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A B S T R A C T   

Carsharing represents a major example of smart mobility service that allows a customer to rent a vehicle for a 
limited amount of time paying a per-minute fee. It may relieve people of the costly and non-sustainable burden of 
owning a car, especially when residing in a city. Though the spread of carsharing may bring significative benefits 
to (smart) cities, its penetration can be obstructed by non-up-to-date regulations, which can be still tied to a non- 
smart vision of mobility. In this study, we provide an overview of remarkable city regulations for carsharing, 
particularly highlighting the importance that parking policies can have in favouring the diffusion and use of 
carsharing services. Given such importance, we characterize the optimization problem of a local government that 
wants to analytically choose the best subset of parking slots to rent to carsharing companies, in order to improve 
urban mobility. To model and solve the problem we propose a new Binary Linear Programming problem and 
genetic-based matheuristic. Finally, we present results from computational tests referring to realistic data of the 
Italian city of Rome, showing that our optimization approach can return a fair territorial distribution of the 
parking slots, satisfying various families of constraints limiting the distribution.   

1. Introduction 

In recent times, smart mobility systems have attracted a lot of 
attention, since they are considered a fundamental component of mod
ern smart cities, as recognized by national and international establish
ments and by major companies active in the landscape of digital 
economy (e.g., Benevolo et al., 2016; EU-INEA 2017). A Smart Mobility 
(SMOB) system can be defined as a strongly Information and Commu
nications Technology (ICT)-supported Transport System (e.g., GeSi-ACN 
2015; Kenny, 2013). ICT is a crucial component of SMOB systems, which 
enables a continuous connection between the system administrators, the 
customers/users and the mobile and fixed infrastructures. Furthermore, 
it represents a key building block for offering innovative trustable and 
sustainable ways to move in urban and extra-urban scenarios. A major 
example of SMOB is represented by carsharing services. Nowadays, 

carsharing is intended as a mobility service that allows a user to rent a 
car for very short period of times (e.g., a few minutes) using a smart
phone application and paying a per-minute fee (Weikl & Bogenberger, 
2013). Such services have contributed to revolutionize urban mobility in 
the last decade, basing their success also on the strong diffusion of 
smartphones. 

It is now widely recognized that carsharing and other SMOB systems 
can have a (very) positive impact on the quality of life in urban and 
extra-urban scenarios, sensibly reducing the negative sides of transport 
systems (e.g., pollution caused by traffic, road congestion). For an 
overview of the benefits of SMOB, we refer the reader to (Bencardino & 
Greco, 2014; Benevolo et al., 2016; Carrese et al., 2017, 1996, 2020; 
Hessel, 2015; Lyons, 2016). Some studies have tried to precisely assess 
this positive impact. For example, Martin and Shaheen (2011) showed 
that the introduction of carsharing in North America led to a decrease in 
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the average number of vehicles per family from 0.47 to 0.24 and that, on 
average, each shared car substituted from 9 to 12 private cars. Besides 
the positive impact on environment and economy, carsharing and other 
SMOB systems have a positive social impact too. Indeed, a considerable 
part of the costs that road transportation entails does not appear as in
ternal costs borne by the drivers, but is taken into account as external 
costs (e.g., environmental impact) borne by the collectivity. Such 
external costs represent a third of the total and about 90% of them is due 
to private car owners (Lombard et al., 2005). Within this context, car
sharing and other SMOB systems present features that can ease the 
internalization of costs, since they support the passage from 
privately-owned cars to mobility as a service, based on the concept of 
pay-as-you-go. 

Though their benefits are pretty evident and clear, SMOB systems 
have found difficulties in being implemented. This is due to various 
reasons, such as: 1) the presence of regulatory frameworks that are often 
confused and not up-to-date for welcoming new innovative SMOB dig
ital platforms and services; 2) the inertness of policy makers, which may 
ineffectively support the expansion of SMOB services, thus dooming 
them to remain just at an experimental and very low-scale level. 

In recent years, among SMOB systems, carsharing has attracted 
particular attention and has been the subject of intense research from 
many point of views. Recent research studies have been aimed at better 
quantifying the benefits of carsharing, such as how it contributes to 
reduce the need for a private car (Becker et al., 2018) and how it favours 
the penetration and adoption of electric vehicles (see e.g., Meisel & 
Merfeld, 2018). Other studies have evaluated how different reservation 
mechanisms of shared cars may be used to influence user behaviour (e. 
g., Wu et al., 2019 analyze how users respond to different reservation 
schemes adopted for tackling imbalances between supply and demand in 
free-floating carsharing). 

A major topic of investigations has been represented by the devel
opment of methods for choosing where to locate charging stations for 
electric carsharing. Limiting our attention to some more recent works, 
we recall the studies: (Cheng et al., 2019), which proposes to combine 
statistical models with machine learning techniques not only to identify 
sites for deploying new charging stations, but also for adjusting the 
location of stations already deployed; (Chen et al., 2018), which ana
lyzes the performance of regression models for evaluating how station 
features, city environment and transportation facilities affect carsharing 
services and proposes a method for deciding the location of stations; 
(Wang et al., 2019), which develops a four-step method that first esti
mates and distributes charging demand of electric vehicles in a city and 
then establishes the location of normal and fast charging stations for 
both private and shared vehicles; (Biondi et al., 2016), which proposes 
an optimization approach for establishing the cost-optimal location and 
capacity of charging stations, using queueing theory for expressing the 
demand of recharge; finally (Li et al., 2017), proposes a multi-criteria 
decision approach, including factors like travel purposes and distance 
from existing stations, for optimally locating carsharing stations and 
tests its performance on EVCARD, the electric carsharing system of 
Shanghai. 

Another major topic of investigations has been represented by the 
problem of relocating vehicles, which can sensibly increase the profit of 
carsharing, as highlighted in the recent survey (Illgen & Höck, 2019) 
and in other works such as: 1) (Boyaci et al., 2017), which proposes a 
simulation-optimization approach for a station-based one-way carshar
ing system that provides for reservations and relocations; 2) (Bruglieri 
et al., 2018), which proposes a two-phase heuristic for solving a 3-objec
tive carsharing relocation problem, considering cost minimization, fair 
distribution maximization and service level maximization; 3) (Zhao 
et al., 2018), which focuses on optimally managing vehicle rebalancing 
and staff relocation in a station-based one-way carsharing system, pro
posing an innovative algorithm combining Lagrangian relaxation and 
dynamic programming for its solution. 

In the present work, we review some major city carsharing 

regulations, highlighting the importance of adopting reserved parking 
slots for carsharing vehicles. Also, we propose a mathematical optimi
zation model and algorithm for establishing where to put reserved 
parking slots at disposal of carsharing users. The reserved parking slots 
are simple parking spaces meant to be spread around a city more 
pervasively of renting/charging stations. Their essential purpose is to 
speed up the parking phase of a rent, reducing the cruising time needed 
by a carsharing user for finding an empty slot. Specifically, our major 
contributions are the following:  

1. we provide an overview of the carsharing regulations of a number of 
major cities, particularly highlighting the importance of parking 
policies in making carsharing a success and discussing the Italian 
case in more detail; 

2. given the crucial role of parking policies in carsharing, we charac
terize the optimization problem of a Local Government (for example 
the council of a municipality) that must choose which parking slots 
to rent to carsharing companies in a city, while finding an optimal 
balance between the interest of the population and those of the 
profit-oriented companies. To model this problem, we propose to 
adopt mathematical optimization techniques and we represent the 
problem as a Binary Linear Programming problem, which includes 
boolean variables to model the possibility of renting or not a cluster 
of parking slots. The purpose of this model, is to provide an easy-to- 
use mathematical tool for Local Governments, which can be easily 
adopted and tuned. To the best of our knowledge, such decision 
problem has never been considered in literature and addressed 
through optimization techniques as we do in the present paper. We 
thus remark that there is no related literature to review and compare 
with;  

3. we prove that the considered optimization problem is NP-Hard and 
thus can prove difficult to solve even for state-of-the-art optimization 
software. To tackle the problem, we therefore propose a new math
euristic that combines a genetic algorithm with exact mathematical 
programming techniques adopted in large neighborhood searches;  

4. we present the results of computational tests on realistic instances 
referring to the city of Rome. Such data are also defined on the basis 
of the experience gained within our collaborations with major car
sharing companies active in Rome and with E-Go, a carsharing ser
vice launched at University Roma Tre with the support of the electric 
utility company Enel (see Carrese et al., 2017). They also take into 
account the current regulations of the City of Rome for carsharing 
(City of Rome - DGC136, 2016). 

The remainder of the paper is organized as follows. In Sections 2, we 
overview city regulations, whereas in Section 3, we define the model for 
optimal parking slot renting. In Sections 4 and 5, we present the 
matheuristic and the results of computational tests, respectively. In 
Section 6, we discuss challenges related to the real-world adoption of the 
proposed optimization approach. Finally, in Section 7, we derive con
clusions and discuss possible directions for future work. 

2. A review of local regulatory situations for carsharing 

As a major expression of SMOB, carsharing has widely spread espe
cially in the USA and Europe, becoming one of the new important modes 
of urban transport (Pinna et al., 2017). Several studies pointed out that 
the use of privately-owned cars, though still very common, has experi
enced a significative decline in many countries since several years (see e. 
g., Millard-Ball & Schipper, 2011; Newman & Kenworthy, 2011). 
Furthermore, carsharing has gained a lot of popularity as a more sus
tainable way to reduce emissions of CO2 (Martin & Shaheen, 2011). 

A good parking policy is indicated in literature as one of the most 
effective strategies that a local government can implement to stimulate 
carsharing (e.g., Rivasplata et al., 2013). A detailed study made in 
(Shaheen et al., 2010) highlights that in North America over 70 local 
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governments and municipalities, such as San Francisco and Vancouver, 
have adopted specific policies to favour the parking of carsharing, also 
including the reservation of parking slots for shared cars. This study also 
reports that a survey among the San Francisco residents revealed that 
just 20% of the people were against the reservation of slots for car
sharing. Recently, also the New York City Council has approved legis
lation for a pilot study aimed at evaluating the reservation of parking 
slots to carsharing companies (see New York City Council, 2015). 

Another very interesting study that has investigated how local gov
ernments can support and stimulate carsharing, in particular by 
reserving parking slots is (Dowling & Kent, 2015). The authors focused 
on the case of Sydney, which in 2013 offered 1000 shared cars managed 
by various companies, leading to an estimated benefit of more than 300 
millions of dollars for carsharing users. The study highlights that the 
carsharing was not taken into consideration in the regional transport 
plans, but was instead considered at a local level, in the regulations of 
Sidney city and in that of 6 out of 8 the districts where carsharing 
operated. 

In 2016, the City of Sydney has approved new regulations for man
aging on-street carsharing parking slots with the aim of exploiting them 
more efficiently - see (City of Sydney, 2016). A first objective of these 
regulations is to define the requirements and obligations of companies 
that apply for reserved carsharing parking slots: for example, they 
require to deploy vehicles that emit less than 175 g/km of CO2 and to 
produce a report about the use of each vehicle each month. A second 
objective is to clearly state the rules by which a company may get 
parking slots: the rent must obtain a preventive approval from the res
idents and retailers of the area and from local committees for bicycle and 
pedestrian mobility. The number and position of the parking slots are 
defined on the basis of an evaluation of the potential demand for car
sharing and on the basis of the district features: if in a district less than 
3.5% of all the slots are reserved to carsharing, then a company already 
renting slots may request at most 4 slots, if it can prove that the 3 slots 
that are closest to those requested have been used at least 18 times in a 
month; for districts exceeding the threshold of 3.5%, the conditions are 
more stringent. In order to favour competition, a company without 
rented slots can rent without restrictions at most 3 slots in a district with 
up to 900 total slots or at most 6 in a district with more than 900 slots. 
Always in the metropolitan area of Sydney, specifically in the Munici
pality of Ashfield, the local government has approved regulations spe
cific for carsharing (City of Ashfield, 2010), which were aimed at deeply 
involving the citizens in the process of assignment of parking slots. 
Assigning slots to carsharing in an area required the approval of 75% of 
the residents. Furthermore, the rules favoured the location of slots close 
to parks and retailers. Last but not least, they provided for making pay 
the cost of realization of the reserved slots to the carsharing companies, 
which every year must submit a report on the usage of the slots. 

In 2011, the Canadian city of Calgary approved regulations aimed at 
favouring carsharing specifically impacting on parking policy (City of 
Calgary, 2011). In particular, the carsharing companies are obliged to 
relocate their vehicles so that the reserved slots have a car available for a 
minimum number of hours everyday. Also, each company may receive 
at most 3% of the total number of slots available in any area identified as 
commercial. Finally, it is interesting to cite the case of the city of Van
couver, where the price for renting parking slots differs depending upon 
the district (City of Vancouver, 2016): more attractive districts in terms 
of business activities are associated with higher prices. 

Concerning Italy, urban carsharing is currently active in 29 cities 
and, according to a 2016 survey, was counting 5764 vehicles. Concen
trating the attention on three of the largest cities (Milan, Rome and 
Turin), the first very interesting observation to be made is that, though 
carsharing was introduced in these cities many years ago, it has been 
interested by a limited regulation and emission of policies, particularly 
those on parking, aimed at improving its effectiveness and efficiency. 
The city of Milan offers the most advanced urban carsharing system in 
Italy, with several companies operating in the city. In 2013, new 

regulations were introduced to allow the shared cars to access and park 
for free in central restricted traffic zones and to park in slots restricted to 
residents. The regulations also state that a carsharing company must pay 
a yearly fixed price of 1100.00 euros for operating a vehicle in the city 
and access the benefits stated above. The more recent regulations (City 
of Milan, 2016) have introduced the obligation for the carsharing 
company to regularly update their fleet, imposing that a vehicle must be 
replaced once reached 4 years of service or 100,000 km. 

The city of Rome has also been interested by regulations, similar to 
those of Milan: first regulations from 2004 allowed free access and 
parking in central restricted traffic zones; then, in 2010, it has been 
imposed that shared vehicles must be at most 3 years old. Finally, in 
2016, further regulations - e.g., (City of Rome - DGC136, 2016) - have 
been aimed at strengthening the penetration of electric vehicles, 
establishing the realization of additional charging stations in central 
zones of the city. 

In Turin, the regulations (City of Turin, 2016) not only allow the free 
access and parking in central restricted traffic zones, but also grant the 
right to drive on fast lanes reserved to bus and taxi services. A distinctive 
feature of these regulations is that they have been especially aimed at 
containing the air pollution, by imposing that the fleet of each car
sharing company must contain at least 30% of low-emission natural-
powered vehicles (e.g., bi-fuel methane-gasoline) and at least 10 electric 
vehicles. Furthermore, the regulations provide for that recharge stations 
of the company must be open also to private electric vehicles and that 
each company must cover with service an area of at least 40 square 
kilometers. 

On the basis of the overview provided in this section, it can be seen 
that parking policies constitute an important element of regulations 
adopted to encourage the development and penetration of carsharing in 
cities. We can distinguish two major parking solutions: 1) assigning 
specific parking slots on the basis of a request made by a carsharing 
company; 2) renting a set of slots to all companies without distinction (i. 
e., no slot is reserved to a specific company). The chosen solution must 
be then accompanied by other decisions, such as: 1) the total number of 
slots made available in the city and in each zone; 2) the maximum 
number of slot reserved to each company; 3) the location of the slots. 
Furthermore, a parking policy should also fix the price that a company 
must pay to gain the right of using a slot. This price could be differen
tiated depending on the attractiveness of the area: commercial and 
business districts could be more attractive than residential districts and 
thus be associated with higher prices; also, larger groups of contiguous 
parking slots should be associated with higher prices, given the higher 
chances of attract carsharing vehicles and thus increasing availability for 
the users. 

In order to guarantee a full application of the policy, the local gov
ernments must keep watch on the rented slots, timely sanctioning abuses 
and adopting ad-hoc fines for sanctioning people parking their private 
cars in reserved slots. We note that this aspect is not so trivial: the first 
experiments of carsharing directly managed by the City of Rome also 
failed because the reserved slots were often occupied by private cars, 
which counted on the very low chance of being fined by the local police. 
As found in several policies, it is also important that the local govern
ments provides for obtaining regular reports about the conditions of 
each carsharing company, in particular defining some key performance 
indicators that allow to clearly evaluate the impact of carsharing and of 
parking slot reservation on the administered territory. Last but not least, 
the reservation of parking slots to carsharing should be subordinated to a 
positive advice of the local residents, as provided in the policies of 
several cities. 

As it is evident, the problem that the local governments face when 
deciding how to put parking slots at disposal of carsharing companies 
presents a lot of factors to be taken into account. This leads to a complex 
decision problem that typically pursues the maximization of a measure 
expressing the benefit for the city and the population to adopt carsharing 
and specific parking policies. This is actually an optimization problem 
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where the local government wants to take the best decision on the basis 
of its interest. In the next section, we investigate the possibility of 
modelling and solving such optimization problem through a mathe
matical optimization approach. 

3. An optimization model for car slot renting 

We consider the problem of the Local Government (LG) of a city that 
needs to decide which parking slots must be reserved and rented to 
carsharing companies that are active in its territory. The overall aim is to 
favour the diffusion of such services among the population, in order to 
improve the penetration of smart mobility and thus traffic conditions. 
We propose to tackle such problem by means of Mathematical Pro
gramming techniques (Bertsimas & Tsitsiklis, 1997): we first translate 
the problem faced by the LG into mathematical terms, deriving a suit
able mathematical optimization model, and then propose a matheuristic 
algorithm for it solution. By adopting a Mathematical Programming 
approach, we allow to find a solution that grants the best performance 
according to an objective function that may includes key performance 
indicators. 

We recall here some fundamentals of mathematical optimization, 
referring the reader to the book (Bertsimas & Tsitsiklis, 1997) for a more 
exhaustive and detailed introduction. An optimization model, also 
commonly called mathematical programming problem, is a mathematical 
model that is made up of three major components: 1) a set of decision 
variables, which model the choices that the decision maker can take (for 
example, if we refer to the parking slot renting problem that we consider 
in this paper, a variable models whether the LG does or does not rent a 
slot); 2) a set of feasibility constraints that model limitations on the 
value that can be assigned to the variables (for example, the LG cannot 
rent more than a fixed number of parking slots); 3) an objective function, 
which guides the search for the best solution of the problem, evaluating 
how good is a complete assignment of values to the variables. 

We can express more formally some basic mathematical program
ming concepts by referring to the following problem denoted by MP: 

max cT x (MP) (1)  

Ax ≥ b (2)  

x ∈ {0, 1}n (3)  

where c ∈ Rn, A ∈ Rm×n, and b ∈ Rm. We remark that the problem MP 
we consider is a Binary Linear Programming problem, since it only in
cludes binary decision variables, assuming either 0 or 1 values, and 
linear constraints and objective function. 

If we assign a value in {0,1} to each decision variable xj, ∀ j = 1,2,
…, n of MP, we obtain a solution. A solution is either feasible, if it satisfies 
all the constraints (2), or infeasible, if it violates at least one of the 
constraints (2). If we denote by F the set of all feasible solutions, a 
feasible solution x∗ ∈ F is said optimal if it offers the best objective 
value among all the feasible solutions, i.e. it maximizes the objective 
function (1) (formally, cTx∗ ≥ cTx, ∀x ∈ F ). 

3.1. System elements 

The optimization problem faced by the LG can be described as fol
lows (we anticipate that in Fig. 1, we provide a small example aimed at 
clarifying the notation introduced in the remainder of this section). The 
LG administers a city made up of a set of districts denoted by D. Each 
district d ∈ D includes a set of subdistricts, denoted by S(d). In each 
subdistrict s ∈ S(d) with d ∈ D, the LG has identified a number of parking 
slot clusters available for renting to carsharing companies: a parking slot 
cluster (or briefly, cluster) is a set of parking slots that is reserved for 
parking car-sharing cars. Formally, for each district d ∈ D and subdis
trict s ∈ S(d), we denote by C(s, d) the set of clusters available in s. For 
each cluster c ∈ C(s, d), we denote by nc the number of parking slots 
composing the cluster. A cluster must be rented as a whole, i.e. it is not 
possible to just rent a part of its slots. As in real-world studies, we assume 
that the LG has identified a profit measure πc that quantifies the benefits 
of renting a cluster c on the basis of preliminary studies (see, for 
example, the regulation of the City of Rome - DGC136, 2016). Such 
measure may take into account several distinct factors, such as the 
revenue obtained renting the cluster, the cost associated with main
taining the cluster, the economical benefits of having carsharing services 
in an area (e.g., financial, environmental and social). 

In line with policies overviewed in the previous section, we strongly 
believe that the renting of parking slots should be coordinated with local 
residents. To this end, we consider very important to include a limit on 
the total number of parking slots that can be rented in each district. This 
is done for avoiding to arouse widespread discontent among local resi
dents, which typically wants to have a consistent fraction of the parking 
slots in a district to be (freely) available to car owners. For example, the 
number of rented slots could be required to not exceed a fraction of the 

Fig. 1. An example of target area partitioned into 
districts and subdistricts, containing parking slot 
clusters. The districts are separated by thick contin
uous lines, whereas the subdistricts of a district are 
separated by dotted thinner lines. Parking slots clus
ters are represented by groups of small rectangles 
placed side by side and each rectangle visualizes one 
slot. Referring to the notation introduced in Subsec
tion 3.1, this example of target area contains three 
districts, so D = {d1, d2, d3}. The subdistricts of each 
districts are: S(d1) = {s1, s4}, S(d2) = {s2, s3} and 
S(d3) = {s5, s6, s7}. Concerning the parking slot clus
ters, we note that subdistricts s2 and s6 do not contain 
clusters available for renting inside them (so, C(s2,d2)

= C(s6, d3) = ∅). Instead, all the other subdistricts 
contains at least one cluster (for example, s1 has 2 
clusters, C(s1, d1) = {c1, c2}, both containing 3 park
ing slots (i.e., nc1 = nc2 = 3), whereas s4 contains 
only cluster c3 including 6 slots (i.e, C(s4,d1) = {c3}, 
with nc3 = 6).   
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total number of parking slots available in the district. Furthermore, it is 
also important to include a minimum number of slots that must be 
rented, to favour the diffusion of carsharing; this could reflect the 
dimension of the fleet maintained by the companies. For each sub- 
district s ∈ S(d) with d ∈ D, we denote such lower and upper limits on 
the number of rented parking slots by ηmin

s and ηmax
s , respectively. 

Furthermore, we assume that the LG also wants to include a lower and 
upper limit γmin

s , γmax
s on the number of clusters that may be rented in 

each subdistrict. 
Another important aspect that we want to model is the possibility for 

the LG to classify the clusters per types and to include a minimum and 
maximum number of clusters for each type in each district. For example, 
clusters could be distinguished per type by the number of parking of 
slots that they include. On the basis of our direct experience with the 
creation of a new carsharing service in Rome, we expect that an LG 
wants to have a good balance between clusters of bigger and smaller 
dimensions. Another example of type distinction is that between shop
ping, business and residential clusters, depending in which zone of a 
district they are located. From a modelling point of view, we introduce a 
set T to denote the cluster types and we denote by t(c) ∈ T the type of a 
cluster c. For each district d ∈ D, we denote by τmin

dt and τmax
dt the mini

mum and maximum number of clusters of type t allowed in district d. In 
Fig. 1, we provide an example to clarify the notation introduced. 

3.2. Modelling the optimization problem 

After having introduced all the relevant system elements and the 
related notation, we can state the optimal decision problem that the LG 
faces as follows. 

Optimal Carsharing Parking Slot Renting Problem (Opt-ParkRent): given 
the set of districts D, the corresponding sets of subdistricts S(d) ∀d ∈ D 
and sets of parking slot clusters C(s, d) ∀d ∈ D,s ∈ S(d), the profit πc and 
number of slots nc of each cluster c ∈ C(s,d), the upper and lower bounds 
ηmin

s , ηmax
s , γmin

s , γmax
s , τmin

dt and τmax
dt on the number of rentable slots, 

rentable clusters and rentable cluster types, Opt-ParkRent consists of 
choosing which clusters to rent to carsharing services, so that all lower 
and upper bounds on rentable slots, rentable clusters and rentable 
cluster types are satisfied and the total profit is maximized. 

We model the optimization problem Opt-ParkRent as a Binary Linear 
Programming problem. In order to model the decision of renting or not a 
parking slot cluster, we introduce a binary decision variable xdsc ∈ {0,1}
for each district d ∈ D, subdistrict s ∈ S(d) and cluster c ∈ C(s,d), defined 
as follows: 

xdsc =

{
1 if cluster c in subdistrict s of district d is rented
0 otherwise (4) 

These decision variables are employed in the following constraints 
defining the set of feasible solutions of the optimization problem. First, 
we need a set of constraints to express that, for each subdistrict, the 
limits on the number of rented parking slots cannot be exceeded: 

ηmin
s ≤

∑

c∈C(s,d)

nc ⋅ xdsc ≤ ηmax
s ∀d∈D, s ∈ S(d) (5) 

We remark that here the decision variable is multiplied by the 
number nc of slots in a cluster. 

Then, we must express the limits on the number of clusters that can 
be rented in each subdistrict: 

γmin
s ≤

∑

c∈C(s,d)

xdsc ≤ γmax
s ∀d∈D, s ∈ S(d) (6) 

Finally, we need constraints to express the limits on the number of 
cluster types that can be rented in each district: 

τmin
dt ≤

∑

s∈S(d)

∑

c∈C(s,d): t(c)=t

xdsc ≤ τmax
dt ∀d ∈D, t ∈ T (7) 

We note that in these constraints the two summations involve the 
decision variables of all the clusters located in sub-districts of the district 
d that are of cluster type t. 

The objective is to maximize the total profit, expressed as the sum
mation of the decision variables over all districts, subdistricts and 
clusters: 

max
∑

d∈D

∑

s∈S(d)

∑

c∈C(s,d)

πc⋅xdsc (8) 

By joining (4)–(8), we obtain the overall Binary Linear Programming 
problem presented below, denoted by BLP-PS, which we use as basis to 
model and solve the problem of renting parking clusters Opt-ParkRent. 

max
∑

d∈D

∑

s∈S(d)

∑

c∈C(s,d)

πc⋅xdsc (BLP − PS)

ηmin
s ≤

∑

c∈C(s,d)

nc⋅xdsc ≤ ηmax
s ∀d ∈ D, s ∈ S(d)

γmin
s ≤

∑

c∈C(s,d)

xdsc ≤ γmax
s ∀d ∈ D, s ∈ S(d)

τmin
dt ≤

∑

s∈S(d)

∑

c∈C(s,d): t(c)=t

xdsc ≤ τmax
dt ∀d ∈ D, t ∈ T

xdsc ∈ {0, 1} d ∈ D, s ∈ S(d), c ∈ C(s, d)

Concerning the computational complexity of our problem Opt- 
ParkRent associated with parking slot optimization and modelled as 
BLP-PS, we now show that it is NP-Hard. To this end, we state and prove 
the following proposition. 

Proposition 1. Opt-ParkRent is NP-Hard. 

Proof:In order to prove the result, we refer to the optimization model 
BLP-PS that we proposed to model Opt-ParkRent. We can first note that 
all the feasibility constraints (5), (6) and (7) present the following 
general form: 

LBi ≤
∑

j∈J
aij⋅xj ≤ U Bi (9) 

Here, i is the index of a generic constraint (we denote by I the set of 
constraint indices) and j is the index of a generic decision variable (we 
denote by J the set of variable indices). Each constraint contains a 
summation over all binary decision variables xj multiplied by suitable 
non-negative coefficients (in particular, we note that we have aij = 0 
when xj is not included in a constraint, ai = 1 when xi appears in con
straints (6) and (7) and ai = n, with n representing the number of 
parking slots associated with xi when xi appears in a constraint (5)). 
Each summation is then bounded below by a value LBi > 0 and above by 
UBi > 0. The overall problem then reads as: 

max
∑

j∈J
πj⋅xj

LBi ≤
∑

j∈J
aij⋅xj ≤ UBi ∀i ∈ I

xj ∈ {0, 1} ∀j ∈ J 

The previous problem constitutes a multidimensional generalization 
of the knapsack problem with minimum filling constraints, introduced and 
proved to be NP-Hard in (Xu, 2011). As a consequence, also the problem 
Opt-ParkRent is NP-Hard. 

4. A genetic-based matheuristic for solving BLP-PS 

Because of its NP-Hard nature, the parking slot optimization problem 
Opt-ParkRent, modelled by BLP-PS, can be hard to solve even for state- 
of-the-art optimization solvers, such as IBM ILOG CPLEX. We therefore 
propose to solve BLP-PS by a matheuristic that combines a genetic al
gorithm with solution generation and improvement phases based on the 
execution of suitable large neighborhood searches. Matheuristics are a 
relatively recent trend in metaheuristic methods that tries to better 

S. Carrese et al.                                                                                                                                                                                                                                 



Research in Transportation Economics xxx (xxxx) xxx

6

exploit the potentialities of exact mathematical optimization techniques 
through hybridization with heuristic methods (see e.g., Maniezzo et al., 
2009). Concerning the use of large neighborhood searches, we stress 
that we rely on exact searches, namely the search is not a simple local 
search based on heuristic rules of exploration, but a large exploration 
that is formulated as an optimization problem solved exactly by a 
state-of-the-art solver (see e.g., Blum et al., 2011 for an introduction). 
The rationale at the basis of exact searches is that, while a 
state-of-the-art solver may find big difficulties in solving a full problem, 
it may instead be able to effectively and efficiently solve suitable sub
problems obtained from it and associated with the large neighborhood 
searches. 

Genetic Algorithms (GAs) are well-known heuristic algorithms 
inspired from the evolution dynamics of a population of individuals. For 
an exhaustive introduction to theory and applications of GAs, we refer 
the reader to (Golberg, 1988; Karakatic and Podgorelec, 2015; Srinivas 
et al., 1994). Focusing on its essential features, a GA manages a popu
lation of individuals, in which each individual represents a feasible so
lution for the optimization problem at hand. The chromosome of an 
individual specifies the value that is assumed by each decision variable 
in the solution associated with the individual. The genetic strength of an 
individual is evaluated by a fitness function, which assigns a value rep
resenting a measures of quality for the solution/individual. 

In our case, we strengthen the performance of a GA by combining it 
with relaxation-based variable fixing, in which the value of decision var
iables is set a-priori considering the value of variables in an optimal 
solution to a suitable (tight) linear relaxation of the problem. The GA- 
based solution construction is then followed by an exact large neighbor
hood search, aimed at finding solutions of improved quality by exploring 
portions of the solution space obtained by fixing the value of a subset of 
decision variables of the complete problem. 

More in detail, the general structure of the GA that we use as basis for 
the matheuristic is depicted in Algorithm 1. We now proceed to discuss 
in detail the features of all the steps of the algorithm.  

Algorithm 1 General Genetic Algorithm (GA-alg) 
1: Creation of the initial population 
2: while an arrest condition is not satisfied do 
3: Selection of individuals who generate the offspring 
4: Generation of the offspring by crossover 
5: Mutation of part of the population 
6: Death of part of the population 
7: end while 
8: Improvement by Exact Large Neighborhood Search   

4.1. Characteristics of the GA population 

4.1.1. Representation of the individuals and fitness function 
In the case of our problem, a natural modelling choice within the GA- 

based matheuristic is to let coincide the chromosome of an individual 
with the binary vector x specifying the value of each variable xdsc with 
d ∈ D, s ∈ S(d), c ∈ C(s, d) included in BLP-PS. 

It is also natural to adopt the objective function (8) of BLP-PS as 
fitness function. For a given individual associated with a chromosome x, 
the fitness of the corresponding individual is thus equal to the revenue of 
the rented clusters, namely: 

π(x)=
∑

d∈D

∑

s∈S(d)

∑

c∈C(s,d)

πc⋅xdsc .

4.1.2. Initial population 
In order to define the individuals composing the initial population, 

we rely on both a deterministic and a probabilistic individual generation 
procedures. 

The deterministic generation is based on a procedure that follows the 
principles of RINS (Relaxation Induced Neighborhood Search) (Danna 

et al., 2005), a well-known heuristic for Mixed Integer Linear Pro
gramming. Specifically, let BLP-PSRLX be a linear relaxation of BLP-PS (i. 
e., a version of BLP-PS obtained by substituting the integrality require
ment xdsc ∈ {0,1} on each decision variable with its continuous relax
ation 0 ≤ xdsc ≤ 1) and let xRLX be its optimal solution. The optimal 
solution xRLX can be used as basis to fix a-priori the value of some var
iables in BLP-PS, thus obtaining a smaller and easier-to-solve problem 
that can be tackled by a state-of-the solver. We denote by BLP-PSFIX− RINS 

the problem where some variables have their value fixed a-priori and the 
strategy for fixing is the following: 

IF xRLX
dsc ≤ 0 + ε THEN xdsc = 0  

IF xRLX
dsc ≥ 1 − ε THEN xdsc = 1  

with ε > 0. In other words, the rule provides for fixing to either 0 or 1 a 
variable that in xRLX

dsc is sufficiently close to 0 or 1. Indeed, such closeness 
can be considered a good indication that the variable should be fixed to 
that value in a solution of good quality (see Danna et al., 2005 for an 
exhaustive discussion of the principles of the RINS algorithm). The 
problem BLP-PSFIX− RINS that we obtain by the RINS-fixing procedure is 
passed to a state-of-the-art solver and we add all the feasible solutions 
found during the solution procedure to the initial population of the GA 
algorithm. 

We also generate solutions through a partial probabilistic variable 
fixing procedure that uses again the optimal solution xRLX of the linear 
relaxation, but in a different way. To this end, we can first note that a 
fractional optimal value xRLX

j can be interpreted as the probability of 
fixing to 1 the corresponding variable xj in a good feasible solution (we 
refer the reader to the book by Motwani and Raghavan (1995) and to the 
papers (Maniezzo, 1999; D’Andreagiovanni et al., 2015; D’An
dreagiovanni & Nardin, 2015) for a discussion about the interpretation 
of fractional binary solutions as probability in randomized rounding 
algorithms in a general and in a metaheuristic context). We thus create a 
number of solutions using xRLX

j as probabilities and confronting them 
with randomly generated numbers, similarly to Ant Colony Optimiza
tion procedures illustrated in (Maniezzo, 1999; D’Andreagiovanni et al., 
2015; D’Andreagiovanni & Nardin, 2015). This probabilistic generation 
procedure is operated for a part of all the variables and the resulting 
partial fixing is passed to a state-of-the-art solver for solving the 
resulting problem of reduced size (again, we add all the feasible solu
tions found during the solution procedure to the initial population of the 
GA algorithm). 

4.2. Evolution of the population 

4.2.1. Selection 
In order to select the individuals that combine their chromosomes for 

generating the new population, we execute a tournament selection: if P is 
the current population of individuals, as first step we define k > 0 sub
groups of individuals through random selection of a number ⌊α ⋅|P |⌋ of 
individuals from P , with α ∈ (0, 1). Then we select the m < ⌊α ⋅|P |⌋ 
individuals that offer the best fitness function value in each group. We 
extract individuals from this restricted pool for giving raise to the new 
generation by means of crossover. 

4.2.2. Crossover 
Individuals belonging to the restricted pool defined in the previous 

step are randomly paired so to constitute ⌊k ⋅m /2⌋ couples. From each 
couple, we generate one offspring through crossover of chromosomes. 
Specifically, given a couple of individuals (the parents) associated with 
two solution vectors x1, x2 of the model BLP-PS, the crossover mixes the 
values of variables in the same position of the parents, so to give birth to 
one offspring xoff , hopefully associated with higher fitness value. Spe
cifically, xoff is defined according to two rules: 
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1. if the parents present the same binary value in a position j, then the 
offspring inherits this value in the same position j (i.e., if x1

j = x2
j then 

xoff
j = x1

j );  
2. if the parents have distinct binary values in a position j (i.e., x1

j ∕= x2
j ), 

then the variable xoff
j is not fixed and its value is decided by running 

an optimization solver. Specifically, let BLP-PSFIX be the subproblem 
of BLP-PS obtained by fixing a subset of variables according to the 
previous rule 1. Then we set as offspring the best feasible solution 
found by a state-of-the-art solver used to solve BLP-PSFIX within a 
time limit (so, again we exploit the solver to tackle a suitable sub
problem of the complete hard-to-solve problem BLP-PS). 

The rationale at the basis of these two crossover rules is that two 
solutions presenting the same valorization of a variable constitute a 
good indication that such valorization should be kept in the offspring, 
whereas for deciding how to valorize variables with conflicting values in 
the parent solutions, we exploit the solver to tackle a subproblem of the 
complete hard-to-solve problem BLP-PS. 

4.2.3. Mutation 
After having created the new generation of individuals, we provide 

for trying to obtain diversified solutions and possibly escaping from 
local optima by applying the mutation technique: we randomly choose a 
number of individuals ⌊γ ⋅|P |⌋ with 0 < γ < 1 and we randomly choose a 
number of positions in the chromosome whose binary value is inverted. 
If this leads to make the solution associated with the individual infea
sible, then the individual is discarded and is included in the count of the 
death process described below. 

4.2.4. Death 
After the execution of crossover and mutation operations, we 

attempt at removing the weakest individuals in the population, 
mimicking a process of death. To this end, ⌊k ⋅m /2⌋ individuals pre
senting the lowest fitness value are discarded. 

4.3. Improvement by exact large neighborhood search 

Once that the GA algorithm has been run iteration after iteration, 
reaching the time limit for its execution, we use the best feasible solution 
found as basis for implementing an exact large neighborhood search. 
Specifically, let xBEST be such best feasible solution, we try to improve it 
searching a better solution in the neighborhood that includes all the 
feasible solutions obtainable by inverting the binary value of at most Γ >

0 entries of xBEST. Since we implement an exact search, as explained in 
previous subsections, we need to formulate the search as an optimiza
tion problem solved by a state-of-the-art-solver. We can accomplish this 
by adding the following hamming distance constraint to BLP-PS: 

∑

j∈J: xBEST
j =0

xj +
∑

j∈J: xBEST
j =1

(
1 − xj

)
≤ Γ (HD)

Indeed, this constraint counts the number of binary variables that 
change values with respect to the best feasible solution found xBEST and 
such number must be not larger than Γ. 

We denote by BLP-PSHD the modified problem BLP-PS that includes 
the hamming distance constraint (HD), which we then solve by a state- 
of-the-art-solver with a time limit. 

An overview of the phases of the matheuristic algorithm for solving 
BLP-PS is presented in Algorithm 2.  

Algorithm 2 GA-based Matheuristic for BLP-PS 
1: Solve the linear relaxation BLP-PSRLXof BLP-PS with optimal solution xRLX  

2: Generate the initial population exploiting xRLXas specified in Subsect. 4.1.2  
3: while a global time limit is not reached do 
4: Select individuals for crossover as specified in Subsect. 4.2.1 
5: Execute the crossover and generate the offspring as specified in Subsect. 4.2.2 

(continued on next column)  

(continued ) 

6: Mutate part of the individuals as specified in Subsect. 4.2.3 
7: Discard part of the individuals as specified in Subsect. 4.2.4 
8: end while 
9: Solve BLP-PSHDfor finding an improvement of xBEST, the best solution found by the 

GA  
10: Return the best feasible solution found xBEST   

5. Computational results 

We employed the optimization model BLP-PS and the GA-based 
Matheuristic defined in the previous sections to solve Opt-ParkRent - 
the Optimal Carsharing Parking Slot Renting Problem introduced in 
Section 3.2 - using realistic data referring to the Italian city of Rome. 
These data were defined on the basis of the specific regulations of the 
city (City of Rome - DGC136, 2016) and of our experience in collabo
rating with professionals of major carsharing companies active in Rome 
and with E-Go, a carsharing service launched at University Roma Tre 
with the support of the electric utility company Enel (see Carrese et al., 
2017). 

Inside each subdistrict, we identified a number of parking slot clus
ters, on the basis of the features of the subdistrict (size, road configu
ration, importance in the Roman urban mobility system). Concerning 
the cluster types, we identified 5 types on the basis of the number of 
parking slots included in a cluster. Each cluster presents a number of 
slots ranging from 1 to 12, with bigger clusters located close to impor
tant landmarks (for example, train stations). The lower and upper bound 
on the number of slots rentable in each subdistrict, those on the number 
of clusters rentable in each subdistrict and those on the number of types 
rentable for each type in each district (i.e., ηmin

s ,ηmax
s , γmin

s ,γmax
s , τmin

dt and 
τmax

dt ), are defined considering the features of the resident population, 
business activities, available public transportation and urban fabric. 

The matheuristic solution algorithm was run on a 2.70 GHz Windows 
machine with 8 GB of RAM and using IBM ILOG CPLEX 12.5 as software 
for solving the optimization subproblems (CPLEX, 2020). The code was 
written in C/C++ and interfaced with CPLEX through Concert 
Technology. 

The matheuristic ran with a total time limit of 3600 s: 3000 s were 
granted to the construction phase, while 600 s were granted to the 
improvement phase. The parameters of the GA algorithm were the 
following: the tournament selection involves k = 10 groups, in which a 
fraction α = 0.1 of individuals of the population P are included; the 
crossover is operated on the m = 10 individuals presenting the highest 
fitness value in each group. After having created new individuals, a 
fraction γ = 0.05 of the population undergoes mutation. Finally, we set 
ε = 0.1 in the RINS search and Γ equal to 10% of the total number of 
decision variables in the hamming distance constraint employed in the 
exact search for improved solutions. 

As first test, we considered a quite small instance, in terms of number 
of clusters, made up of 5 districts and including 27 subdistricts in total, 
where we identified 191 potentially rentable clusters. Each subdistrict 
contains from 2 to 22 clusters, whose number of slots ranges from 1 to 10 
(bigger clusters are located close to important landmarks, for example, 
train stations). The results associated with the optimal solution of the 
problem are visualized in Fig. 2a and b. The solution specifies the 
clusters that must be rented in each subdistricts, in order to maximize 
the total profit while respecting renting constraints. 

As a comment to the results, we can first note that, if the problem 
contained just one single constraint imposing a maximum number of 
slots over all the subdistricts, then we could adopt a simple and fast 
heuristic solution approach consisting of: 1) computing the profit per 
parking slot of each cluster; 2) sorting the clusters from the highest to the 
lowest in terms of such profit; 3) select one by one the clusters, following 
the sorting order, until the maximum number of rentable slots is 
exceeded. However, this simple solution approach would possibly lead 
to a solution of quite low quality offering an unfair distribution of the 
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clusters over the territory. To avoid this, the additional constraints that 
limit the number of slots, the number of clusters and the number of types 
of clusters are needed. This results into a more complex structure of the 
problem, where the connections between districts, subdistricts and 
cluster types discourage the application of the previously cited simple 
heuristic solution and requires instead the application of a more so
phisticated solution algorithm like our matheuristic. 

Analyzing the optimal solution of this small instance and putting it 
into relation with the input data of the optimization problem, we can 
note that there is a tendency to push the number of rented clusters to its 
imposed minimum ηmin

s in less profitable subdistricts. In contrast, the 
number of activated clusters tends to be closer to the allowed maximum 
ηmax

s in more attractive subdistricts, where clusters containing a higher 
number of parking slots are present. Going more into details, in one of 
the largest downtown subdistrict, which hosts important business and 
administrative activities and is close to important public transportation 
nodes, it is activated one of the largest clusters plus a combination of 
well-spaced clusters with 5 and 7 slots. As it can be observed in the 
figure, the presence of the constraints expressing limitations on the 
rentable clusters allow to have a fair distribution of the rented clusters 
over all the districts and subdistricts, thus contributing to pursue a 
fundamental objective of the LG. 

After this test, we considered an instance of larger size, containing a 
sensibly higher number of parking slot clusters, namely 500 in total, and 
we studied the effect of varying the upper bounds ηmax

s on the total 
number of rentable slots and γmax

s on the total number of rentable clus
ters. The results are presented in Table 1, where ηmax

s can vary from 5 to 
30% of all slots available in a subdistrict s and γmax

s may vary from 5 to 
20% of the total number clusters in a subdistrict s (note that in the table 
we express such values as fraction of decimal numbers). Each entry of 

the table reports two values for the best solution: the first is the number 
of activated clusters, whereas the second is the total profit granted by the 
solution (reported in EUR). 

In the solutions obtained for the model BLP-PS for this instance, we 
can note that there is a tendency to push the number of rented clusters to 
the dominating upper bound ηmax

s or γmax
s : the objective function pursues 

the activation of as many large clusters as possible, presenting the 
highest profit value, and this is jointly upper bounded by γmax

s , the bound 
on the number of clusters, and by ηmax

s , the bound on the total number of 
parking slots ηmax

s . So, for example, when considering an upper bound of 
5% on the number of activated slots, the associated profit remains the 
same for an upper bound on the number of activated clusters higher or 
equal than 10%, indicating that in this case is the bound on the number 
of clusters to dominate the other. In contrast, for example, an upper 
bound on the number of activated clusters equal to 5% dominates that 
on the number of slots for a percentage higher or equal than 10%. 

Looking at Table 1, we can notice that the number of activated 
clusters can sensibly increase as the upper bounds on the number of 
rentable clusters and slots increase. In particular, we can pass from a 
minimum of 28 activated clusters granting a profit of about 800k EUR, in 
the case of the lowest combination of bounds, to a maximum of 102 
clusters associated with a profit that is more than 5 times higher, namely 
about 4300k EUR, in the case of the highest combination of bounds. For 
intermediate bound combinations, the number of activated clusters and 
associated profit vary quite regularly, thus giving the possibility to the 
LG to adjust the bounds in order to pursue the target of cluster activation 
that better suits its objective for renting to carsharing services. 

Finally, we conducted computational tests on a set of 20 data in
stances presenting an increasing number of districts, subdistricts and 
clusters, with the number of clusters ranging from 478 to 3428 and the 
number of total available slots ranging from 1578 to 17140. We 
compared the performance of our GA-based matheuristic to that of the 
solver CPLEX, used to solve the model BLP-PS with a time limit of 3600 s 
(the time budget assigned to CPLEX is thus equal to the total time budget 
assigned to the matheuristic). As upper bounds γmax

s and ηmax
s , we 

adopted 20% of the total number of available slots and 15% of the total 
number of available clusters. 

The results of our tests are reported in Table 2, where: a) ID is the 
instance identification; 2) Σs is the total number of available clusters in 
the instance; 3) Σn is the total number of available parking slots in the 
instance; 4) ΣnMH is the total number of activated parking slots in the 
best solution found by our MatHeuristic (denoted by the acronym MH) 
within the time limit; 5) πMH is the total profit (expressed in EUR) 

Fig. 2. Parking clusters for the City of Rome.  

Table 1 
Results for varying upper bounds γmax

s and ηmax
s for a 500 cluster instance. For 

each combination of the two bounds, the table reports two values: 1) the number 
of activated clusters; 2) the total profit associated with the solution (in EUR).    

γmax%  

5 10 15 20 

ηmax%  5 28 802935 31 815747 31 815747 31 815747 
10 32 1516350 43 1605688 46 1607896 46 1607896 
15 32 1944942 53 2300368 62 2351909 65 2352546 
20 32 2065162 56 2830020 73 2973650 78 2997582 
25 32 2086103 57 3183516 77 3545895 93 3687400 
30 32 2086103 57 3398607 81 4148823 100 4317304  
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associated with the best solution found by MH within the time limit; 6) 
tMH is the time (expressed in seconds) required by MH to find the best 
solution within the time limit; 7) ΣnCPLEX is the total number of activated 
parking slots in the best solution found by CPLEX within the time limit; 
8) πCPLEX is the total profit (expressed in EUR) associated with the best 
solution found by CPLEX within the time limit; 9) tCPLEX is the time 
(expressed in seconds) required by CPLEX to find an optimal solution 
(when an optimal solution is not found within the time limit, we insert 
the time limit of 3600 s as value); 10) Δπ% is the percentage of profit 
increase that MH grants with respect to CPLEX. In Table 2, the values in 
the columns πMH and πCPLEX include an asterisk (*) when the value is 
optimal for the instance. 

Comparing the performance of our matheuristic MH and CPLEX, we 
can subdivide the instances in three subsets on the basis of the results 
obtained:  

• in the case of the smaller instances from I1 to I6, both MH and CPLEX 
find the optimal solution. However, CPLEX is faster and MH takes on 
average 18% more time to identify the best solution;  

• also in the case of the instances from I7 to I14, both MH and CPLEX 
find the optimal solution, but MH is faster and reduces the compu
tational time of about 12% on average;  

• in the case of the larger instances from I15 to I20, CPLEX does not 
identify an optimal solution within the time limit. Moreover, for all 
these instances, the value of the best solution found by CPLEX is 
lower than that of the best solution found by MH. Specifically, the 
best solutions found by MH offer an increased profit that is about 
10% higher on average. Finding such better solutions requires a 
consistent fraction of the available time budget. 

For all the instances, it is interesting to note that, in general, it is the 
bound on the number of available slots to lead the cluster activation, 
pushing towards the selection of a subset of clusters that respect the 
bound ηmax

s and that are as large as possible, so to grant the highest profit 
for single slot (we recall indeed that larger clusters are preferred by 
carsharing companies, since they grant more visibility to the service, 
and are thus associated with a higher renting price per single slot 
composing the cluster). It is also interesting to note that, for all in
stances, while the number of activated slots remains around 20% of the 
total number of available slots, the profit sensibly increases passing from 
the smallest to the largest instance: this is due to the fact that in larger 
instances there is the possibility of activating a higher number of clusters 
of larger size, which, as discussed, are more attractive and their rent 

grants a remarkably higher profit per single slot than clusters of smaller 
size. 

6. Discussion 

Concerning the real-world adoption and implementation of the 
original optimization approach we proposed, we believe that a crucial 
first challenge is represented by convincing local governments of the 
advantages that a rigorous mathematical optimization approach may 
offer with respect to trial-and-error approaches that we have often 
observed among professionals in the field of urban mobility and trans
portation systems. Several recent works have clearly shown the advan
tages of adopting mathematical optimization to solve real-world 
optimization problems on behalf of companies, also in the trans
portation field (see e.g., Borndörfer et al., 2018; Fujisawa et al., 2016). 
Referring in particular to the case of carsharing, reserved parking slots 
are not a novelty, but, to the best of our knowledge, a mathematical 
optimization model has never been proposed for the selection of the slots 
among a set of candidate sites. In most of the cases, the reserved slots are 
simply placed close to major landmarks, like airports and railway sta
tions, without an analytical approach supporting their selection and 
without in particular pursuing the fair distribution principle that we 
have formalized through the feasibility constraints (5)–(7). 

Once the mathematical optimization approach is accepted as effec
tive and efficient, the mobility officers of the local governments should 
then closely work together with the optimization experts: the aim would 
be to properly define a data input of the model that is meaningful and 
valid for the districts subject to carsharing parking planning. In this 
phase, the officers could also suggest additional (soft) constraints to be 
taken into account for defining a model and generating a data input that 
allow to better represent specific features of the considered districts. 
Within this phase, the risk of miscommunication between officers and 
experts is concrete, especially when the officers do not have an educa
tion or background that allow them to understand and express system 
modelling needs. In our recent experience, it seems that the situation is 
getting better year after year, thanks to the tendency to hire data science 
experts in various departments of local governments, allowing the 
optimization consultants to interface with officers who are more familiar 
with mathematical modelling and algorithmic approaches. 

After having defined the input data, solved the model and obtained a 
carsharing parking slot plan, the local governments could still face 
conflicts during the implementation of the plan. In particular, referring 
to the Italian case that we better know also thanks to our direct 
consulting experience, the parking slots reserved to carsharing would 

Table 2 
Results for instances of increasing size.  

ID Σc  Σn  ΣnMH  πMH  tMH  ΣnCPLEX  πCPLEX  tCPLEX  Δπ%  

I1 478 1578 307 1350349* 343 307 1350349* 259 0.00 
I2 562 1967 392 2085164* 468 392 2085164* 406 0.00 
I3 601 2164 422 2701938* 650 422 2701938* 513 0.00 
I4 639 2109 423 2164170* 602 423 2164170* 538 0.00 
I5 776 2484 492 3094116* 764 492 3094116* 676 0.00 
I6 802 2807 551 3910623* 681 551 3910623* 629 0.00 
I7 932 3542 684 4705261* 613 684 4705261* 680 0.00 
I8 949 3702 737 5326327* 756 737 5326327* 846 0.00 
I9 1047 4188 837 5391653* 852 837 5391653* 892 0.00 
I10 1122 4713 942 5654585* 877 942 5654585* 1007 0.00 
I11 1367 5742 1117 6527808* 1492 1117 6527808* 1873 0.00 
I12 1492 6267 1235 7911311* 2285 1235 7911311* 2642 0.00 
I13 1643 7394 1465 10138284* 1964 1465 10138284* 2365 0.00 
I14 1828 8226 1642 10691682* 2554 1642 10691682* 2911 0.00 
I15 2156 9702 1849 11444247 3126 1720 10647578 3600 6.96 
I16 2382 10958 2072 13704218 3295 1896 12545038 3600 8.45 
I17 2505 11774 2326 14696307 3332 2140 13524295 3600 7.97 
I18 2891 13588 2638 16095856 3483 2387 14571878 3600 9.46 
I19 3125 14375 2681 16892588 3490 2386 15034753 3600 10.99 
I20 3428 17140 3233 21079811 3204 2861 18657918 3600 11.48  
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further increase the number of slots that are subtracted to toll free 
parking and to the parking of district residents and this could lead to 
legal appeals by residents. In major Italian cities, substantial modifica
tions to parking plans have regularly generated appeals, even reaching 
the Supreme Court of Cassation, which has ruled against them. To avoid 
this, we think that it is fundamental to orchestrate relevant changes to 
parking plans with local residents, involving them in the decision pro
cess. From the point of view of our optimization model, this would imply 
to involve the residents in defining the location and size of the candidate 
clusters and the values of the bounds that appear in constraints (5)–(7), 
which limit the number of slots that can be reserved to carsharing in 
districts and subdistricts. 

7. Conclusions and future work 

In this paper, we have characterized the optimization problem of a 
local government that wants to analytically choose the best subset of 
parking slots to rent to carsharing companies, with the aim of reducing 
cruising for finding parking and improve urban mobility. We proved that 
the problem is NP-Hard and we proposed a new Binary Linear Pro
gramming problem to model it. Given the NP-Hard nature of the prob
lem, which can make it hard to solve even for state-of-the-art solvers, we 
proposed a new genetic-based matheuristic for its solution. The math
euristic combines a genetic algorithm with solution construction and 
improvement phases that are based on the execution of exact large 
neighborhood searches. We tested the performance of our new optimi
zation approach on realistic instances referring to the city of Rome, 
showing that it can offer a better computational performance of a state- 
of-the-art solver and that it can return a fair distribution of clusters over 
the territory. As future work, we intend to define a multiperiod version 
of the model, to consider parking slot renting over long-term periods and 
include variations of demand for carsharing over time, also extending 
the computational tests to other cities. In this context, we would expect 
to face demand uncertainty, not knowing in advance the precise demand 
for carsharing services in the future, and thus it would be necessary to 
adopt optimization under data uncertainty methods, such as (Multi
band) Robust Optimization (Büsing & D’Andreagiovanni, 2012). 
Furthermore, another topic that we consider worth of being investigated 
is how the clusters selected for renting should be assigned to carsharing 
companies. We expect that this should be done by means of public 
tenders, also taking into account fair competition criteria that favour the 
entry of new carsharing companies, similarly to the rules adopted by 
cities like Sydney - see (City of Sydney, 2016). 
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