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Abstract—We target the problem of managing the power states of the servers in a Cloud Data Center (CDC) to jointly minimize the

electricity consumption and the maintenance costs derived from the variation of power (and consequently of temperature) on the

servers’ CPU. More in detail, we consider a set of virtual machines (VMs) and their requirements in terms of CPU and memory across

a set of Time Slot (TSs). We then model the consumed electricity by taking into account the VMs processing costs on the servers,

the costs for transferring data between the VMs, and the costs for migrating the VMs across the servers. In addition, we employ a

material-based fatigue model to compute the maintenance costs needed to repair the CPU, as a consequence of the variation over time

of the server power states. After detailing the problem formulation, we design an original algorithm, called Maintenance and Electricity

Costs Data Center (MECDC), to solve it. Our results, obtained over several scenarios from a real CDC, show that MECDC largely

outperforms two reference algorithms, which instead either target the load balancing or the energy consumption of the servers.

Index Terms—Cloud computing, cloud data center, maintenance costs, electricity costs, fatigue, energy-efficiency
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1 INTRODUCTION

DATA Centers (DCs) have become a key aspect of the
Information and Communication Technology (ICT) sec-

tor. Historically, the idea of exploiting DCs for computing
tasks dates back to the first half of the 19th century, when dif-
ferent prominent researchers defined the concept of global
brain [1], [2], with the goal of providing encyclopaedic ways
of knowledge. Since then, the incredible growth in the ICT
sector, including the improvements in HardWare (HW)
manufacturing, as well as the almost-infinite features pro-
vided by SoftWare (SW), have completely revolutionized
the possibility of exploiting DCs for computing purposes.
Nowadays, DCs are widely spread worldwide to sustain a
variety of applications, such as web browsing, streaming,
high definition videos, and cloud storage. Not surprisingly,
DCs generally adopt the cloud computing paradigm [3], [4],
according to which the virtualized applications (and entire
operating systems) run over a set of distributed physical

servers, which may be even located in different continents.
Hence, the management of a Cloud Data Center (CDC) is an
aspect of fundamental importance for the DC owner (which
is referred as a content provider from here on).

In an era where the amount of computing information is
constantly growing [5], a primary need for a content pro-
vider is to efficiently manage CDCs. Apart from the fixed
costs, which are related to the installation of CDCs equip-
ment [6], a big worry for a content provider is how to deal
with the CDCs power consumption and the related electric-
ity costs [7]. In this context, the content provider has to face
the large amount of power consumed by its own CDCs.
As a result, the decrease of power consumption in CDCs
has been traditionally a hot topic [8]. In line with this trend,
different works (see e.g., [9], [10]) target the reduction of
power for the servers in a CDC through the management of
their power states. Among them, the application of a Sleep
Mode (SM) state to a subset of servers is a very promising
approach in order to save energy [11], [12]. More in detail,
thanks to the fact that the traffic from users is not constant
and generally varies across the different hours of the day, it
is possible in a CDC to put different servers in SM, and to
concentrate the users traffic on a subset of servers, which
remain in an Active Mode (AM). In this way, a reduction of
power and, consequently, a reduction of the associated elec-
tricity costs paid by the content provider are achieved.

Although the application of SM is able to ensure lower
electricity costs compared to the case in which all the servers
are always powered on, the transitions between SM andAM,
especially when they are applied over periods of several
months and years, tend to have a negative effect on themain-
tenance costs paid by the content provider [13]. More in
detail, when the server is put in SM, a prompt decrease in
the temperature of its components (especially for CPU and
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memories) is observed [14]. Specifically, the temperature
drops from pretty high values (typically higher than 70-80
degree [Celsius]) to the room temperature, which is typically
cooled and kept around 20 degree [Celsius]. On the other
hand, the opposite effect on the temperature is observed
when the server passes from SM toAM. The variation of tem-
perature on the electronics components, especially when it is
repeated over time, tends to introduce thermal fatigue effects
[15], [16]. This phenomenon is similar to the mechanical
fatigue experienced by an airplane fuselage, subject to cabin
pressurization and depressurization over different flights,
which may deteriorate it in the long term [17]. In a similar
way, the HW equipment, when it is subject to large tem-
perature transitions, tends to increase its failure rate.
More in detail, fatigue (and crack) effects are experienced,
for example, by the solder joints connecting the CPU/
memories to the motherboard [18]. As a consequence, a
server subject to frequent AM/SM transitions will experi-
ence failure events more often, compared to the case in
which it is always left in AM, thus increasing the associ-
ated maintenance costs in order to fix and/or replace the
failed components. In the worst case, the maintenance
costs will be even larger than the electricity saved from
the application of SM, thus producing a monetary loss to
the content provider [13].

This context poses several challenges: What is the impact
of the maintenance costs on the total costs? Is it beneficial to
leverage the tradeoff between electricity consumption and
maintenance costs? How to optimally formulate the prob-
lem? How to design an efficient algorithm to tackle it? The
goal of this paper is to shed light on these issues. More in
detail, we first present a simple (yet effective) model to com-
pute the maintenance costs, given the variation over time of
the power states for a set of servers. In addition, we adopt
a detailed model to compute the power consumed by the
CDC. Specifically, our power model takes into account
the CPU-related electricity costs of the servers, the costs for
transferring data among the servers, and the costs for
migrating the Virtual Machines (VMs) running on the serv-
ers. After formulating the problem of jointly reducing the
CDC electricity consumption and the related maintenance
costs, we propose a new algorithm, called Maintenance
Energy Costs Data Center (MECDC), to tackle it. Our
results, obtained over several scenarios from a real CDC,
clearly show that our solution is able to wisely leverage the
tradeoff between maintenance and electricity costs in order
to provide monetary savings for the content provider. On
the other hand, we show that other strategies, either target-
ing the VMs load balancing, or the servers energy consump-
tion, tend to notably increase the total costs. To the best of
our knowledge, none of the previous works in the CDC
research field has conducted a similar analysis.

Although the results reported in this paper are promis-
ing, we point out that other costs than the ones considered
here may increase the maintenance bill. Specifically, the cost
of regular updates, due to HW/SW upgrades, may have
an impact on the maintenance costs paid by the content
provider. In addition, the adoption of renewable energy
sources may also vary the electricity bill. Both these issues,
which are not considered in this work, can be potentially
added in our framework.

The rest of the paper is organized as follows. Related
works are reviewed in Section 2. The reference CDC archi-
tecture is briefly overviewed in Section 3. Section 4 presents

the considered models to compute the maintenance costs
and the electricity costs in a CDC. The problem of jointly
managing the electricity and the maintenance costs triggered
by fatigue processes is formulated in Section 5. Section 6
details the MECDC algorithm. The considered scenarios and
the setting of the input parameters are detailed in Section 7.
Results are reported in Section 8. Finally, Section 9 concludes
our work.

2 RELATED WORK

In the following, we briefly discuss the main literature in
CDC related to our work. We first describe solutions target-
ing the management of energy and/or electricity in CDCs.
Then, we move our attention to researches targeting the
management of CDC failures.

2.1 Energy and Electricity Management in CDCs
Features such as electricity, power, as well as computing and
network management tasks are addressed in [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29]. A detailed overview of
energy consumption models in Data Center (DC) is provided
by Dayarathna et al. in [19]. In this context, several works tar-
get the management of a CDC by: i) providing algorithms for
VM live migrations [20], [21], [22], ii) considering distributed
server/CDC applications [23], [24], [25], [26], iii) focusing on
business process management [27], and iv) detailing memory
and storagemanagement solutions [28], [29].

Focusing on the aspect of VM live migrations, Voorsluys
et al. [20] adopt livemigration of VMs,with the goal of reduc-
ing energy in the CDC while guaranteeing the performance
to applications. However, this work does not consider the
server maintenance costs. Moreover, the costs of VM migra-
tion and data transferring between VMs in a CDC environ-
ment are not taken into account. Liu et al. in [22] present a
cost-aware learned knowledge method and an adaptive net-
work bandwidth management, by applying VM live migra-
tion estimation to achieve power saving in the CDC. Soni
et al. in [23] derive computing cost models for the CDC such
that they try to cover the VMs’ over/under loadings based
on priority and states. Indeed, their proposed algorithm is
able to manage load distribution among various applications
running in each VM. Bi et al. in [25] present a queue-aware
multi-tier application model inside the CDC. In addition,
they compute the number of servers that must be allotted to
each tier in order to meet the response time per application
per server. They also consider the CPU resources per-VM in
the CDC. However, a live VM migration is not performed.
Finally, Han et al. in [26] present an adaptive cost-aware elas-
ticity method in order to scale up/down multi-tier cloud
applications to meet run-time varying application demands.
Nevertheless, the complexity of the proposed model in
computational management is quadratic per-application.
Focusing on the memory and storage management, Song
et al. in [29] employ power performance information to esti-
mate the desired storage andmemory parameters in order to
preserve energy and costs in the CDC. It is important to note
that their quasi-analytical performance modeling can be
accurate, but it requires a deep understanding of each indi-
vidual application running on the VM and the server. There-
fore, a consistent amount of preliminary information is
needed and, as a consequence, the pre-processing time of the
problemmay sensibly increase.
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2.2 Failure Management in CDCs
Server failure is recognized as an important cost component
for the cloud, see e.g., Greenberg et al. [30]. Therefore, dif-
ferent works target the reduction of the impact of the failure
events by proposing efficient DC architectures. In particu-
lar, Guo et al. propose Dcell [31], a scalable and recursive
architecture which is also fault-tolerant. Greenberg et al.
[32] present VL2, a scalable and flexible DC network which
is tolerant to failures experienced by networking equip-
ment. Guo et al. [33] details BCube, an architecture for mod-
ular DCs, which is able to guarantee a graceful performance
degradation as the server failure rate increases. Moreover,
according to Kliazovich et al. [34], when the DC tempera-
tures are not kept within their operational limits the HW
reliability is decreased, thus bringing to a potential violation
of Service Level Agreements (SLAs). In addition, the optimi-
zation of thermal states and cooling system operation is rec-
ognized as a challenge by Beloglazov et al. [10]. A detailed
analysis of failures in a DC is performed by Gill et al. [35].
However, the work is mainly focused on network devices
and not on servers like in our case. Eventually, a characteri-
zation of the HW components of the servers in terms of reli-
ability is performed by Vishwanath et al. [36]. In particular,
this work reports that the failure in one of the server HW
components is a common event experienced in large DCs.
In [37] Zhang et al. advocate the need of taking availability
into consideration while mapping VMs. In this context, Fan
et al. [38] explore the problem of mapping service function
chains with guaranteed availability. Finally, Jhawar and
Piuri [39] propose an approach to measure the effectiveness
of fault tolerance mechanisms in Infrastructure as a Service
(IaaS) cloud, by also providing a solution to select the best
mechanism satisfying the users requirements.

3 CLOUD DATA CENTER ARCHITECTURE

Fig. 1 reports the main building blocks of the considered
CDC architecture. More in detail, the CDC is composed of
VMs, hypervisors, Physical Servers (PSs), switches andman-
agement entities. Each VM is hosted in a PS. The set of VMs
in a PS is managed by an hypervisor. Moreover, the PSs are
grouped in Pods. The interconnection between PSs in the
same Pod is realized bymeans of a redundant set of switches
and physical links. In addition, a DC network, again com-
posed of switches and physical links, provides connectivity
between the different Pods. Moreover, a centralized network
manager (top left part of the figure) is then in charge of man-
aging the set of networking devices, e.g., by providing soft-
ware-defined functionalities. Finally, an allocation manager
(mid left part of the figure) distributes the VMs over the PSs,

by ensuring that each VM receives the required amount of
CPU andmemory from the PS hypervisor.

Focusing on the tasks performed by the allocation man-
ager, this element is in charge of running the proposed
VMs’ allocation algorithm, which is able to leverage the
tradeoff between electricity costs and maintenance costs by
acting on the PSs power states. In our work, we assume that
time is discretized in Time Slots (TSs), and that the alloca-
tion algorithm is run for every TS. Given: i) a current TS t
and the corresponding VMs requests in terms of CPU and
memory;1 ii) the power state of the PSs (AM or SM) and the
allocation of VMs at the previous TS t � 1; the allocation
manager computes the allocation of VMs for TS t. Eventu-
ally, the allocation manager notifies the PSs that need to be
put in AM/SM for the current TS. In case a PS was in AM at
previous TS and needs to be put in SM at current TS, the
allocation manager interacts with the PS operating system
to gracefully halt the machine.

4 COSTS MODELS

We first consider the computation of the maintenance
and electricity costs for a generic TS t, whose duration is
denoted by dðtÞ [h]. We initially present the model to com-
pute the maintenance costs in a CDC subject to fatigue
effects. We then detail the model adopted to compute the
electricity costs. Finally, we discuss the interdependence
between the two models.

4.1 Maintenance Cost Model
We first introduce a failure model in order to take into
account the impact of power transitions on the PS. We start
from [13], in which authors present a generic model that
can be applied to computing equipment. In particular, the
proposed model is representative of failures involving the
CPU, which is one of the most critical (and hot) components
in a PS.2 We denote by S the set of PSs and we focus on a
generic s 2 S in the CDC. The total Failure Rate (FR) fTOT

s ðtÞ
for PS s at TS t is defined as:

fTOT
s ðtÞ , fAM

s 1� tSMs ðtÞ
tALLðtÞ

� �
þ fSM

s � t
SM
s ðtÞ

tALLðtÞ þ
hs
NF

s

; (1)

where fAM
s [1/h] is the Failure Rate (FR) of the PS when it is

always kept in AM (i.e., no SM is applied), tSMs ðtÞ [h] is the
amount of time the PS has spent in SM (from the beginning
of the simulation up to current TS t), tALLðtÞ [h] is the total
amount of time under consideration, fSM

s [1/h] is the PS FR
when it is always left in SM (i.e., no AM is applied), hs [1/h]
is the frequency of power state transitions between SM and
AM, andNF

s is the number of AM-SM cycles before a failure
occurs. As reported in [13], the main assumptions of this
model are that the failures are assumed to be statistically
independent of each other and that their effect is additive.
By observing in more detail Eq. (1), we can notice two differ-
ent effects. Specifically, when the amount of time in SM
tSMs ðtÞ is increased, the resulting FR fTOT

s ðtÞ tends to the
value fSM

s , which is, in general, lower than fAM
s (thanks to

Fig. 1. Cloud data center architecture.

1. In this way, the VM resources are expressed in terms of CPU and
memory requirements for the current TS. Clearly, the current TS is the
same across all the requests.

2. The extension of the model to other components, and their mutual
interactions, is left for future work.
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the fact that the temperature in SM is much lower compared
to the AM case). On the other hand, the number of transi-
tions between AM and SM tends to increase with time, thus
increasing the last term of Eq. (1), and consequently the total
FR fTOT

s ðtÞ. This last term tends to dominate the FR, espe-
cially when the amount of time under consideration tALLðtÞ
is in the order of months/years.

Using the elements introduced above, we compute
the maintenance costs CTOT

M [$] at TS t for all the PSs in the
CDC as:

CTOT
M ðtÞ ¼ KR � dðtÞ �

X
s2S

fTOT
s ðtÞ; [$]; (2)

whereKR [$] is the reparation cost for one PS (i.e., the cost for
fixing the PS without the need to replace it with a new one),
and dðtÞ is the duration of the considered TS. In this work, we
assume that the PS failures can be repaired by, e.g., the sub-
stitution of only the failed components with new ones. We
believe that this assumption is more realistic compared to
the case in which a PS is always replaced with a new one
each time a failure is experienced. Finally, we stress the fact
that the total maintenance costsCTOT

M ðtÞmay include also the
costs for HW upgrades and SW updates, as well as sched-
uled maintenance operations. These terms can be added as
additional costs in Eq. (2), and they are left for futurework.

In the following, we introduce a simple metric, called
Acceleration Factor (AF), to better capture themodel features.
More in detail, the AF, which is a metric commonly adopted
in material fatigue researches [16], [40], is defined as the ratio
between the observed FR fTOT

s ðtÞ and the FR by keeping the
PS always inAM, i.e., fAM

s . More formally, we have:

AFTOT
s ðtÞ ,

fTOT
s ðtÞ
fAM
s

¼ 1� 1�AFSM
s

� � tSMs ðtÞ
tALLðtÞ þCs � rsðtÞ;

(3)

where AFSM
s is defined as

fSMs
fAMs

(which is typically lower than

1 as the FR in SM is lower than the one in AM), rsðtÞ is the
total number of power state transitions up to the current TS

t and Cs is a weight parameter. Consequently, we express
the total failure rate in Eq. (2) as fTOT

s ðtÞ ¼ AFTOT
s ðtÞ � fAM

s .
When AFTOT

s ðtÞ < 1, the PS lifetime (i.e., the time
between two failure events) is higher compared to the case in
which the PS s is always left in AM. On the other hand, when
AFTOT

s ðtÞ > 1, the lifetime is lower compared to the
AM case. The value of AFTOT

s ðtÞ gives exactly the amount
of lifetime reduction for the PS, e.g., if AFTOT

s ðtÞ ¼ 30, the PS
will experience a lifetime reduction of 30 times compared to
the case in which it is always kept in AM. Clearly, the appli-
cation of different power states has an impact on the values
of AFTOT

s ðtÞ. More in detail, when the observation period
(i.e., the time passed from the beginning of the experiment
up to the current time slot) is in the order of months/years,
the termCs � rsðtÞ becomes predominant, i.e., the application
of different power states tends to increase rsðtÞ, and
consequently the AF. Finally, we can note that the AF is
influenced by the parameters tSMs ðtÞ and rsðtÞ, which depend
on the specific policy used to put the PS in SM/AM, and by

parameters AFSM
s and Cs, which instead depend on the

materials used to build the CPU (and their strength against
fatigue effects). In principle, CPUs exhibiting higher values
of Cs are more prone to fatigue effects, and consequently to

lifetime degradation. The actual setting of parameters AFSM
s

andCs will be discussed inmore detail in Section 7.

4.2 Electricity Cost Model
Wemodel the electricity costs as the sumof three different con-
tributions: i) the data processing costs on the PSs, ii) the data
transferring costs among the VMs located on different PSs,
and iii) the costs for migrating the VMs across different PSs.
The following sections detail the different cost components.

4.2.1 Data Processing Costs

We adopt the assumption of [10], according to which the
power consumption of each PS in AM is proportional to the
CPU utilization due to data processing tasks running on
the hosted VMs. On the other hand, when the PS is in SM,
we assume that its power consumption is negligible. We
denote the total electricity costs due to processing tasks at
TS t as CPROC

E ðtÞ. More formally, we have:

CPROC
E ðtÞ ¼ KE � dðtÞ

X
s2S

usðtÞ PMAX
s � PIDLE

s

� ��

þ OsðtÞ � PIDLE
s

�
; [$]

(4)

where KE [$/Wh] is the hourly electricity cost, dðtÞ [h] is
the TS duration, usðtÞ is the CPU utilization of the PS s at
current TS (ranging between 0 and 1), PMAX

s [W] is the
power consumption of s when its CPU is fully utilized,
PIDLE
s [W] is the power consumption of s when its CPU is

idle, and OsðtÞ is the power state of s at TS t (0 if it is in SM,
1 otherwise). Note that, when the PS is in SM (i.e.,
OsðtÞ ¼ 0), it holds that usðtÞ ¼ 0.

4.2.2 Data Transferring Costs

We then consider the electricity costs derived from the
exchange of data between VMs running on different PSs. As
common in literature (see e.g., [41], [42]), we assume that
the total costs due to data transferring are the sum of a static
term, which considers the power consumed by the network
interfaces of the PS, and a linear one, which instead takes
into account the amount of data transferred between VMs.
The total costs due to data transferring, which are denoted
with CTR

E ðtÞ, are then expressed as:

CTR
E ðtÞ ¼ KE � dðtÞ

X
s2S

OsðtÞ � PTR�IF
s

�

þ
X
s2S
s 6¼s

X
m;n2M

dssmnðtÞ � PTR�NET
ss

3
75; [$]

(5)

where M is the set of VMs in the CDC, PTR�IF
s [W] is the

power of the network interfaces of PS s, dssmnðtÞ [Mb] is the
amount of data traffic exchanged during TS t between VM
m on PS s and VM n on PS s (which is equal to 0 if either PS
s or PS s is in SM), and PTR�NET

ss [W/Mb] is the power con-
sumption consumed for transferring one [Mb] of informa-
tion between PS s and PS s (by assuming that VM m is
hosted in PS s, and that VM n is located in PS s).

4.2.3 Migration Costs

Finally, we consider the costs that are paid when the VMs
are moved across the PSs. For example, a typical event
requiring VM migration is the activation of SM on a PS.
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Before the PS applies SM, all the VMs running on it have to
be moved to other PS(s). We assume that the VM migration
involves the whole copy of the VM memory from the old PS
to the new one.3 Eventually, the process of copying the
memory requires an additional amount of overhead power,
which needs to be properly taken into account. This amount
of power is driven by the fact that VM migration introduces
a performance degradation, which may be even in the order
of 10 percent according to [43]. The migration costs at TS t,
which are denoted with CMIG

E ðtÞ, are then defined as:

CMIG
E ðtÞ ¼ KE �

X
s;s2S

X
m2M

yssmðtÞ mmðtÞ � PTR�NET
ss

�

þ POH
s þ POH

s

�
; [$];

(6)

where yssmðtÞ is a binary variable taking value 1 if VM m on
PS s is migrated to PS s at TS t (0 otherwise), mmðtÞ [Mb] is
the amount of memory consumed by the VMm during TS t,
PTR�NET
ss [W/Mb] is again the power consumption con-

sumed for transferring one [Mb] of information between PS
s and PS s, POH

s [W] and POH
s [W] are the amount of over-

head power consumed during the migration process by PS
s and s, respectively.

4.2.4 Total Electricity Costs

The electricity costs consumed at TS t by the CDC are then
computed as the sum of the considered costs:

CTOT
E ðtÞ ¼ CPROC

E ðtÞ þ CTR
E ðtÞ þ CMIG

E ðtÞ
� �

; [$] (7)

4.3 Interdependence between the Costs Models
The presented electricity and maintenance costs models are
strictly independent of each other. Let us consider for sim-
plicity the case inwhich a generic PS swas inAM at previous
TS and it is put in SM at current TS. In this case, the number
of power state transitions rsðtÞ is increased. This inevitably
increases the AF of the sth PS reported in Eq. (3), and conse-
quently the reparation costs in Eq. (2). On the other hand, by
imposing the SM state, OsðtÞ is set to 0. Therefore, the data
processing costs in Eq. (4) and the data transferring costs in
Eq. (5) are equal to 0 for PS s. On the other hand, the VMs
running on the PSwill bemoved to other PSs, thus increasing
the migration costs in Eq. (6). In a similar way, the power
state change from SM in the previous TS to AM in the current
time slot also tends to increase the reparation costs, while
also increasing the electricity costs.

In this context, a natural question is: How to set the power
states for the whole set of PSs in the CDC in order to leverage
the tradeoff between the costs? To answer this question, we
optimally formulate in the next section the problem of mini-
mizing the total costs in a CDC over a set of TSs.

5 PROBLEM FORMULATION

We first consider the extension of our cost model by intro-
ducing the set of TSs, which is denoted by T . Then, we tar-
get the problem of jointly managing maintenance and
electricity costs in the CDC over the whole set of TSs. We

initially detail each set of constraints, and then we provide
the entire formulation.

5.1 Maintenance Costs Constraints
We first consider the constraints related to the computation
of the maintenance costs. We initially introduce the variable
tALLðtÞ [h] to compute the total amount of time elapsed
from the initial TS up to TS t 2 T . tALLðtÞ is computed as:

tALLðtÞ ¼ tALLðt� 1Þ þ dðtÞ; 8t 2 T ; (8)

where tALLðt� 1Þ [h] is the total elapsed time up to TS
ðt� 1Þ and dðtÞ [h] is the duration of current TS t.

We then denote with tSMs ðtÞ [h] the total time in SM for
PS s up to TS t. tSMs ðtÞ is then computed as:

tSMs ðtÞ ¼ tSMs ðt� 1Þ þ dðtÞ 1�OsðtÞ½ �; 8s 2 S; 8t 2 T ; (9)

where tSMs ðt� 1Þ [h] is the total time in SM for PS s up to TS
ðt� 1Þ, and OsðtÞ [units] is a binary variable for the power
state of PS s, taking value 1 if PS s is in AM at TS t, 0
otherwise.

We then introduce the binary variable zsðtÞ [units], which
takes value 1 if PS s has experienced a power state transition
(from SM to AM, or the opposite) between TS t and TS
ðt� 1Þ, 0 otherwise. zsðtÞ is formally defined as:

zsðtÞ ¼ OsðtÞ �Osðt� 1Þj j; 8s 2 S; 8t 2 T ; (10)

where the �j j denotes the absolute value operator.
We then introduce the integer variable rsðtÞ [units],

which computes the total number of transitions for PS s up
to TS t:

rsðtÞ ¼ rsðt� 1Þ þ zsðtÞ; 8s 2 S; 8t 2 T ; (11)

where riðt� 1Þ [units] is the total number of transitions for
PS s up to TS ðt� 1Þ.

In the following, we denote with AFTOT
s ðtÞ [units] a con-

tinuous variable storing the value of AF for PS s up to TS t.
The total AF is computed as in Eq. (3).

Finally, we introduce the variable CTOT
M ðtÞ [$] to store the

maintenance costs of the CDC at TS t. The total maintenance
costs are computed as in Eq. (2).

5.2 Electricity Costs Constraints
In the following, we consider the computation of the different
terms of the electricity costs. More in detail, we start by com-
puting the CPU utilization of each PS. We denote with usðtÞ
[units] a continuous variable storing the CPU utilization of PS
s at TS t. usðtÞ [units] is expressed as the summation of the
CPU consumed by the VMs running on PS s, normalized by
the total CPU available on the PS.More formally, we have:

usðtÞ ¼
X
m2M

xsmðtÞ �
gmðtÞ
gMAX
s

; 8s 2 S;8t 2 T ; (12)

where xsmðtÞ [units] is a binary variable taking the value 1 if
VM m is assigned to PS s (0 otherwise), gmðtÞ [units] is the
CPU request of VM m at TS t, and gMAX

s [units] is the maxi-
mum CPU utilization of PS s. Given the CPU utilization
usðtÞ [units], we then compute the total electricity costs due
to CPU processing CPROC

E ðtÞ [$] with Eq. (4).
In the following step, we compute the amount of data

dssmnðtÞ [Mb] exchanged between VM m located on PS s and
VM n located on PS s during TS t. This variable is equal to

3. The actual amount of exchanged data may be slightly higher than
the size of memory, due to the retransmission of dirty memory pages.
However, the typically small size of the active page set w.r.t. the global
memory space of the VM allows us to neglect this effect.
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the amount of data traffic DmnðtÞ [Mb] exchanged by the
VMs m and n at TS t, if m and n are located on different
PSs. On the other hand, if m and n are located on the same
PS, dssmnðtÞ is set to 0. More formally, we have:

dssmnðtÞ ¼
pssmnðtÞ �DmnðtÞ; if s 6¼ s

0; if s ¼ s

�

8s; s 2 S; 8m;n 2 M;8t 2 T ;

(13)

where pssmnðtÞ ¼ xsmðtÞ � xsnðtÞ is a non-linear product of
decision variables. We refer the reader to Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TSUSC.
2018.2838338, for the detailed description of how this prod-
uct is linearized. The total data transferring costs at TS t,
denoted as CTR

E ðtÞ, are then defined as in Eq. (5).
In the next part, we compute the costs due to VM migra-

tions across the PSs. Specifically, we first introduce the
binary variable yssmðtÞ, which takes value 1 if VM m is
moved from PS s to PS s at TS t, 0 otherwise. We set yssmðtÞ
with the following constraint:

yssmðtÞ ¼
qssmnðtÞ; if s 6¼ s

0; if s ¼ s

�

8s; s 2 S; 8m 2 M; 8t 2 T ;

(14)

where qssmnðtÞ ¼ xsmðt� 1Þ � xsmðtÞ is again a non linear
product. We refer the reader to Appendix A, available in
the online supplemental material, for the linearization
steps.

We then store the total VM migration costs at TS t in
the variable CMIG

E ðtÞ, which is defined as in Eq. (6).
Finally, the total electricity costs at TS t are then com-
puted as in Eq. (7).

5.3 Additional Constraints
We then introduce a set of additional constraints in our
problem. Specifically, we first impose than each VM has to
be allocated to only one PS:

X
s2S

xsmðtÞ ¼ 1; 8m 2 M; 8t 2 T : (15)

Furthermore, we consider the fact that the CPU con-
sumed by the VMs running on each PS s has to be lower
than the CPU available on the PS. More formally, we
have:

X
m2M

gmðtÞ � xsmðtÞ � gMAX
s �OsðtÞ; 8s 2 S; 8t 2 T : (16)

Similarly, we impose a limit also for the amount of mem-
ory consumed by the VMs on each PS:

X
m2M

mmðtÞ � xsmðtÞ � mMAX
s �OsðtÞ; 8s 2 S; 8t 2 T : (17)

where mMAX
s [Mb] is the maximum memory consumption

allowed on PS s. Considering the right-hand-sides (RHSs)
of the constraints (16) and (17), we remark that the presence
of the products gMAX

s �OsðtÞ and mMAX
s �OsðtÞ imposes that

a VM can be assigned to a PS s in TS t, only if s is powered
on in t (i.e., OsðtÞ ¼ 1). Indeed, if OsðtÞ ¼ 1, the the RHSs are
equal to gMAX

s and mMAX
s , thus making the capacity

available; if instead OsðtÞ ¼ 0, then the RHSs become 0 and
no VM can be assigned to s in t.

5.4 Overall Formulation
The OPTIMAL MAINTENANCE AND ELECTRICITY COSTS (OMEC)
problem is formulated as follows:

min
X
t

CTOT ðtÞ ¼
X
t

CTOT
M ðtÞ þ CTOT

E ðtÞ
� �

: (18)

subject to:

Maintenance Costs Computation ð3Þ; ð2Þ; ð8Þ � ð11Þ;
Electricity Costs Computation ð4Þ; ð5Þ; ð6Þ; ð12Þ � ð14Þ;
VM Allocation Constraint ð15Þ;
Maximum CPU Capacity ð16Þ;
Maximum Memory Capacity ð17Þ:

(19)

under control variables: xsmðtÞ 2 f0; 1g, OsðtÞ 2 f0; 1g.

Proposition 1. The OMEC problem is NP-Hard.

We refer the reader to Appendix. B, available in the
online supplemental material, for the proof.

6 MECDC ALGORITHM DESCRIPTION

Since the OMEC problem is very challenging to be solved
even for instances of small size, we propose the Mainte-
nance and Electricity Costs Data Center (MECDC) algo-
rithm to practically tackle it. The main intuitions of the
proposed approach are twofold: i) we do not consider all
the TSs jointly together, but rather we focus on each single
TS,4 and ii) we guarantee a feasible solution which ensures
the constraints (15), (16), and (17) in each TS. As a result, the
MECDC algorithm is sequentially run for each TS. Specifi-
cally, for each TS t, we use the solution computed for TS
t � 1 as input for the single-period problem associated with
TS t. The solution for t is then passed as input to the solu-
tion of the problem associated with the successive TS t þ 1
and so on until we reach t ¼ jT j.

Algorithm 1 reports the MECDC pseudocode. Our
solution takes inspiration from the algorithms used to
solve the Bin Packing Problem [44], which are then re-
designed in order to: i) take into account the different
costs, and ii) considering also the impact of the solution
in the long term. The algorithm requires as input the
current TS index t, the CPU requirements gmðtÞ, the
memory requirements mmðtÞ, the amount of data trans-
ferred among the VMs DmnðtÞ, as well as a matrix
including the power states experienced by the PSs at
previous TS. Then, MECDC produces as output the cur-
rent VM to PS assignment xsmðtÞ, as well as the current
PSs power states. The algorithm is then divided in three
main steps: i) selection of an admissible VMs to PSs allo-
cation (lines 1-29), ii) refinement of the VMs’ allocation
to reduce the costs for current TS (lines 30-44), iii) adjust-
ment of the VMs’ allocation to limit the increase of the
costs that will be likely experienced in the future (lines
45-51).

4. Solving the algorithm for each TS is in line with the tasks of the
allocation manager detailed in Section 3.
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Algorithm 1. Pseudo-Code of the MECDC Algorithm

Input: t; gmðtÞ;mmðtÞ; DmnðtÞ, prev_power_state_s
Output: xsmðtÞ, curr_power_state_s
1: Phase 1: Select an admissible VMs to PSs

allocation.

2: prev_VM_assigned=read_conf(xsmðt� 1Þ);
3: curr_VM_assigned=prev_VM_assigned;
4: curr_power_state_s=prev_power_state_s;
5: [curr_CPU_s, curr_mem_s, flag_check]=comp_CPU_

mem(curr_VM_assignment, gmðtÞ;mmðtÞ);
6: if flag_check==false then
7: s_sorted=sort(curr_CPU_s,‘descend’);
8: VM_sorted=sort(curr_CPU_VM,‘ascend’);
9: for vm=1:jMj do
10: if check_CPU_mem(curr_VM_assigned,VM_

sorted[vm], gmðtÞ;mmðtÞ)==false then
11: stop_condition=0;
12: for server=1:jSj do
13: curr_s=s_sorted[server];
14: if stop_condition < 1 then
15: if curr_s != curr_VM_assigned[[VM_sorted[vm]]

then
16: if check_VM_to_server(curr_VM_assigned,

curr_s,VM_sorted[vm],gmðtÞ;mmðtÞ)==true
then

17: [curr_CPU_s, curr_mem_s, curr_VM_
assigned]=VM_to_server(curr_VM_
assigned,curr_s,VM_sorted[vm],gmðtÞ,
mmðtÞ);

18: stop_condition=1;
19: end if
20: end if
21: end if
22: end for
23: end if
24: end for
25: end if
26: f1_VM_assigned=curr_VM_assigned;
27: [curr_total_costs, curr_power_state_s]=compute_total_costs

(prev_VM_assigned, curr_VM_assigned, t; gmðtÞ;mmðtÞ;
DmnðtÞ, curr_power_state_s);

28: f1_total_costs=curr_total_costs;
29: f1_power_state_s=curr_power_state_s;
30: Phase 2: Refinement of the VMs’ allocation to

reduce the costs for current TS.

31: s_sorted=sort(curr_CPU_s,‘ascend’);
32: for server=1:jSj do
33: if curr_power_state_s[server, t] > 0 then
34: [tmp_VM_assigned, flag_bin]=adaptive_bin_packing

(curr_VM_assigned, s_sorted[server],gmðtÞ;mmðtÞ);
35: if flag_bin == 1 then
36: [tmp_total_costs, tmp_power_state_s]=compute_

total_costs(prev_VM_assigned,tmp_VM_
assignment, t; gmðtÞ;mmðtÞ;
DmnðtÞ, curr_power_state_s);

37: if tmp_total_costs < curr_total_costs then
38: curr_VM_assigned=tmp_VM_assigned;
39: curr_total_costs=tmp_total_costs;
40: curr_power_state_s[server,t]=0;
41: end if
42: end if
43: end if

44: end for
45: Phase 3: Adjustment of the VMs’ allocation to

limit the increase of the future costs.

46: [all_on_total_costs, all_on_power_state_s, all_on_VM_
assigned]=compute_total_costs_all_on
(prev_VM_assigned, t; gmðtÞ, mmðtÞ; DmnðtÞ,
f1_power_state_s,);

47: if curr_total_costs > all_on_total_costs � z then
48: curr_VM_assignment=all_on_VM_assignment;
49: curr_power_state_s=all_on_power_state_s;
50: end if
51: xsmðtÞ=write_conf(curr_VM_assignment);

The first phase, that is the initial VMs’ allocation (lines 1-
29), is similar to the Modified Best-Fit Decreasing algo-
rithm [10]: after the initialization of the variable for current TS
(lines 2-4), the algorithm checks if the VM allocation is able to
ensure the constraints (15), (16), and (17) for the current TS
(line 5). If the total amount of CPU and memory requested on
each PS is lower than the maximum capacity, then the algo-
rithm passes directly to the next step, i.e., the refinement of
the VMs’ allocation. Otherwise, an admissible allocation
needs to be selected (lines 6-25). This casemay occur for exam-
ple when there is the need to power on a PS that was in SM at
the previous TS, in order to ensure the constraints (15), (16),
and (17) for the current TS. In particular, the main intuition is
to move the smallest VMs in terms of the CPU requirements
to the most loaded PSs. This is done by first sorting the total
CPU requested on the PSs in decreasing order (line 7), and the
amount of CPU requested by each VM in increasing order
(line 8). Then, in the following step (lines 10-24), the algorithm
proceeds bymoving the VMs from the most loaded PSs to the
others, until the constraints (15), (16), and (17) are met for all
the VMs and the current TS. Finally, the updated allocation of
the VMs is stored (line 26), and the total costs, as well as the
PS power states, are computed and saved (lines 27-29).

During the second phase, MECDC tries to find a VMs’
allocation able to reduce the costs (lines 30-44), still ensuring
the constraints (15), (16), and (17) for the current TS. In par-
ticular, the intuition of this part is to sort the PSs based on
the amount of consumed CPU (in increasing order), and to
selectively put in SM each PS, if the total costs are reduced.
Initially, the PSs are sorted by increasing values of CPU
(line 31). Then, for each PS in the ordered lists of PSs (line
32), if the PS is in AM (line 33), the Adaptive Bin Packing
(ABP) algorithm is run (line 34), in order to migrate the
VMs running on the current PS to other ones that are in
AM. If the ABP algorithm succeeds (line 35), the costs of the
temporary assignment are computed (line 36). If the costs
are decreased compared to the current assignment (line 37),
then the current assignment, the current costs, and the cur-
rent power states are updated (line 38-40).

The core of phase 2 of MECDC relies on the ABP algo-
rithm, which is detailed in Algorithm 2. This routine
requires as input the current VMs to PSs allocation, the cur-
rent PS from which the VMs need to be shifted, and the
CPU and memory requirements. The updated VMs to PSs
allocation, as well as a flag indicating the algorithm status,
are produced as output. Initially (line 1), the VMs are sorted
based on the amount of CPU requested. Then, the total
amount of CPU and memory consumed on each PS are com-
puted (line 2). In addition, the total number of VMs that
need to be moved from the current PS, as well as the PS
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power states, are stored (line 3-4). Finally, the current num-
ber of moved VMs is set to zero (line 5).

Algorithm 2. Pseudo-Code of the Adaptive Bin Packing
Function

Input: curr_VM_assigned, curr_s, gmðtÞ;mmðtÞ
Output: curr_VM_assigned, flag_bin
1: [VM_sorted]=sort(gmðtÞ,‘ascend’);
2: [curr_CPU_s, curr_mem_s, flag_check]=comp_CPU_mem

(curr_VM_assignment, gmðtÞ;mmðtÞ);
3: num_VM_to_move=comp_VM_to_move(curr_VM_

assignment, curr_s);
4: power_state_s=comp_power_state_s

(curr_VM_assignment);
5: VM_moved=0;
6: for vm=1:jMj do
7: if curr_VM_assigned[VM_sorted[vm]]==curr_s then
8: [curr_CPU_s, curr_mem_s, flag_check]=comp_CPU_

mem(curr_VM_assignment, gmðtÞ;mmðtÞ);
9: s_sorted=sort(curr_CPU_s,‘descend’);
10: flag_moved_VM=0
11: for server=1:jSj do
12: if (s_sorted[server]! ¼curr_s) and (flag_

moved_VM==0) and (power_state_s[s_sorted
[server]]> 0) then

13: curr_VM_assignment[VM_sorted[vm]]=s_sorted
[server];

14: [curr_CPU_s, curr_mem_s, flag_check]= comp_
CPU_mem(curr_VM_assignment, gmðtÞ;mmðtÞ);

15: if flag_check< 1 then
16: curr_VM_assignment[VM_sorted[vm]]=curr_s;
17: else
18: flag_moved_VM=0;
19: VM_moved++;
20: end if
21: end if
22: end for
23: end if
24: end for
25: if VM_moved==num_VM_to_move then
26: flag_bin=1;
27: else
28: flag_bin=0;
29: end if

In the following, the ABP iterates over the VMs (lines 6-24).
If the current VM is placed on the candidate PS to be put in SM
(line 7), then the algorithm tries tomigrate it (lines 8-23). In par-
ticular, the total CPU requested on the PSs is computed (line 8).
Then, the PSs are ordered based on the amount of requested
CPU (line 9), in decreasing order. The intuition here is in fact to
place the VMs on a PS which already hosts VMs, in order to
limit the power state changes that may be introduced. More in
depth, if the destination PS can be a candidate one (line 12), the
VM is temporarily assigned to the PS (line 13). Then, the CPU
and memory requirements are computed (line 14). If the con-
straints (15), (16), and (17) are satisfied, the current VM is allo-
cated to the current PS, and the total number of migrated VMs
is updated (line 18-19). Otherwise, the VM is kept on the origi-
nal PS that was hosting it (line 16). In the last part (lines 25-29),
the status flag is set. If it has been possible to move all the VMs
hosted on the PS to be put in SM, then the flag is set to one (line
26). Otherwise, the flag is set to zero (line 28).

Finally, we describe the third and last phase of MECDC
(lines 45-51 of Algorithm 1). The goal of this phase is to pro-
vide a mechanism to limit the potential costs growth in the
future TSs. In particular, the condition of reducing the total
costs at current TS (which is performed in phase 2 of the algo-
rithm) may introduce changes in the power states of the PSs,
whichwill have an impact on the maintenance costs paid also
in the future. In order to limit this effect (without assuming
the knowledge of future requirements), MECDC adopts a
greedy approach, by: i) computing the total costs experienced
by a solution keeping all the PSs in AM and ensuring con-
straints (15), (16), and (17) for the current TS (line 46), ii) check-
ing if the total costs from the current assignment are larger
than the costs of the always solution, scaled by a constant
z < 1, iii) setting the current allocation to the always on allo-
cation in case the condition at ii) occurs. As for i) we compute
the VMs to PSs allocation with the Next Fit Decreasing (NFD)
algorithm reported in Appendix D, available in the online
supplementalmaterial, which tends to keep all the PSs always
powered on, in order to balance the CPU load across the PSs.

6.1 Complexity Analysis
We analyze the time complexity of MECDC. Focusing on
the first phase (lines 2-25), the computation of CPU and
memory requirements on each PS is done in OðjMj � jSjÞ
iterations (line 5). Similarly, checking if a given VM can be
migrated to a given PS (lines 16), as well as the VM migra-
tion (line 17), can be done in OðjMj � jSjÞ iterations. The pro-
cedure is then repeated for each VM (line 9) and each PS
(line 12) in the worst case. As a result, the overall complexity
of phase 1 is OðjMj2 � jSj2Þ.

Focusing then on the second phase of MECDC (lines 30-
44), the ABP algorithm is run on each PS in the worst case.
Therefore, it is necessary to estimate the complexity of the
ABP routine. In particular, the preliminary steps of ABP
(lines 1-5 of Algorithm 2) requireOðjMjðlog jMj þ jSjÞÞ itera-
tions. In addition, the computation of CPU and memory
requirements (lines 8,14 of Algorithm 2) requiresOðjMj � jSjÞ
iterations. This computation is potentially repeated for each
PS (line 11 of Algorithm 2) and each VM (line 6 of Algo-
rithm 2). As a result, the overall complexity of ABP is in the
order of OðjMj2 � jSj2Þ. Going back to the second phase of
MECDC, the ABP algorithm is potentially repeated for each
PS (line 34). In addition, the computation of the total costs
requires OðjMj2 � jSj2Þ iterations. Overall, the complexity of
the second phase is in the order ofOðjMj2 � jSj3Þ.

Focusing on the third phase ofMECDC, this steps requires:
i) the computation of an always on allocation, ii) the computa-
tion of the costs for this allocation. Focusing on i), we adopt
the NFD algorithm, whose complexity (reported in Appen-
dix 4, available in the online supplemental material) is in
the order ofOðjMj2 � jSjÞ. Focusing on ii), this part can be per-

formed in OðjMj2 � jSj2Þ iterations. As a result, the overall
complexity of MECDC, i.e., from the start to the end, is in the
order of OðjMj2 � jSj3Þ. Even though this complexity may
appear relatively high at a first glance, it is pretty limited
in realistic scenarios (which are going to be described in
Section 7), due to the fact that it is necessary to keep the power
states of the PSs unchanged in most of TSs, in order to satisfy
the CPU and memory requirements, as well as limiting the
impact ofmaintenance costs.

Finally, we analyze the space complexity of MECDC.
Overall, this solution requires temporary arrays of size jMj
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and jSj. The same applies also to the ABP routine. In addi-
tion, the power states experienced by the PSs during the past
TSs are required, resulting in amatrix of size jSj � jT j. Finally,
the algorithm requires a matrix of size jSj � jMj to store the
VM to PS assignment, as well as a matrix of updated power
states, whose size is jSj � jT j. As a result, the overall space
complexity is in the order ofOðjSj � ðjMj þ jT jÞÞ.

7 SCENARIOS AND INPUT PARAMETERS

When evaluating an algorithm, selecting a meaningful and
realistic set of input parameters is of crucial importance. To
pursue this goal, we have considered a set of realistic traces
to provide the VMs-related input parameters. In addition,
we have taken frompreviousworks, as well as from the anal-
ysis of the realistic traces, the input parameters for the PS set.
The following sections detail the pursuedmethodology.

7.1 Virtual Machines Parameters
The considered parameters for each VM m and for each TS t
include: the requested CPU gmðtÞ, ii) the requested memory
mmðtÞ, iii) the amount of data DmnðtÞ exchanged by the VM
m to each other VM n 2 M. In order to retrieve such parame-
ters, we have considered the trace Materna-3, which reports
real measurements of a CDC collected from TU Delft [45],
[46], [47]. The trace includes the log files of 547 VMs, which
are used to deploy a CDC devoted to business intensive
applications. Each VM log reports a set of information col-
lected for each TS, including: i) the CPU requirements (both
in terms of CPU percentage and in terms of CPU cores), ii)
the memory requirement, iii) the amount of disk provisioned
to the VMs, iv) the total amount of traffic sent out from the
VMs. The time granularity of the collected log entries is
dðtÞ ¼ 5 [minutes],5 for a period of around 5 weeks in total,
measured during the year 2016. To give more insight, Fig. 2
reports the evolution over time of the following consolidated
metrics: i) total amount of CPU requested, ii) total amount
of memory requested, iii) total amount of disk provisioned,
iv) total amount of network traffic sent. Interestingly, both

the total CPU (Fig. 2a) and the total memory requirements
(Fig. 2b) tend to notably vary over time, with peaks that sug-
gests a daily and weekday periodicity. On the other hand,
the total amount of disk provisioned (Fig. 2c) is pretty con-
stant. Finally, the total amount of traffic sent (Fig. 2d) is also
experiencing a notable variability.

Given the available trace information, and the fact that
there is a remarkable variation of CPU and memory over
time, a natural question is then: is it possible to extract mean-
ingful set of VMs with common features, in order to test the
proposed algorithm? Indeed, our goal is not only to evaluate
the impact of the proposed solution on the whole trace avail-
able, but also to generalize our findings to typical cases, that
can be representative of different classes of VMs. In order
to tackle this issue, we have focused on the amount of
CPU requested by each VM, which can be one of the typical
feature to classify the VMs. In particular, we have computed
for each VM the following metrics over the whole trace:
i) total amount of requested CPU, ii) maximum amount of
requested CPU, iii) maximum variation of CPU, which is
expressed as maxtjgmðtÞ � gmðt� 1Þj for each VM, iv) maxi-
mum number of requested CPU cores. For each metric, we
have then sorted the VMs in decreasing order. Fig. 3 reports
the obtained results. Interestingly, themetrics reveal a strong
heterogeneity among the VMs, with trends similar to power-
laws, especially in Figs. 3a, 3b, and 3c. Given these trends,
we have therefore selected four representative subsets
of jMj ¼ 15 VMs for each metric, namely: Tot-CPU, Max-
CPU, MaxVar-CPU, MaxCores-CPU. In particular, we have
selected the most demanding VMs for each considered met-
ric, in order to test our algorithm under different conditions.

Fig. 4 reports the total CPU variation for each VM subset
over time. Interestingly, we can note that there are four
distinct patterns emerging from the subset. In particular, the
total CPU ismaximized by the Tot-CPU pattern (as expected).
On the other hand, both the Max-CPU and MaxVar-CPU
subset require less CPU, but are more subject to strong CPU
oscillations. Finally, the MaxCores-CPU subset is the least
demanding in terms of total CPU. This is due to the fact that a
VM provisioned with a large number of cores does not neces-
sarily use all the available CPU resources.

To give more insight, we have analyzed if the same VMs
are included in the different subsets. To this aim, Table 1
reports the obtained confusion matrix. As expected, the
majority of VMs in the Tot-CPU subset does not appear in
the other ones. The same applies also to the MaxCores-CPU
subset. Finally, different VMs are shared between the Max-
CPU and the MaxVar-CPU subsets. Thus, we can conclude
that the selected subsets: i) include different VMs, ii) are
representative of different trends.

Up to now, we are able to set the requested CPU gmðtÞ
and the requested memory mmðtÞ directly from the trace
data. Focusing then on the amount of traffic exchanged by
the VMs, the available trace only includes information about
the total traffic sent by each VM, namely,

P
n DmnðtÞ. There-

fore, the single values of DmnðtÞ needs to be retrieved in
some manner. To do that, we proceed as follows: i) when
we consider the whole CDC, we assume that 80 percent of
traffic is sent to the 20 percent of VMs that are actually send-
ing the largest amount of data; the remaining 20 percent of
traffic is uniformly distributed among the remaining VMs;
ii) when we consider the subsets of jMj ¼ 15 VMs, we
assume that the

P
n DmnðtÞ traffic of each VM is uniformly

distributed across the remaining jMj � 1 VMs.

Fig. 2. Evolution of the CPU, memory, disk, and network traffic versus
TS index for the considered DC trace.

5. The TS duration is an input parameter of MECDC. This parameter
does not impact the time complexity of our algorithm. Lower durations
should be set in accordance to the amount of time required to change
the PS power state. Higher durations would make MECDC less reactive
in terms of both migrations and PS power state changes.
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Finally, we repeat the measured trace over a total period
of time T ¼ 5 [years]. In this way, we consider an amount
of time sufficiently long to evaluate the impact of the main-
tenance costs, which tend to be increased in the long term.

7.2 Physical Servers Parameters
We then consider the parameters related to PSs. In particular,
by observing the maximum number of CPU cores requested
by each VM (see Fig. 3d), we assume that each PS has 8 cores,
each of them able to be used up to 100 percent. As a result,
gMAX
s ¼ 800 [unit] for each PS s. Moreover, each PS is

equipped with a large amount of memory, i.e., mMAX
s ¼

128 [GB]. Clearly, a question now arises: how many PSs
should be deployed in the scenario? To answer this question,
the dashed lines of Fig. 2a are drawn every gMAX

s ¼
800 [units] of CPU. In order to satisfy the maximum CPU
requirements, we can easily see that no less that 11 PSs needs
to be deployed. However, due to the fact that each VM
request cannot be split across multiple PS, it is necessary to
add an amount of spare capacity to practically fulfil the CPU
requests. In our case, we have found that by setting the num-
ber of PSs jSj equal to 14 it is possible to always ensure both
the CPU andmemory requirements. In addition, we point out

that disk requirements are less stringent, due to the fact that:
i) the disk requirements do not strongly vary over time, ii) it is
feasible and not cost expensive to over-provision the PSs with
large disks, and iii) it is a common practice to store on the
physical PS disk just the operating system for the hypervisor,
while the VMs images are stored in a separate Network
Attached Storage. Eventually, also the amount of data sent
from the VMs is globally lower than the capacity of available
network connections, which is currently in the order of
[Gbps]. Finally, a similar procedure is repeated also for the
different subsets of VMs, ending that the setting jSj ¼ 4 is
able to always fulfil all the requirements from the VMs.

In the following, we focus on the power and energy cost
parameters. We set the maximum and minimum PS power
equal to PMAX

s ¼ 328:2 [W] and PIDLE
s ¼ 197:6 [W], respec-

tively, in accordance to measurement provided by [48]. The
interface power PTR�IF

s is set equal to 42.7 [W] [49], [50].
The power due to data transferring PTR�NET

ss is set equal to
0.003 [W/b] if s 6¼ s, 0 otherwise, in accordance to [51]. The
power due to overhead POH

s is set equal to 1 percent of
PMAX
s [51]. Focusing on the cost parameters, we set the elec-

tricity costsKE equal to 0.00016 [$/Wh] [13].
In the next part, we focus on the parameters related to

maintenance operations, namely: i) the AF in SM AFSM
s , ii)

the weight for power state transitions Cs, iii) the FR of the
PS always in AM fAM

s , and iv) the cost for a single repara-
tion KR. We then detail in the following the setting of each
parameter. In order to set the AF in SM AFSM

s , we recall

that this term is equal to fSM
s =fAM

s , where fSM
s [1/h] is the

FR in SM, which is expressed by the Arrhenius law [52]:

fSM
s ¼ e

�Ea
ðK�TSM Þ; (20)

where Ea [joule/mol] is the activation energy, K ¼
8:314472 [joule / (mol kelvin)] is the Boltzmann constant,
and TSM [kelvin] is the temperature in SM. In our case, we
have set Ea ¼ 30500 [joule/mol] in accordance to the values
measured for chip components in [53], TSM ¼ 303:15 [kelvin],
corresponding to 30 [Celsius], in accordance to the real mea-
surement performed on a PS in [14]. As a result, we get
AFSM

s � 0:5, which is used for each PS s 2 S. In the following,
we focus on the FR of the PS fAM

s always in AM. In particular,
we set the FR of the PS fAM

s ¼ 1:14� 10�5 [1/h] 8s 2 S [13].
In the following, we focus on the setting of theCs parameter.
More in depth, Cs is defined as Cs ¼ 1=ðfAM

s NF
s Þ where NF

s

is the number of cycles to failures. In our case, we consider
the interval NF

s ¼ ½8:77� 105-8:77 � 106�. In particular, we set
NF

s to values higher than the ones measured under stressful
conditions, i.e., between amaximum and aminimum temper-
ature (such as the testing methodology of [54]), due to the fact
that we are only applying a SMprocedure, which is supposed
to be less aggressive for the lifetime of the components than
the test in [54]. As a result, we consider a range ofCs values in

Fig. 3. VMs ordered according to different rules (Note: the VM indexes
change between one ordering rule and another one).

Fig. 4. Total Variation of CPU versus the TS index for the different VM
subsets.

TABLE 1
Confusion Matrix Reporting the Number

of Same VMs across the Different Subsets

VM Subset Tot-CPU Max-CPU MaxVar-CPU MaxCores-CPU

Tot-CPU 15 4 3 0

Max-CPU 4 15 11 3

MaxVar-CPU 3 11 15 3
MaxCores-CPU 0 3 3 15
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the interval ½0:01-0:1�. Finally, the reparation cost for one PS
KR is set equal to 380 [$] [13].

8 PERFORMANCE EVALUATION

We evaluate the performance of MECDC against two ref-
erence algorithms, namely First Fit Decreasing (FFD) and
a modified version of the Next Fit Decreasing (NFD).
We refer the reader to Appendix C, available in the online
supplemental material, and Appendix D, available in the
online supplemental material, for a detailed description of
FFD and NFD, respectively. In brief, the main goal of FFD is
to approximate the Bin Packing Problem, in order to limit
the number of used PSs, and therefore the associated proc-
essing costs. On the other hand, the NFD algorithm aims to
keep all the PSs always powered on, and to reduce the load
on each PS by distributing the VMs across the set of PSs.
Similarly to MECDC, both FFD and NFD compute the set of
PSs powered on and the VM to PS assignment in each TS.

Apart from the reference solutions, we consider also a
Lower Bound (LB) to assess better the positioning of our
approach. We refer the reader to Appendix E, available in
the online supplemental material, for the detailed steps of
the LB computation. In brief, the LB is able to assess the
minimum processing and maintenance costs that need to be
paid in any case, in order to satisfy the VMs requirements
in terms of CPU and memory.

We code MECDC, FFD, NFD and LB in Matlab v. 2012,
and we run them on a Linux Desktop PC, equipped with an
Intel Core I5 processor and 8 [GB] of RAM.

8.1 Impact of the VM Subsets
We first run the strategies over the different subsets of VMs,
by considering the set of the parameters reported in the pre-
vious section, and a value of Cs ¼ 0:06 for all the scenarios.
Moreover, we set the z parameter of MECDC to 0.5.6 Fig. 5

reports the total costs incurred by summing the costs from
all the TSs. Moreover, each subfigure details for each algo-
rithm the cost components, namely processing (COMP),
data transferring across the DC network (NET), migrations
(MIG) and maintenance (MAINT). As expected, the FFD
algorithm tends to achieve the lowest processing costs across
all scenarios. However, reducing the processing costs is not
always beneficial for the maintenance costs, as shown e.g., in
Figs. 5a, 5b, and 5c. In particular, due to the fluctuations of
the CPU requests, there are cases in which FFD introdu-
ces a lot of transitions in the power states of the PSs,
resulting in a large increase of the maintenance costs. On
the other hand, the maintenance costs are reduced by the
NFD solution, which tends to keep all the PSs always
powered on. However, keeping the PSs always powered
on generally results in large inefficiencies, as shown, e.g,
in Fig. 5d. Finally, we can note that the proposed MECDC
is able to leverage the tradeoff between all the costs, and
to achieve the best solutions compared to NFD and FFD.
Moreover, MECDC is always pretty close to the LB in all
the considered scenarios. In particular, the good perfor-
mance of MECDC is realized by means of: i) the analysis
of all the involved costs before taking a decision involv-
ing the PS power states and the VM migrations, ii) the
introduction of a safety mechanism to limit the increase
of the maintenance costs in the long term.

In the following, we analyze the transient behavior of the
considered algorithms, by computing the average cost per
TS. In particular, the average cost for each TS t is computed
by averaging the total cost over the TS 1 and t. Fig. 6 reports
the costs for the different algorithms across the different sub-
set of VMs. By observing the trends reported in the subfig-
ures, we can note that the average cost of NFD tends to be
always constant. This is an expected result, since this solu-
tion tends to keep always the PS powered on, and therefore
to not vary consistently both the processing costs and the
maintenance ones. On the other hand, the average costs of
MECDC and NFD tends to vary with time. More in detail,
during the initial months, the costs per TS is generally lower
for both FFD and MECDC compared to NFD. This is due to
the fact both these solutions are able to vary the power states
of the PS, and consequently to decrease the processing costs.
However, the costs of the FFD solution are generally increas-
ing with time, and even surpass the costs of MECDC in the
Tot-CPU (Fig. 6a) and Max-CPU subsets (Fig 6b). Actually,
FFD is completely agnostic of the impact of PS transitions,
which not only primarly affect the maintenance costs, but
have also an impact on migrations and data transferring
costs. The only case in which the trend of FFD is pretty con-
stant is theMaxCores-CPU (Fig. 6d). By further investigating
this fact, we have found that for this subset the number of
PSs is over-dimensioned. As a result, it is always possible to
keep powered off different PSs across the TSs, and to limit
the number of PS transitions. Finally, we can note that in this
case MECDC is pretty close to FFD. Summarizing, MECDC
is able to keep a balanced solution, and the achieve the lowest
average costs at the end of the considered time period.

8.2 Sensitivity Analysis
In the following, we focus on the Tot-CPU subset and we
consider the variation of themain input parameters. We start
with the variation of the number of PSs, as reported Table 2.
In particular, we can note that the increase of the number of

Fig. 5. Costs breakdown at the end of the considered 5-years periods
across the different VMs subsets considering MECDC, FFD, NFD, and
the Lower Bound (LB).

6. We have performed a sensitivity analysis (not reported here due
to the lack of space), finding that the setting z ¼ 0:5 provides good per-
formance in all the scenarios.
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PSs tends to increase the total costs of NFD, due to the
increase in the number of PSs powered on. Clearly, introduc-
ing more PSs tends also to increase the costs obtained by the
LB. Focusing then on FFD, the passage from jSj ¼ 4 to
jSj ¼ 5 is able to notably reduce the number of PS transitions,
and consequently to decrease the total costs. However, we
can note that the costs tends to slightly increase for higher
values of jSj. Finally, the MECDC solution always achieve
the best solution after the LB. In particular, MECDC is able to
save between [782-74397] [$] compared to FFD, and between
[4546-23520] [$] compared to NFD.

We then continue our analysis by varying theCs parame-
ter, which governs the impact of power state transitions on
the costs. From the observations reported in Section 7.2, a
reasonable range for this parameter is between 0.01 and 0.1.
We therefore rerun the algorithms and the LB by consider-
ing a variation of the Cs parameter in this range. Table 3
reports the results obtained over the Tot-CPU subset. More
in detail, the NFD algorithm is not affected by Cs, since the
PS power state is kept unchanged by this solution. Similarly,
also the LB does not vary, since the impact of PS transitions
is not taken into account. On the other hand, the increase of
Cs has a great impact on FFD, whose costs tends to largely
increase and largely surpass the ones of NFD. Interestingly,
MECDC experiences a modest increase in the total costs,
and it is always the best solution compared to NFD and
FFD. As a result, MECDC is robust against any variation of
Cs in the considered range.

In the following part, we analyze the impact of the z
parameter on the performance of MECDC. We recall that
this parameter is used to adopt an always on solution when
the current costs are higher that the costs of the always on
solution, scaled by the z parameter. Table 4 reports the dif-
ferent components of the costs versus the variation of z. By
observing the trend of the different components when z
is increased, we can note that: i) the processing costsP

t C
PROC
E tend to decrease, ii) the data transferring costsP

t C
TR
E are decreased, iii) both migrations

P
t C

MIG
E and

maintenance
P

t C
TOT
M are increased. These trends are due to

the fact that, when z is close to 0, the algorithm tends to fre-
quently apply the always on solution, which results in an
increase of the data processing and transferring costs, while

reducing both migrations and maintenance ones. On the
other hand, when z is increased, the algorithm is more
prone to PS transitions, resulting in the opposite effects on
the costs. Although the total costs are less impacted by the z
variation in this case, we believe that this parameter can be
useful for the content provider in order to tune the algo-
rithm to the specific scenario considered. For example, in
cases where it is important to reduce the amount of migra-
tions (e.g., to reduce the associated delay), the z parameter
should be set to low values (i.e., �0.1).

Finally, we have considered the impact of varying the TS
duration dðtÞ. Results, reported in Appendix G, available in the
online supplemental material, confirm that MECDC is always
able to guarantee the lowest costs compared toNFD and FFD.

8.3 Impact of the Heterogeneity of Physical Servers
Up to this point, a natural question is then: what is the
impact when different classes of PSs are taken into
account? To investigate this issue, we have considered a
set of heterogeneous PSs, as reported in Table 5. In partic-
ular, we have considered two categories of PSs, having
different power requirements, and different CPU capaci-
ties. The remaining PS parameters are the same as in the
previous experiments.

We have then run the algorithms over the heterogeneous
PSs scenario and the Tot-CPU subset of VMs. Fig. 7 reports
the breakdown of the total costs at the end of the 5-years
period, while Table 6 reports the costs in terms of values.
Although FFD is able to reduce the total costs compared to

Fig. 6. Average cost per TS versus time across the different VMs sub-
sets considering MECDC, FFD, and NFD.

TABLE 2
Total Costs versus the Number of PSs jSj

for the Different Strategies (Tot-CPU Subset)

FFD NFD MECDC LB

jSj ¼ 4 97230 [$] 27379 [$] 22833 [$] 14800 [$]
jSj ¼ 5 18165 [$] 31912 [$] 17383 [$] 15016 [$]
jSj ¼ 6 18407 [$] 36383 [$] 17092 [$] 15231 [$]
jSj ¼ 7 18649 [$] 40836 [$] 17316 [$] 15447 [$]

TABLE 3
Total Costs versus the Variation of theCs Parameter

for the Different Strategies (Tot-CPU Subset)

FFD NFD MECDC LB

Cs ¼ 0:01 31057 [$] 27379 [$] 20489 [$] 14800 [$]
Cs ¼ 0:03 57526 [$] 27379 [$] 21994 [$] 14800 [$]

Cs ¼ 0:06 97230 [$] 27379 [$] 22833 [$] 14800 [$]

Cs ¼ 0:08 123700 [$] 27379 [$] 23265 [$] 14800 [$]
Cs ¼ 0:1 150170 [$] 27379 [$] 23862 [$] 14800 [$]

TABLE 4
Cost Breakdown versus the Variation of the z Parameter

for the MECDC Strategy (Tot-CPU Subset)

P
t C

PROC
E

P
t C

TR
E

P
t C

MIG
E

P
t C

TOT
M

P
t C

TOT

z ¼ 0:1 17912 [$] 2965 [$] 1.78 [$] 1725 [$] 22605 [$]
z ¼ 0:5 17096 [$] 2798 [$] 3 [$] 2935 [$] 22833 [$]

z ¼ 0:7 14855 [$] 2333 [$] 46 [$] 5819 [$] 23054 [$]
z ¼ 1:0 13504 [$] 2045 [$] 109 [$] 6301 [$] 21960 [$]
z ¼ 1:5 13505 [$] 2045 [$] 112 [$] 6305 [$] 21965 [$]
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NFD, the best algorithm is MECDC, which is able to notable
reduce the costs, being also close to the lower bound. The
good performance of MECDC is due to the fact this solution
explicitly takes into account all the costs, including the ones
arising from the different values of PS power consumption.

8.4 Analysis on the Entire DC
In the last part of our work, we have run the MECDC, NFD
and FFD algorithms over the All-DC set, which we recall is
composed of 547 VMs and 14 PSs. Table 7 reports the details
for each cost component across the different strategies. Inter-
estingly, MECDC is able to achieve the lowest cost in each
component, or being very close to the lowest values. Com-
pared to the previous scenarios, in which we considered 15
VMs and 4 PSs, in the All-DC set the number of VMs is
increased by 38 times, while the number of PSs by a factor of
3.5. As a result, the impact ofmigrations is much larger, since
a larger number of VMs is hosted in each PS. Even in this sce-
nario, MECDC guarantees the best performance. In particu-
lar, MECDC is able to reduce the migrations costs by a factor
between 64 and 82 percent compared to the other solutions.
Considering then the total costs, MECDC is able to save
59930-252390 [$] compared toNFD/FFD.

Finally, we have analyzed the average computation time
per TS for the different algorithms over the All-DC set, as
reported in Table 8. As expected, MECDC requires more
time to retrieve a solution compared to NFD and FFD. How-
ever, the average computation time is lower than 1.3 [s], a
number that is much lower compared to the TS duration,
which is in the order of minutes in our considered scenarios.
As a result, we can conclude that MECDC is also very effec-
tive in limiting the required computation time.

8.5 Discussion
Our work points out the necessity of a joint approach for bal-
ancing the electricity consumption and the maintenance costs
in a CDC. This becomes evident when the amount of time
under consideration is in the order of years, as the fatigue
effects are experienced only when a PS repeatedly changes its
power states. Why has such effect not been considered in the
literature so far? The answer is that actually the energy consol-
idation algorithms, and in general the solutions targeting the
reduction of energy consumption, are more concentrated on
themost evident (and prompt) effect, which is the power vari-
ation over time. Therefore, in order to reduce the power con-
sumption, it makes sense to optimize the PS power states
even with policies that take power state decisions at each TS.
As we have shown in this work, reducing solely the electricity
costs is not wise in the long period (see e.g., the FFD strategy
results reported in Figs. 5a, 5b, and 5c), since the maintenance
costs are increased to a large extent. On the other hand, we
point out that the proposedMECDC solution is always able to
wisely balance between the electricity consumption and the
maintenance costs. Clearly, MECDC has a higher computa-
tion complexity compared to the algorithms focused solely on
electricity consumption. However, our results show that
MECDC allows to retrieve a solution in a reasonable amount
of time (less than 2 [s] for each TS), even for large DCs com-
posed of hundreds of VMs.

Another aspect potentially affecting the results is the delay
introduced by the migration of VMs across PSs. This aspect is
not explicitly addressed in this work, since we assume that
live migrations can be performed without impacting the VM
delay requirements. However, in Appendix F, available in the
online supplemental material, we provide a first evaluation of
the impact from considering the VM delay constraints, and
how theMECDCalgorithm ismodified to integrate them.

9 CONCLUSIONS AND FUTURE DIRECTIONS

Wehave targeted the problemof jointlymanaging themainte-
nance costs and the electricity consumption in a CDC. After
showing that changing the power states of PSs has an impact
on both the failure management costs, as well as the energy
consumption, we have formulated the OMEC problem, with
the goal of jointly managing the aforementioned costs. Since
the OMEC problem is NP-Hard, we have described the
MECDC algorithm, which has been designed to wisely lever-
age the tradeoff between different costs, as well as taking into
account their long term impact over time. Results, obtained
over a set of realistic scenarios, clearly show that MECDC

TABLE 5
Server Features for the Heterogeneous Scenario [48]

Server Index PMAX
s PIDLE

s gMAX
s

1-2 270.8 [W] 138.9 [W] 400 [units]
3-6 328.2 [W] 197.6 [W] 800 [units]

Fig. 7. Costs breakdown at the end of the considered 5-years period
for the Tot-CPU subset and the heterogeneous PSs set considering
MECDC, FFD, NFD, and the Lower Bound (LB).

TABLE 6
Total Costs for the Different Strategies

(Tot-CPU Subset and Heterogeneous PSs Set)

FFD NFD MECDC LB

30860 [$] 36700 [$] 17804 [$] 14576 [$]

TABLE 7
Cost Breakdown for the Different Strategies (All-DC Set)

P
t C

PROC
E

P
t C

TR
E

P
t C

MIG
E

P
t C

TOT
M

P
t C

TOT

FFD 45599 [$] 8854 [$] 107430 [$] 3140 [$] 165020 [$]

NFD 60296 [$] 11975 [$] 279600 [$] 5608 [$] 357480 [$]
MECDC 44895 [$] 8724 [$] 48330 [$] 3145 [$] 105090 [$]

TABLE 8
Average Computation Time Per TS

for the Different Strategies (All-DC Set)

FFD NFD MECDC

0.32 [s] 0.33 [s] 1.28 [s]
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always requires consistently lower costs compared to the FFD
and NFD reference algorithms. Moreover, we have also
shown that the total costs obtained by MECDC are also close
to a lower bound. In addition, the computation time, obtained
from a scenario in which there are hundreds of VMs and by
running the algorithm on a Desktop PC, is very low, i.e., less
than 2 [s] on average.

As next steps, we plan to face different issues, including: i)
the definition and evaluation of more complex failure models
to take into account the impact on different components, as
well as different temperatures ofCPUcores, ii) the introduction
of delay costs for migrating VMs across PSs, iii) the application
of our approach to a set of CDCs, each of them subject to differ-
ent electricity prices (e.g., due to different CDC locations).
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