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Abstract—A Body Area Network (BAN) is a wireless
sensor network where biosensors are placed over or inside
the body of a person to collect biomedical data. Designing a
BAN essentially consists in deciding the topology of the net-
work and how data are routed from the biosensors to data
sinks, while minimizing the total energy consumption. A
relevant challenge in the design of BAN is how to take into
account the uncertainty of data generation of biosensors in
the mathematical optimization models used for designing
the network. In this work, we tackle data uncertainty by
adopting a min-max regret paradigm and we propose a
heuristic approach for solving the corresponding min-max
regret optimal design problem. Computational tests on
realistic instances indicate that our approach returns design
solutions associated with a much lower energy consumption
of those returned by an absolute (pure min-max) robustness
model, while providing a good level of protection against
variations in the data rate.

Index Terms—Body Area Networks; Wireless Sensor
Networks; Network Design; Traffic Uncertainty; Robust
Optimization; Min-max Regret.

I. INTRODUCTION

In the last decade, there has been increasingly at-
tention towards the use of Wireless Sensor Networks
(WSNs) in healthcare applications, where WSNs can
support the adoption of more cost efficient and effective
patient-oriented technological solutions. For example,
WSNs can be adopted to remotely monitor the conditions
of patients in a hospital without the intervention of
nurses, granting relevant cost savings. An application of
WSNs that has recently gained a lot of attention is rep-
resented by body area networks. A Body Area Network
(BAN) is a WSN where wireless sensors (biosensors)
are placed over or inside the body of a person to
collect biomedical data. The biosensors generate data
and transmit them to one or more sinks for storing
or processing. For a thorough introduction to WSNs
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and BANs, we address the reader to [12], [22], [23],
[25], [28]. The design of a BAN essentially requires
to establish the network topology and choose how to
route data from the sensors to the collecting sinks. In
BAN design a critical objective to pursue is to minimize
the total energy consumption associated with power
emissions of the BAN wireless devices since: 1) health
regulatory bodies impose very strict limits on power
emissions for avoiding damages to human tissues due
to radio signals and overheating [23]; 2) higher power
emissions lead to higher energy consumption and shorter
battery lifetime - this a very relevant issue in BANs,
where batteries cannot be easily replaced and recharged
without badly affecting the patient comfort.

To reduce energy consumption, it is useful to adopt
multi-hop routing, implemented through relay nodes,
namely wireless devices that act as intermediate nodes
between sensors and sinks and allow transmissions over
shorter distances consuming less energy (e.g., [19], [20]).

Though BANs have received a lot of attention in
literature, especially through works studying the prop-
agation of wireless signals over human bodies and the
simulation of routing protocols (see, e.g., [8], [3], [12],
[26]), the definition of mathematical optimization models
and algorithms for BAN design and management has
received limited attention. This lack of optimization tools
for BANs has been highlighted also in the relevant works
[16], [19]: [19] focused on developing and testing a
mixed integer linear program to model relay placement
and multi-path data flow routing in BANs; [16] proposed
the first robust optimization model for tackling data
uncertainty in BANs and a fast heuristic for its solution,
based on the Integer Linear Programming heuristic of
[13]; the algorithm of [16] has been further improved in
[17], granting a sensible increase in design performance.

The main original contribution of the present paper
is to propose a new robust optimization model for the
problem of designing a BAN taking into account data
generation uncertainty of biosensors. As discussed in
detail in Section III, tackling data generation uncertainty
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in BAN design is of capital importance: if we do not
properly take into account the presence of biosensors
with variable data generation rate, as it may happen in
healthcare applications, we risk to produce infeasible
design solutions that would imply the loss of important
biomedical data. Of course, this is a risk that cannot
be taken in critical applications connected to the health
of people. To deal with data uncertainty we propose
to adopt a min-max regret approach [1], which allows
to reduce conservatism of solutions with respect to an
absolute-robustness approach like that adopted in [16],
[17]. However, since solving a min-max regret problem
is computationally challenging, we show that a peculiar
heuristic application of the min-max regret paradigm
can efficiently provide design solutions associated with
a contained energy consumption and that grant a very
satisfying level of protection against deviations in the
input data, when applied to realistic instances.

II. DESIGNING A BODY AREA NETWORKS

In order to define a mathematical optimization model
for the optimal design of BANs, as first step we identify
the elements of a BAN that are important for modelling
purposes. We can essentially describe a BAN as a set
B of wireless sensors deployed over a human body to
generate biomedical data that must be collected by a set
S of data sinks. To implement a multi-hop routing and
improve energy efficiency, the BAN may include relay
nodes and we thus introduce a set R to represent the
set of relay nodes that can be potentially deployed in
the BAN: each node r ∈ R is characterized by a unique
position over the body and we must decide whether r is
deployed or not. For each biosensor b ∈ B and for each
sink s ∈ S, we denote by dbs ≥ 0 the volume of data
generated by b and intended to be collected by s (dbs is
a bitrate measured in bit/s). Furthermore, we denote by
cr ≥ 0 the capacity of a relay node r ∈ R, namely the
highest bitrate that r is able to manage.

The transmission of data from any BAN device
(biosensor, relay node or sink) to another BAN device
is based on a directional wireless link. As in [16], [17],
[19], we assume that the BAN uses a Time Division Mul-
tiple Access protocol and, consequently, BAN devices
can transmit without interference on the same channel.

A natural choice for the optimal design of a BAN is
to trace back the design problem to an optimal network
flow problem, as done in several works, such as [16],
[17], [19]. More precisely, the design problem can be
expressed as a capacitated multicommodity flow network
design problem, a classical optimization problem where
the objective is to establish the topology and capacity of
a network and how to route a number of commodities in
the network, while minimizing a cost function associated

with routing and capacity installation. For an introduc-
tion to capacitated network design and multicommodity
flows, we refer the reader to [5], [13]. In this work, we
refer in particular to the optimization model presented
in [16], of which we resume here the main features and
elements. We refer the reader to the paper [16] for an ex-
haustive description of all the modelling considerations
that lead to the definition of the optimization model.

In [16], the BAN is modelled through a digraph
G(V,A) where: 1) the set of vertices V is the union of
the set of vertices representing the biosensors in B, the
relay nodes in R and the sinks in S (i.e., V = B∪R∪S);
2) each arc a = (i, j) in the set of arcs A models a
directional wireless link from a BAN device (biosensor,
relay node or sink) i ∈ V to another BAN device
j ∈ Vi (here we generically denote by Vi the subset of
BAN devices within the communicating range of i). The
energy consumed for transmitting one unit of data from a
device i ∈ V to another device j ∈ Vi is denoted by Eij

and is defined as in [10]. Using the previous modelling
assumptions, we provide the following definition of BAN
design problem, introduced in [16]:

Definition 1: The Body Area Network Design Problem
(BAND) - Given: 1) a BAN modeled as a directed graph
G(V,A); 2) the bitrate dbs ≥ 0 of data generated
by each biosensor b ∈ B for each sink s ∈ S; 3)
the capacity cr ≥ 0 of each relay r ∈ R; 4) the
energy coefficients Eij ≥ 0 expressing the total energy
consumed to send 1 data unit from i to j; the BAND
consists in choosing which relays are deployed and
which paths are used to route the biosensor-sink flow of
data, in order to minimize the total energy consumption.

According to the definition of BAND, we must thus
take two major decisions: 1) which relays are deployed
and 2) which paths are employed to route the data
generated by each biosensor for each sink. We can
model these decisions by defining two families of binary
decision variables: 1) binary relay deployment variables
yr ∈ {0, 1} ∀ r ∈ R such that yr equals 1 if relay r
is deployed and 0 otherwise; 2) binary unsplittable flow
variables xbs

ij ∈ {0, 1} ∀ b ∈ B, s ∈ S, (i, j) ∈ A such
that xbs

ij equals 1 if all the data generated by biosensor
b for sink s are routed on arc (i, j) and 0 otherwise.
These variables are used in the following ILP problem
introduced in [16] and denoted by BAND-ILP:

min
∑
b∈B

∑
s∈S

∑
(i,j)∈A

Eijdbsx
bs
ij (BAND-ILP)

−
∑

(b,j)∈
AB→R∪AB→S

xbs
bj = −1 b ∈ B, s ∈ S (1)

∑
(j,r)∈

AB→R∪
∪AR↔R

xbs
jr −

∑
(r,j)∈

AR↔R∪
∪AR→S

xbs
rj = 0 b ∈ B, s ∈ S, r ∈ R (2)
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∑
(j,s)∈

AB→S∪
∪AR→S

xbs
js = 1 b ∈ B, s ∈ S (3)

∑
(r,j)∈

AR↔R∪
∪AR→S

dbs xbs
rj ≤ cr yr r ∈ R (4)

∑
r∈R

yr ≤ U (5)

xbs
ij ∈ {0, 1} b ∈ B, s ∈ S, (i, j) ∈ A

yr ∈ {0, 1} r ∈ R .

The objective function expresses the minimization of
the total BAN energy consumption, considering the sum-
mation of energy consumed for transmissions over all the
arcs of the graph (specifically, the consumption over one
arc (i, j) is the sum of the consumption of all biosensor-
sink couples that route their data on (i, j), expressed as
the product of the unitary energy consumption Eij by the
amount of data dbs of a biosensor-sink couple (b, s)).

The constraints (1)-(3) are flow conservation con-
straints expressing the balance between ingoing and out-
going flows depending upon the nature of the considered
BAN node (see [16] for a detailed description of each
family of flow conservation constraints - here we just
recall that: the set AB→S contains arcs such the tail is a
biosensor and the head is a sink; the set AB→R is those
of arcs such that the tail is a biosensor and the head is a
relay node; the set AR↔R is those of arcs such that both
the tail and the head are relay nodes; the set AR→S is
those of arcs such that the tail is a relay node and the
head is a sink). The constraints (4) model the capacity of
each relay node through a right-hand-side with variable
value: if node r is not deployed (i.e., yr = 0), the right-
hand-side is zero and no data can pass through node r.
If instead the node is deployed (i.e., yr = 1), the right-
hand-side “is activated” and is equal to cr. The single
constraint (5) expresses that we can deploy at most a
number U > 0 of relay nodes in the network.

III. ROBUST BAN DESIGN

The BAN design problem that we have considered un-
til now is based on the assumption that all the input data
of the problem are exactly known when the problem is
solved. However, this may be not true in practice, where
it is likely to have sensors that generate data according
to a rate not known a priori: as an example, one can
think about event-driven biosensors that generate data
only when a special body event occurs (see e.g., [12]).
As it is well-known in mathematical optimization, data
uncertainty in an optimization problem must be carefully
addressed and its disregard may have very bad effects:
if deviations in the input data occur, optimal solutions
may reveal to be of very bad quality of even infeasible

(see [6], [7], [11] for a thorough discussion). As a
consequence, it is necessary to address data uncertainty
through some mathematical optimization paradigm that
guarantees solutions to remain feasible and optimal even
in presence of deviation in the input data.

In the case of BAN design, the question of how
addressing data uncertainty has been first addressed in
the papers [16], [17], which adopt an absolute robustness
paradigm, according to which the design solution must
maintain its feasibility under all possible considered
deviations. More formally, assume that the data rate dbs
of a biosensor-sink couple is uncertain and that it can as-
sume any value in a finite set Dbs = {d1

bs, d
2
bs, . . . , d

k
bs}

(w.l.o.g., we assume that the value are sorted increas-
ingly). Let us denote by: D = D11 × · · · × Dbs ×
· · · ×D|B||S| the set of all the |B||S|-tuples that can be
obtained by considering all the possible combinations of
data generation values for all the biosensor-sink couples.

According to the absolute robustness paradigm, we
aim to find an optimal solution that grants the best
performance under the worst uncertain data realization
case. More formally, if we denote by F the set of all
feasible solutions (x, y) of the problem BAND-ILP and
by E[(x, y), d] the objective function of the problem,
highlighting the dependency upon the decision vector
(x, y) and a data generation scenario d ∈ D, the absolute
robustness problem for BAND can be compactly written
as: min(x,y)∈F maxd∈D E[(x, y), d] . This corre-
sponds to find a feasible solution (x∗, y∗) that grants
the minimum energy consumption under the worst data
generation scenario contained in D (see [1]). An optimal
solution to this problem is in particular protected against
all the possible realization of data identified in D. This
comes however at the so-called “price of robustness”
(e.g., [6], [11]): granting protection against data uncer-
tainty leads to a deterioration in the value of the optimal
solution, caused in general by excluding solutions that
do not remain feasible under all the possible scenarios.

The absolute robustness paradigm is very appropriate
in BAN design problems where not considering possible
data generation scenarios could lead to the death of
the patient, such as BANs aimed at early detecting
ischemia. In contrast, as discussed for example in [1],
[4], [7], this paradigm may result too conservative in
less critical (BAN) applications where we want to grant
a consistent level of protection against data uncertainty
while excluding extreme scenarios whose occurrence is
possible but unlikely. In this paper, focusing on this
latter typology of BAN deployments, we decided to
rely on the min-max regret paradigm, an alternative
less conservative robustness paradigm. For an exhaustive
introduction to min-max regret, we refer the reader to [1],
[21]. Min-max regret is based on using a so-called regret
measure: for a given solution (x, y) and a data scenario
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d, the regret R[(x, y), d] quantifies the loss in value
that we must face when implementing a solution (x, y)
instead of the optimal solution (x∗, y∗)d for scenario d,
formally: R[(x, y), d] = E[(x, y), d] − E[(x∗, y∗)d, d].
The maximum regret Rmax(x, y) for a solution (x, y) is
equal to the maximum regret measure considering all the
data scenarios, i.e. Rmax(x, y) = maxd∈D R[(x, y), d].
In the min-max regret paradigm the aim is to find a
feasible solution that minimizes the maximum regret
considering all data rate generation scenarios, i.e.:

min
(x,y)∈F

max
d∈D

R[(x, y), d] . (6)

As discussed in [20], one of the drawback of the min-
max regret approach under the setting that we considered
is that, in order to find the maximum regret of a particular
solution (x, y), we potentially need to evaluate an expo-
nential number of scenario, in particular finding their
optimal design solution. To tackle this, [20] proposes to
adopt a heuristic min-max regret for a general wireless
sensor network design problem that refers to what we
call a pessimistic median data realization scenario. We
propose here a version of this heuristic approach adapted
to deal with data generation uncertainty in BAN design.

Following [20], we first define the median data rate
generation scenario dmed as that including for each
biosensor-sink couple (b, s) the data rate value d̄bs ∈ Dbs

that is closest to the median value of the data rates
in Dbs. Then we compute an optimal design solution
(x, y)med to the problem BAND-ILP using dmed as data
rate values. This solution should provide on average a
good design, but could become infeasible due to realiza-
tions of data rates that are higher than the medians. As a
consequence, we characterize a worse data rate scenario
by identifying the set of so-called favored biosensor-
sink couples C̄ ⊆ C: these are couples that in the
optimal solution (x, y)med benefit from the presence of
relay nodes, having their data flow passing through the
relay nodes and thus reducing energy consumption. A
pessimistic median scenario can be obtained by assum-
ing that the favured couples (b, s) ∈ C̄ experience a
reduction in their data rates and have a data rate equal
to their lowest value d1

bs in Dbs, while the non-favored
couples (b, s) 6∈ C̄ experience a data rate increase and
have a data rate equal to the highest value dkbs in Dbs. So
we define the Pessimistic Median (PM) data rate scenario
as:

dPM
bs =

{
d1
bs if(b, s) ∈ C̄

dkbs if(b, s) 6∈ C̄

The heuristic min-max regret approach consists in
approximating the complete problem (6) considering
only the scenario dPM , i.e. we solve the problem:

min(x,y)∈F R[(x, y), dPM ] .
Solving this problem actually reduces to solve the (de-
terministic) BAND-ILP with data rates equal to dPM .

IV. PRELIMINARY COMPUTATIONAL RESULTS

We evaluated the performance of the heuristic min-
max regret approach on 20 instances considering a BAN
including 2 sinks, 16 biosensors and 400 potential relay
nodes locations over the human body We assume that the
biosensors and sinks possess the capacity that is needed
to process all the data that they respectively transmit
and receive, whereas we assume that the relays have a
capacity of cr = 250 kbit/s. Each biosensor may assume
20 possible data rate generation values randomly chosen
in the range [50,200] bit/s. Due to lack of space, we refer
the reader to [16] for a detailed discussion about how the
energy coefficients Eij are derived in the instances.

The computational tests were made on a 1.80 GHz
Intel Core 2 Duo processor with 2 GB of RAM, using
a C/C++ code interfaced by Concert Technology with
the optimization software IBM ILOG CPLEX 12.1 and
with CPLEX running with default settings. Our aim
is to evaluate the trade-off between reduction of pro-
tection and solution conservatism of the heuristic min-
max regret approach with respect to the the absolute
robustness approach and the use of the median data
rate scenario. Specifically, we evaluated the increase in
energy consumption associated with the optimal solu-
tion of the pessimistic median scenario dPM (i.e., the
solution of the heuristic min-max regret approach) and
with the optimal solution for the absolute-robustness
scenario (i.e., the case where all the biosensors generate
data according to their highest rate allowed in D -
we denote such scenario by dROB) with respect to the
optimal solution for the median data rate scenario dmed.
Furthermore, given 1000 data rate scenarios randomly
extracted from D, we assess for how many scenarios
the optimal solution for dmed and for dPM remains
feasible (i.e., the solution does not violate any constraint
of BAND-ILP with data rate coefficients equal to those
of the considered scenario).

The results of the computational tests are presented in
Table I. In the table: ID identifies the instance; ∆E%
(dPM VS dmed) and (dROB vs dmed) is the percentage
increase in energy consumption entailed by dPM and
dROB with respect to dmed, respectively; PROT% is the
percentage of randomly generated data rate scenarios for
which an optimal solution of dmed and dPM is feasible.

Looking at the table, the first evident fact is that the
adoption of absolute-robustness leads to identifying very
conservative optimal solutions that, though granting full
protection against all possible data rate scenarios, leads
to a huge increase in energy consumption with respect to
the median and pessimistic median case. On average, the
increase in energy ∆E% (dROB vs dmed) is more than
three times, reaching 219%, and can even reach a level
close to 4 times the energy consumption of the median
case (instance I15). We believe that this is a too high
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Table I
COMPUTATIONAL RESULTS

ID ∆E% PROT%
(dPM VS dmed) (dROB vs dmed) dmed dPM

I1 118.93 175.34 53.2 79.8
I2 76.00 215.96 57.6 76.5
I3 93.91 168.03 46.9 73.7
I4 125.16 159.77 53.8 81.0
I5 139.46 284.11 52.4 82.8
I6 114.42 242.89 54.7 77.3
I7 89.77 220.68 49.8 81.1
I8 96.61 264.56 54.4 76.2
I9 82.90 191.00 57.4 76.9

I10 119.76 211.71 61.3 84.7
I11 109.31 228.64 59.5 78.6
I12 91.47 209.22 57.5 82.6
I13 133.14 243.89 58.9 78.0
I14 89.33 199.01 62.0 73.1
I15 93.06 276.40 42.0 83.4
I16 94.34 176.06 58.2 77.0
I17 114.00 238.30 44.8 79.5
I18 80.04 247.45 49.0 85.6
I19 73.25 227.00 57.4 81.8
I20 79.83 206.18 59.3 83.4

price to pay for non-critical BAN applications where we
may accept the risk of infeasibilities due to deviations in
the data rates. In contrast, using the heuristic min-max
regret based on dPS we get a high satisfying level of
protection that is on average equal to about 79% and
can be over 80% in many cases, while at the same time
entailing a much more contained energy consumption,
which, on average, is about two times higher with respect
to dmed. This is an attractive performance that deserves
to be further investigated, in particular by exploring
refined definitions of the reference scenario adopted in
the heuristic min-max regret approach.

As future work, we intend to study the integration of
signal-to-interference quantities in the model, developing
branch-and-cut solution methods identifying conflicts
between variables, as in [9], [14], [15]. Also, we plan
to study biobjective versions of the design problem,
evaluating the trade-off between relay cost and energy
consumption and adopting a solution algorithm as in
[27]. Last but not least, we plan to include routing
models enabling a fair energy consumption over the
links, following approaches like [2], [18], [24].
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[4] T. Bauschert, C. Büsing, F. D’Andreagiovanni, A.M.C.A. Koster,
M. Kutschka, U. Steglich, Network Planning under Demand
Uncertainty with Robust Optimization, IEEE Commun. Mag. 52
(2), 178-185, 2014, DOI: 10.1109/MCOM.2014.6736760

[5] D. Bertsekas: Network Optimization: Continuous and Discrete
Models. Athena Scientific, Belmont (1998)

[6] D. Bertsimas, D. Brown, C. Caramanis, Theory and Applications
of Robust Optimization, SIAM Review 53 (3), 464-501, 2011

[7] A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization,
Springer, Heidelberg, 2009

[8] D. Ben Arbia, M. Mahtab Alam, R. Attia, E. Ben Hamida Behavior
of wireless body-to-body networks routing strategies for public
protection and disaster relief. Proc of WiMob 2015, 2015

[9] A. Bley, F. D’Andreagiovanni, D. Karch, WDM Fiber Replacement
Scheduling, Electron. Notes Discrete Math. 41(5), 189-196, 2013

[10] B. Braem, B. Latre, I. Moerman, C. Blondia, E. Reusens, W.
Joseph, L. Martens, P.Demeester, The Need for Cooperation and
Relaying in Short-Range High Path Loss Sensor Networks, Proc.
of SensorComm 2007, 566-571, 2007
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