVi(x, d) = max
∑

j∈J

∑

k∈K

dkij xj y
k
ij (DEV 01)

lk ≤
∑

j∈J

ykij ≤ uk k ∈ K (1)

∑

k∈K

ykij ≤ 1 j ∈ J (2)

ykij ∈ {0, 1} j ∈ J, k ∈ K. (3)

The binary variables ykij indicate if the deviation of a coefficient aij lies in band
k. Constraints (2) ensure that each coefficient deviates in at most one band
(actually these should be equality constraints, but, for assumption u0 = n made
in Section 1.1, we can consider inequalities). Finally, constraints (1) impose the
upper and lower bounds on the number of deviations falling in each band k.
Thus, the optimal solution of (DEV01) defines a distribution of the coefficients
among the bands that maximizes the deviation w.r.t. the nominal values, while
respecting the bounds on the number of deviations of each band.

We now show that the polytope associated with the linear relaxation of
(DEV01) is integral. The linear relaxation of (DEV01) is:

max
∑

j∈J

∑

k∈K

dkij xj y
k
ij (DEV01-RELAX)

lk ≤
∑

j∈J

ykij ≤ uk k ∈ K (4)

∑

k∈K

ykij ≤ 1 j ∈ J (5)

ykij ≥ 0 j ∈ J, k ∈ K (6)

where we dropped constraints ykij ≤ 1 since they are dominated by constraints (5).

Theorem 1. The polytope described by the constraints of (DEV01-RELAX) is
integral.

Proof. We start by rewriting all the constraints of (DEV01-RELAX) into the
form αT y ≤ β obtaining the following matrix form:
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Di yi =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−I −I · · · −I

I I · · · I

1 · · · 1
1 · · · 1

. . .

1 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

yK−
i1

...

yK+

i1

...

yk
ij

...

yK−
in

...

yK+

in

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
−lk
...
...
uk

...

...
1
...

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= gi.

Consider now the submatrix D̃i obtained from Di by eliminating the top layer
of blocks (−I| − I| · · · | − I). It is easy to verify that D̃i is the incidence matrix
of a bipartite graph: the elements of the two disjoint set of nodes of the graph
are in correspondence with the rows of the two distinct layers of blocks in D̃i.
Moreover, every column has exactly two elements that are not equal to zero, one
in the upper layer and one in the lower layer. Being the incidence matrix of a
bipartite graph, D̃i is a totally unimodular matrix [13].

In order to show that also the original matrix Di is totally unimodular, we
first need to recall the equivalence of the following three statements [13]: 1) A
is a totally unimodular matrix; 2) a matrix obtained by duplicating rows of A
is totally unimodular; 3) a matrix obtained by multiplying a row of A by -1 is
totally unimodular. Since Di can be obtained from D̃i by duplicating each row
of the upper block, and multiplying each row of the duplicated block by -1, Di

is totally unimodular.
As Di is totally unimodular and the vector gi is integral, it is well-known that

the polytope defined by Diyi ≤ gi and yi ≥ 0 is integral, thus completing the
proof. ��
Since the polytope associated with (DEV01-RELAX) is integral, by strong du-
ality we can use the dual problem of (DEV01-RELAX) to replace DEVi(x, d) in
the robust counterpart of (LPP). The dual problem of (DEV01-RELAX) is:

min
∑

k∈K

−lk vki +
∑

k∈K

uk wk
i +

∑

j∈J

zji (DEV01-RELAX-DUAL)

−vki + wk
i + zji ≥ dkij xj j ∈ J, k ∈ K

vki , wk
i ≥ 0 k ∈ K

zji ≥ 0 j ∈ J

where the dual variables vki , w
k
i , z

j
i are respectively associated with the primal

constraints (4, 5, 6) of (DEV01-RELAX) defined for constraint i. Replacing
DEVi(x, d) by its dual yields the following compact linear robust counterpart of
the original problem (LPP):
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max
∑

j∈J

cj xj (RLP)

∑

j∈J

āij xj −
∑

k∈K

lk vki +
∑

k∈K

uk wk
i +

∑

j∈J

zji ≤ bi i ∈ I

−vki + wk
i + zji ≥ dkij xj i ∈ I, j ∈ J, k ∈ K

vki , w
k
i ≥ 0 i ∈ I, k ∈ K

zji ≥ 0 i ∈ I, j ∈ J

xj ≥ 0 j ∈ J.

In comparison to (LPP), this compact formulation uses 2 ·K ·m+ n ·m addi-
tional variables and includes K · n ·m additional constraints.

3 Separation of Robustness Cuts

In this section, we consider the problem of testing whether a solution x∗ ∈ R
n

is robust feasible, i.e. aSi x
∗ ≤ bi for every scenario S ∈ SM and i ∈ I. This

problems becomes important for adopting a cutting plane approach instead of
directly solving the compact robust counterpart (RLP). This approach works as
follows: start by solving the nominal problem (LPP) and then check if the optimal
solution is robust. If not, generate a cut that imposes robustness (robustness cut)
and add it to the problem. This initial step is then iterated as in a typical cutting
plane method [13].

In the case of the Bertsimas-Simmodel, the problem of separating a robustness
cut is very simple [7]: given a solution x∗, for each constraint i ∈ I, the problem
consists of sorting the deviations dK+

ij x∗
j in non-increasing order and choose

the highest Γi deviations. If for some i the sum of these deviations exceeds
bi −

∑
j∈J āijxj then we found a robustness cut to be added. Otherwise, x∗ is

robust.
In the case of multi-band uncertainty, this simple approach does not guarantee

robustness of a computed solution. However, we prove that for a given solution
x∗ ∈ R

n and a constraint i ∈ I, checking the robust feasibility of x∗ corresponds
to solving a min-cost flow problem [1], whose instance is denoted by (G, c)ix and
defined as follows. G is a directed graph whose set of vertices V contains one
vertex vj for each variable index j ∈ J , one vertex wk for each band k ∈ K and
two vertices s, t that are the source and the sink of the flow, i.e. V =

⋃
j∈J{vj}∪⋃

k∈K{wk} ∪ {s, t}. The set of arcs A is the union of three sets A1, A2, A3. A1

contains one arc from s to every variable vertex vj , i.e. A1 = {(s, vj) | j ∈ J}.
A2 contains one arc from every variable vertex vj to every band vertex wk, i.e.
A2 = {(vj , wk) | j ∈ J, k ∈ K}. Finally, A3 contains one arc from every band
vertex wk to the sink t, i.e. A3 = {(wk, t) | k ∈ K}. By construction, G(V,A) is
bipartite and acyclic. Each arc a ∈ A is associated to a triple (la, ua, ca), where
la, ua are lower and upper bounds on the flow that can be sent on a and ca is the
cost of sending one unit of flow on a. The values of the triples (la, ua, ca) are set in
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the following way: (0, 1, 0) when a ∈ A1; (0, 1,−dkijx
∗
j ) when a = (vj , wk) ∈ A2;

(lk, uk, 0) when a = (wk, t) ∈ A3. Finally, the amount of flow that must be sent
trough the network from s to t is equal to n. The value of an (s, t)-flow is defined
by C(f) =

∑
a∈A cafa. An integral min-cost flow can be computed in polynomial

time, using for example the successive shortest path algorithm [1].
We now prove that by solving the min-cost flow instance defined above, we

obtain the maximum deviation for constraint i and solution x∗.

Lemma 1. A solution x∗ ∈ R
n is robust w.r.t. a multi-band scenario set SM if

and only if
ā′ix

∗ − C(f) ≤ bi

for every i ∈ I and min-cost flow f of the instance (G, c)ix∗ .

Proof. We show that for any flow f there exists a scenario Sf ∈ SM with

(a
Sf

i )′x∗ = a′ix
∗ − C(f) and for every scenario S ∈ SM there exists a flow fS

with C(fS) = a′ix∗ − (aSi )
′x∗. Let f : A → {0, 1} be a feasible flow in (G, c)ix∗ .

Then we obtain a feasible scenario S ∈ SM by setting aSij = āij +
∑

k∈K dkijfjk,
where fjk denotes the flow on arc (vj , wk), i.e. fjk = f((vj , wk)). Due to the
flow conservation in every vertex vj , there exists exactly one variable fjk = 1,
j ∈ J , k ∈ K. Furthermore, the amount of variables whose coefficients are in
band k ∈ K is at least lk and at most uk due to the upper and lower bounds on
the arc (wk, t). Hence, Sf is a feasible scenario and

∑

j∈J

a
Sf

ij x
∗
j =

∑

j∈J

āijx
∗
j +

∑

j∈J

∑

k∈K

dkijfikx
∗
j

=
∑

j∈J

āijx
∗
j − C(f).

On the other hand, let S ∈ SM be a feasible scenario. We set fS
jk = 1 if and

only if aSij is in band k ∈ K. The flow on the other arcs is set in such a way

that we preserve flow conservation in every vertex besides s and t. Then fS is a
feasible flow, since the lower and upper capacity bounds are satisfied due to the
feasibility of S, and n units of flow are sent through the network. Furthermore,

C(fS) = −
∑

j∈J

∑

k∈K

dkijx
∗
jfjk

=
∑

j∈J

āijx
∗
j −

∑

j∈J

∑

k∈K

dkijx
∗
jfik −

∑

j∈J

āijx
∗
j

= (aSi )
′x∗ − ā′ix

∗
j .

This concludes the proof. ��
According to this lemma, we can test the robustness of a solution x∗ ∈ R

n by
computing a min-cost flow f i in (G, c)ix∗ for every i ∈ I. If ā′x∗ −C(f i) ≤ bi for
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every i, then x∗ is a robust solution. If x∗ is not robust, there exists an index i
such that ā′x∗ − C(f i) > bi and thus

∑

j∈J

aijxij +
∑

j∈J

∑

k∈K

dkijf
i
jkxij ≤ bi (7)

is valid for the polytope of the robust solutions and cuts off the solution x∗.

4 Computational Study

In this section, we test our new modeling and solution approaches to Robust
Optimization on a set of realistic instances of the Power Assignment Problem,
a problem arising in the design of wireless networks. In particular, we compare
the efficiency of solving directly the compact formulation (RLP) with that of a
cutting plane method based on the robustness cuts presented in Section 3. In the
case of the Bertsimas-Sim model, such comparison led to contrasting conclusions
(e.g., [7,8]).

The Power Assignment Problem. The Power Assignment Problem (PAP)
is the problem of dimensioning the power emission of each transmitter in a
wireless network, in order to provide service coverage to a number of user, while
minimizing the overall power emission. The PAP is particularly important in
the (re)optimization of networks that are updated to new generation digital
transmission technologies. For a detailed introduction to the PAP and the general
problem of designing wireless networks, we refer the reader to [11,6,10].

A classical LP formulation for the PAP can be defined by introducing the fol-
lowing elements: 1) a vector of non-negative continuous variables p that represent
the power emissions of the transmitters; 2) a vector Pmax of upper bounds on p
that represent technology constraints on the maximum power emissions; 3) a ma-
trix A of the coefficients that represent signal attenuation (fading coefficients) for
each transmitter-user couple; 4) a vector of r.h.s. δ (signal-to-interference thresh-
olds) that represent the minimum power values that guarantee service coverage.
Under the objective of minimizing the overall power emission, the PAP can be
written in the following matrix form:

min 1′p s.t. Ap ≥ δ, 0 ≤ p ≤ Pmax (PAP )

where exactly one constraint a′ip ≥ δi is introduced for each user i to represent
the corresponding service coverage condition.

Each entry of matrix A is classically computed by a propagation model and
takes into account many factors (e.g., distance between transmitter and receiver,
terrain features). However, the exact propagation behavior of a signal cannot be
evaluated and thus each fading coefficient is naturally subject to uncertainty.
Neglecting such uncertainty may provide unpleasant surprises in the final cover-
age plan, where devices may turn out to be uncovered for bad deviations affecting
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the fading coefficients (this is particularly true in hard propagation scenarios,
such as dense urban fabric). For a detailed presentation of the technical aspects
of propagation, we refer the reader to [14].

Following the ITU recommendations (e.g., [9]), we assume that the fading
coefficients are mutually independent random variables and that each variable
is log-normally distributed. The adoption of the Bertsimas-Sim model would
provide only a rough representation of the deviations associated with such dis-
tribution. We thus adopt the multi-band uncertainty model to obtain a more
refined representation of the fading coefficient deviations. In what follows, we
denote the Bertsimas-Sim and the multi-band uncertainty model by (BS) and
(MB), respectively.

Computational Results. In this computational study, we consider realistic
instances corresponding to region-wide networks that implement the Terrestrial
Digital Video Broadcasting technology (DVB-T) [9] and were taken as reference
for the design of the new Italian DVB-T national network. The uncertainty set is
built taking into account the ITU recommendations [9] and discussions with our
industrial partners in past projects about wireless network design. Specifically,
we assume that each fading coefficient follows a log-normal distribution with
mean provided by the propagation model and standard deviation equal to 5.5
dB [9]. In our test-bed, the (MB) uncertainty set of a generic fading coefficient
aij is constituted by 3 negative and 3 positive deviations bands (i.e., K = 6).
Each band has a width equal to the 5% of the nominal fading value āij . Thus
the maximum allowed deviation is +/- 0.15 · āij . For each constraint i, the
bounds lk, uk on the number of deviations are defined considering the cumulative
distribution function of a log-normal random variable with standard deviation
5.5 dB. The (BS) uncertainty set of each constraint considers the same maximum
deviation of (MB) and the maximum number of deviating coefficients is Γ =

0.8 · umax�, where umax = max{uk : k ∈ K\{0}}. This technically reasonable
assumption on Γ ensures that (BS) does not dominate (MB) a priori.

The computational results are reported in Table 1. The tests were performed
on a Windows machine with 1.80 GHz Intel Core 2 Duo processor and 2 GB
RAM. All the formulations are implemented in C++ and solved by IBM ILOG
Cplex 12.1, invoked by ILOG Concert Technology 2.9. We considered 15 in-
stances of increasing size corresponding to realistic DVB-T networks. The first
column of Table 1 indicates the ID of the instances. Columns |I|, |J | indicate the
number of variables and constraints of the problem, corresponding to the number
of user devices and transmitters of the network, respectively. We remark that
the coefficient matrices tend to be sparse, as only a (small) fraction of the trans-
mitters is able to reach a user device with its signals. Columns |I+|, |J+| indicate
the number of additional variables and constraints needed in the compact robust
counterpart (RLP). Columns PoR% report the Price of Robustness (PoR), i.e.
the deterioration of the optimal value required to guarantee robustness. In par-
ticular, we consider the percentage increase of the robust optimal value w.r.t. the
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optimal value of the nominal problem, in the multi-band case (PoR% (MB)) and
in the Bertsimas-Sim case (PoR% (BS)). Column Δt% reports the percentage
increase of the time required to compute the robust optimal solution under (MB)
by using the cutting plane method presented in Section 3 w.r.t. the time needed
to solve the compact formulation (RLP). Finally, column Protect% is a measure
of the protection offered by the robust optimal solution and is computed in the
following way: for each instance, we generate 1000 realizations of the uncertain
coefficient matrix and we then compute the percentage of realizations in which
the robust optimal solution is feasible. This is done for both (MB) and (BS).

Looking at Table 1, the first evident thing is that the dimension of the compact
robust counterpart under (MB) is much larger than that of the nominal problem.
However, this is not an issue for Cplex, as all instances are solved within one
hour and in most of the cases the direct solution of (RLP) takes less time than
the cutting plane approach (Δt% < 0). Anyway, for the instances of greater
dimension the cutting plane approach becomes competitive and may even take
less time (Δt% > 0). Concerning the PoR, we note that under (MB) imposing
robustness leads to a sensible increase in the overall power emission, that is
anyway lower than that of (BS) in all but two cases. On the other hand, such
increase of (MB) is compensated by a very good 90% protection on average.
In the case of the PAP, (MB) thus seems convenient to model the log-normal
uncertainty of fading coefficients, guaranteeing good protection at a reasonable
price. Moreover, though (BS) offers higher protection for most instances, it is
interesting to note that the increase of Protect% of (BS) w.r.t (MB) is lower
than the corresponding increase of PoR% of (BS) w.r.t (MB).

Table 1. Overview of the computational results

PoR% PoR% Protect% Protect%
ID |I | |J | |I+| |J+| (MB) (BS) Δt% (MB) (BS)

D1 95 153 3519 10098 8.3 10.1 -18.7 88.20 92.53
D2 103 197 4728 14184 7.2 9.4 -19 91.35 92.47
D3 105 322 7406 21252 6.8 8.8 -16.9 93.12 96.40
D4 105 473 10406 28380 7.4 7.2 -15.1 92.08 91.42
D5 108 569 13087 37554 9.2 11.4 -13.6 89.23 90.29
D6 157 1088 27200 84864 6.6 9.1 -6.2 85.46 87.55
D7 165 1203 31278 101052 7.1 9.5 -4.9 87.91 89.16
D8 171 1262 32812 106008 8.7 10.8 -4.1 89.40 93.08
D9 178 1375 35750 115500 9.6 10.2 -2.8 90.11 91.90
D10 180 1448 39096 130320 7.9 9.6 -1.7 91.54 95.32
D11 180 1661 46058 159456 7.2 9.5 0.6 94.77 96.70
D12 181 1779 49812 170784 7.5 10.1 1.8 88.22 90.16
D13 183 1853 53737 189006 8.1 10.3 3.3 91.34 92.21
D14 183 1940 56260 197880 10.3 9.7 3.1 86.50 85.18
D15 185 2183 63307 222666 8.4 10.8 4.1 91.09 92.70
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5 Conclusions and Future Work

In this work, we presented new theoretical results about multi-band uncertainty
in Robust Optimization. Surprisingly, this natural extension of the classical sin-
gle band model by Bertsimas and Sim has attracted very little attention and
we have thus started to fill this theoretical gap. We showed that, under multi-
band uncertainty, the robust counterpart of an LP is linear and compact and
that the problem of separating a robustness cut can be formulated as a min-cost
flow problem and thus be solved efficiently. Tests on realistic network design
instances showed that our new approach performs very well, thus encouraging
further investigations. Future research will focus on refining the cutting plane
method and enlarging the computational experience to other relevant real-world
problems.
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