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Abstract. We consider the problem of optimally designing a body wire-
less sensor network, while taking into account the uncertainty of data
generation of biosensors. Since the related min-max robustness Integer
Linear Programming (ILP) problem can be difficult to solve even for
state-of-the-art commercial optimization solvers, we propose an original
heuristic for its solution. The heuristic combines deterministic and prob-
abilistic variable fixing strategies, guided by the information coming from
strengthened linear relaxations of the ILP robust model, and includes a
very large neighborhood search for reparation and improvement of gener-
ated solutions, formulated as an ILP problem solved exactly. Computa-
tional tests on realistic instances show that our heuristic finds solutions
of much higher quality than a state-of-the-art solver and than an effective
benchmark heuristic.

Keywords: Body wireless sensor networks - Network design - Integer
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1 Introduction

A Wireless Sensor Network (WSN) can be essentially described as a network of
typically small and portable wireless devices, the sensors, which are spread on
an area to collect data in a cooperative way and then forward the data to one
or more collectors, commonly called sinks. Recently, the application of WSNs in
healthcare has received a lot of attention and, just to cite two major examples,
WSNs have been used to monitor the health conditions of patients in hospitals
and to remotely monitor people under health risk when they are at home [1].

In this work, we focus attention on a topic related to healthcare applications
of WSNs: the design of body area networks. A Body Area Network (BAN) is a
WSN where wireless sensors (biosensors) are placed over or inside the body of
a person to collect biomedical data. The biosensors generate data and transmit
them to one or more sinks for storing or processing. For a detailed introduction
to BANs, we refer the reader to the works [2,3]. Designing a BAN essentially
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consists in deciding the topology of the network and how data are routed from
the biosensors to the sinks. This constitutes a classical WSN design problem
(see e.g., [4,5]). However, since BANs are deployed on human bodies, their design
need particular attention and present specific challenges that are not shared with
other WSNs design problems [2,6]. A critical question is in particular constituted
by the peculiar high-loss propagation behaviour of wireless signals through and
over the human body: in contrast to canonical wireless networks, where high
losses can be handled by increasing power emissions (see e.g., [7-9]), in BANs
power emissions must be contained to both avoid damages to human tissues, due
to overheating, and to preserve the charge of sensor batteries, whose substitution
can result very uncomfortable for patients. Controlling energy consumption is
thus a major aim in BAN design and is typically achieved through multi-hop
routing, implemented through relay nodes, which are wireless devices that act as
intermediate nodes between sinks and sensors and allow transmission of reduced
power over shorter distances [10-12].

Nowadays there is a rich literature about BANs, in particular about technical
aspects concerning the definition of energy-efficient routing protocols and the
study of the peculiar propagation condition in human bodies [2,6]. In contrast,
there is still a limited amount of work devoted to the design of BANs in terms
of optimization models and algorithms. This fact has been highlighted also in
the two relevant previous works [10,13]: in [10], the design problem of a BAN is
formulated as a mixed integer linear program where multi-path routing and relay
deployment is established in order to minimize the total cost of deployment of a
BAN; [13] instead investigates a robust optimization model for tackling the data
generation uncertainty and proposes a Mixed Integer Programming (MIP)-based
heuristic for the solution of the resulting challenging optimization problem.

In this work, we consider a scenario-based min-maz robust optimization
model for the design of BANs that takes into account the uncertainty of data
generation of BAN sensors. Our main original contribution is a new ILP heuris-
tic for solving the robust design problem, based on combining deterministic and
probabilistic variable fixing strategies guided by peculiar linear relaxations of
the robust optimization model. In comparison to [13], our new algorithm does
not just fix the variables expressing routing decisions, but also employs an ini-
tial deterministic fixing phase of the variables modelling the activation of relay
nodes. Computational tests on realistic BAN instances show that our new heuris-
tic produces solutions that are not only deeply better than those produced by a
state-of-the-art optimization solver, but are also significantly better than those
found by the algorithm of [13].

2 The Body Area Network Design Problem

In this section, we identify the elements of a BAN that are relevant for modelling
purposes and we derive a network optimization model for the energy-efficient
design of a BAN. For a more detailed description of mathematical optimization
modelling for BANs, we refer the reader to [10,13].
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System Elements of a BAN. Any BAN can be described as a set of biosen-
sors, denoted by B, that produce biomedical data while monitoring a human
body. The data are collected by a set of sinks, denoted by S. The biosensors and
the sinks are located in positions over or inside the human body that are usually
precisely pre-established (for example, one can think about the electrodes of a
Holter monitor, which must be positioned on specific spots of the chest of a
patient for monitoring heart activity). For each sink s € S, each biosensor b € B
generates a volume of data dps > 0 (typically, a bitrate measured in bit/s).

In order to improve energy efficiency, the biosensors do not transmit their
data directly to the sink according to a single-hop direct communication, but rely
on a multi-hop routing strategy. Multi-hop routing can be implemented through
relay nodes, which have the task of receiving and forwarding the biomedical data.
The positions of relay nodes is not fixed and can be chosen. Such positioning
choice, if done wisely, can greatly improve the energy efficiency of the BAN.
The optimization problem that we consider is indeed related to the optimal
positioning of relays in order to minimize energy consumption. In such problem,
we are given a set of candidate locations for the relays and an upper bound on
the number of deployable relays and we must take two decisions: (i) establish
the number of deployed relays; (ii) choose the location of the deployed relays.

We introduce a set R to represent the potentially deployable relays. Each
potential relay r € R is characterized by a unique position in/over the body and
we must decide whether it is deployed or not. Each r has also a capacity ¢, > 0
that represents the maximum bitrate that it can manage.

The transmission of data from any BAN device (biosensor, relay node or sink)
to another BAN device is based on a directional wireless link. As in [10,13], we
assume that the devices employs a TDMA (Time Division Multiple Access) pro-
tocol, which allows the devices to transmit on the same frequency band without
interfering. When either transmitting or receiving data, the BANs devices con-
sume energy according to the following formulas [14]:

ETX(”) 5) = ErXorre "V + Erxamp ()‘) 0w
ERX(U) = ERXCIRC v

(1)

where Erx is the total transmission energy and Erx the total receiver energy
(expressed in joules). We remark that Erx, Erx are a function of the volume of
transmitted /received data v (expressed in bits) and of the distance § (expressed
in meters) between the transmitter and the receiver. Additionally: Erx,, 0,
ERxXo pe are the energy consumed by the circuits to respectively transmit and
receive a single bit; Erx,,,»(A) is the energy consumed by the transmitting
amplifier and A is the path loss exponent in the signal attenuation formula.

A Flow-Based Integer Linear Program for BAN design. It is natural to
trace back the energy-efficient design of BAN to a network flow optimization
problem. Specifically, we trace it back to a variant of a Multicommodity Flow
Problem (MCFP), a classical network flow problem, where the aim is to decide
how to install routing capacity and how to route a set of commodities in a
network, minimizing the total routing and installation cost, while not exceeding
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the capacity of installed network elements. For an introduction to capacitated
network design and MCFPs, we refer the reader to [15,16].
The BAN can be naturally modelled through a directed graph G(V, A) where:

(1) the set of vertices V contains one element for each wireless device of the

network - biosensor, sink and relay. The set V' thus corresponds to the union
of three disjoint sets of vertices: (i) the set B of vertices corresponding to
biosensors; (ii) the set R of vertices corresponding to potentially deployable
relays; (iii) the set S of vertices corresponding to sinks. We therefore have
V=BURUS.
Each BAN device can communicate with other devices that are within its
transmission range. The transmission range may vary on the basis of the
propagation conditions and of the transmission power of the device (see
e.g., [14]). We denote the subsets of devices that are within the transmission
range of a device as follows: (a) for each biosensor b € B, we distinguish the
subsets R, C R, and S, C S representing the relays and sinks within the
range of b, respectively; (b) for each potential relay r € R, we distinguish
the subsets R, C R, and S, C S representing the relays and sinks within
the range of r, respectively; (¢) more generally, given a vertex i € V, repre-
senting any type of BAN device, we denote by V; C V the subset of vertices
representing devices within the transmission range of .

(2) the set of arcs A contains one element for each wireless link that can be
established between a pair of wireless devices. An arc a = (i,j) € A is an
ordered pair of vertices that models a directional wireless link from a device
i € V to another device j € V; within the range of i. We respectively call
tail and head the vertices 4,5 of @ = (4,7). The set A is the union of four
disjoint sets of arcs:

(a) the set Ap_.g of arcs (7, j) such that the tail is a biosensor and the head is
a sink within the range of the biosensor, i.e. i € B, j € S;. They represent
transmissions of biomedical data directly to sinks;

(b) the set Ag_. g of arcs (4, j) such that the tail is a biosensor and the head
is a relay within the range of the biosensor, i.e. i € B, j € R;. They
represent transmissions from a biosensor to a relay;

(c) the set Ap. g of arcs (i,j) such that both the tail and the head are relay
nodes, i.e. i,7 € R with j € R;. They represent wireless links between
relays;

(d) the set Ag_g of arcs (i,7j) such that the tail is a relay node and the
head is a sink within the range of the relay, i.e. i € R, j € S;. They
represent transmissions from a relay to a sink. Therefore we have A =
Aps UAp .RUAR_RUAR_3.

! We note that we assume that each biosensor b € B never acts as a receiver and only
generates and transmits data. So we do not characterize the subsets B,, Bs C B of
biosensors within the range of a relay r or a sink s. Furthermore, we assume that each
sink s never acts as a transmitter and only receives data. So we do not characterize
the subsets Bs C B, Rs C R of biosensors and relays within the range of a sink s.
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We can now rewrite the energy formulas (1) in terms of the graph introduced
above. When data are transmitted on an arc a = (4, j) € A, the energy consumed
is the sum of the energy consumed by 7 to transmit and the energy consumed
by j to receive. The energy consumed to send one unit of data from ¢ to j is:

Eyj = Brx(1,6;5) + Brx(1) = | Brxeme + Erxae i) - 057 | + Brxerme (2)

which is obtained from formulas (1) for v = 1. Here, A;; and J;; are respectively
the path loss coefficient and the distance between ¢ and j.

Using all the notation and elements introduced until now, we can formally
state the BAN design problem that we consider, referring to the problem defin-
ition and modelling that has been initially provided in [13]:

Definition 1 (The Body Area Network Design Problem - BAND).
Given: (1) a BAN modeled as a directed graph G(V, A), where V.= BURUS is
the set of vertices and A = Ap_.s UAp_ g UARr_rUARr_g is the set of arcs;
(2) the bitrate dps > 0 of data generated by each biosensor b € B for each sink
s € S; (3) the capacity ¢, > 0 of each relay r € R; (4) the energy coefficients
E;; > 0 expressing the total energy consumed to send 1 data unit from i to j;
the BAND consists in choosing which relays are activated and which single-paths
are used to route the flow of data generated by each biosensor for each sink, in
order to minimize the total energy consumption. O

The BAND is based on taking two decisions: (1) which relays to deploy and
(2) which single-paths to use to route the data generated by each biosensor for
each sink. These two decisions can be modeled through two families of binary
decision variables: (1) binary relay deployment variables y, € {0,1} V r € R such
that y, equals 1 if relay r is deployed and 0 otherwise; (2) binary unsplittable
flow variables xfj € {0,1} Vb € B,s € S,(i,j) € A such that xi’j equals 1 if
all the data generated by biosensor b for sink s are routed on arc (i,j) and 0
otherwise.

These variables are employed in the following ILP problem that we denote
by BAND-ILP [13]:

min ZZ Z Eij dys 2% (BAND-ILP)

beB seS (i,j)€A

- Z dps xlI;j = —dps be B,s € S (3)
P
B—RUAB_s
Yoo dwali— Y dyeably=0 beBseSreR (4
(g,r)e (r,4)€
Ap .RUARLR ArorRUAR g
Z dps I?i = dps be B,se S (5)

(4,8)€
ApsUARr_s
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Z dps xf; < ¢ Y reR (6)
(rj)e
AR RrRUAR- s
>y <U (7)
reR
a?s € {0,1} be B,sc S, (i,j) € A
yr € {0,1} reR.

We remark that the constraints (3—5) could be simplified by dividing both
sides of the inequalities by dps.

The objective function pursues the minimization of the total BAN energy
consumption expressed as the sum of the energy consumed by each arc (i, j),
equal to the product of the data flow and the energy E;; consumed on (4, j) to
transmit and receive 1 unit of data. The constraints (3-5) are flow conservation
constraints essentially expressing the balance between ingoing and outgoing flows
in any node of the graph. Note that we distinguish three flow balance cases, one
for each type of device/vertex: (1) biosensors b € B, which only transmit data,
have a negative flow balance; (2) relays r € R, which are transit vertices and thus
retransmit all the received data, have a null flow balance; (3) sinks s € S, which
only receive data, have a positive flow balance. In each of these vertices, the
flow balance must be considered for the data flow generated by each biosensor
b € B for each sink s € S. The constraints (6) express the capacity of each relay.
We note that each of these constraints has a right-hand-side whose value may
vary: if ¥y, = 1, then the constraint activates and the right-hand-side is equal
to ¢,. Otherwise, the right-hand-side is equal to 0 and forces to zero also the
left-hand-side, thus preventing data flows to be received by or transmitted to 7.
The constraints (7) express the limit U > 0 on the number of deployable relays.

Protecting Against Data Uncertainty by a Robust Model. Until now,
we have assumed that all the data involved in the BAND are exactly known
when the problem is solved. However, this assumption does not hold in the
real world: among its sensors, a BAN typically includes sensors that generate
data according to an event-driven policy, thus leading to changeful and non-
continuous data rates whose value is not known a priori [2]. A reduction in the
expected data rate is not harmful to the designed BAN, since there is anyway
sufficient transmission capacity. What can instead have very bad effects is an
increase in the data rates, since the used relays may become not sufficient to
handle the increased data volumes. In this case, biomedical data would be lost
and this is a risk that cannot be taken at all in a BAN (as an example, one can
think about the dramatic consequences that losing data produced by an early
detection ischemia sensor could have on a patient).

The presence of data uncertainty in an optimization problem, namely the fact
that a subset of the input data is not exactly known when the problem is solved,
may result really tricky not just practically but also theoretically: as well-known
from sensitivity analysis, even small deviations in the value of the input data
may completely compromise the feasibility and optimality of produced solutions.
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Solutions supposed to be feasible may result infeasible and thus totally useless
in practice, while solutions supposed to be optimal may result instead of very
bad quality. For an exhaustive introduction to the consequences of the presence
of data uncertainty in optimization, we refer the reader to [17-19].

For the design of BAN under data rate uncertainty, we adopt min-mazx robust-
ness (Min-Max) [20,21]: this type of robust optimization paradigm is especially
appropriate in problems where it is crucial to guarantee very high level of protec-
tion against data uncertainty, since infeasibility due to data variations could have
dramatic effects. This is the case of BANs, where data loss due to unexpected
fluctuations in data rates may lead to the death of monitored patients.

In the context of the BAND, assuming the perspective of a highly risk-averse
decision maker, who wants to guarantee a fully trustable monitoring of health
conditions even under data uncertainty, looks appropriate. Specifically, Min-Max
can be adapted to the BAND problem by introducing a set of data generation
scenarios X': each scenario o € X specifies a vector d” = (df; ---df, - drBHSI)
that states the bitrate between each biosensor-sink couple in o. These scenarios
can be included in the so-called robust counterpart of BAND-ILP, a version
of BAND-ILP that we denote by Rob-BAND-ILP and that produces robust
solutions, i.e. solutions protected against data fluctuations (such formulation
has been introduced in [13], paper to which we refer the reader for a detailed
discussion of how the model is derived following the principles of Min-Max):

min E (Rob-BAND-ILP) (8)

>N > Eydi ol <E cex 9)
beB seS (i,j)€EA
- > ap=-1 beB,seS (10)

(bj)e
A _RUAB .5

Z 205 _ Z 25 =0 beB,seSreR (11)

)

(r.d)€ (4:s)€
ArorUAR_s Ap—RrRUAR<R

> abi=1 beB,seS (12)

(4,5)€
Ap _.sUAR s

Z 7t < ey reRoeX (13)

(rj)e
AroRrUAR s

Sy <U (14)

reR
a?s € {0,1} be B,sc S, (i,j) € A
yr € {0,1} reR.

where variable £ > 0 is introduced to express an upper bound on the total
energy consumed by routing decisions over all the scenarios in Y. Additionally,
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this robust model includes one capacity constraint (13) and one variable lower
bound constraint (9) for each scenario o € X, as done in [13].

3 A Fast Heuristic for the Rob-BAND-ILP

The optimization problem Rob-BAND-ILP in principle can be solved by any
Mixed Integer Programming (MIP) solver. However, the problem may prove
(very) difficult to solve even for commercial solvers based on state-of-the-art
branch-and-cut solution algorithms like IBM ILOG CPLEX [22]: these solvers
can have issues in fast finding good quality solutions and tend to present a
slow convergence to an optimal solution. More specifically, the optimality gap,
expressing how far the best solution found is from an optimal solution during the
execution of the branch-and-cut, tends to be improved slowly. Such difficulties
constitute an issue for practical applications of the BAND.

To tackle such unsatisfactory performance, we propose to adopt a heuristic
that is based on the sequential execution of the following three phases:

(1) a deterministic variable fixing phase that exploits the optimal solution of
the (strengthened) linear relaxation of Rob-BAND-ILP and that produces
a partial solution for the problem;

(2) a probabilistic variable fixing phase, guided by the combination of informa-
tion coming from the optimal solutions of two distinct linear relaxations of
(Rob-)BAND-ILP and that provides a complete fixing of the variables;

(3) a reparation/improvement phase based on executing an ezact large variable
neighborhood search, which aims at substituting an infeasible fixing with a
feasible fixing or improving a feasible fixing, produced during phase 2. The
search is called ezact since it is expressed through the solution of an integer
linear programming problem solved through an MIP solver.

We detail the features of each phase in the following subsections. Here, we just
anticipate that the second phase represents the core of our algorithm and is based
on an improvement of the algorithm ANTS (Approzimate Nondeterministic Tree
Search) [23], an ant colony-like algorithm. Specifically, the refinement of ANTS
that we adopt is based on interpreting ant colony as a probabilistic variable fixing
procedure, where the fixing is guided by optimal solutions to linear relaxations of
the problem. Such interpretation has been first made in [13,16,24]. We stress that
such interpretation actually leads to an algorithm that in spirit and substance
is deeply different from ant colony algorithms and is more “well founded” on
precious polyhedral considerations that come from the linear relaxation of the
problem and from its strengthened version obtained after the application of cuts
at the root of the branch-and-bound node.

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging
behaviour of ants that was initially proposed for combinatorial optimization by
Dorigo and colleagues in [25] and later extended and improved in many works
(e.g., [23,26] - we refer the reader to [27] for an overview of theory and applica-
tions of ACO). A typical ACO algorithm has the following general structure:
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while an arrest condition is not satisfied
— ant-based solution construction
— pheromone trail update
— local search

The core of the algorithm is represented by a cycle where a number of feasi-
ble solutions are defined in a probabilistic and iterative way, taking into account
the quality of solutions built in previous cycle iterations. Each solution is itera-
tively built by an ant: at each iteration, the ant is in a state that corresponds
to a partial solution and can execute a so-called move, fixing the value of an
additional variable and thus further completing the solution. The move is estab-
lished probabilistically, putting together an a-priori and an a-posteriori measure
of variable fixing attractiveness. In the theory of ACO, the a-priori measure is
called pheromone trail value and is updated at the end of the construction phase
on the basis of how good were the moves done. The construction cycle ends when
reaching a stop condition, which commonly consists in a time limit. Then a local
search is started to try improve the feasible solutions built, finding some local
optimal solution.

Deterministic Fixing Phase. The first step of the first phase consists of
solving the linear relaxation of problem Rob-BAND-ILP: the optimal solution of
the linear relaxation, strengthened by the cuts added by CPLEX at the root node
of the branch-and-bound tree, is then used to fix the value of decision variables of
the problem. Specifically, the strategy is to fix to 1 the relay activation variables
1y whose value in the optimal solution of the linear relaxation is sufficiently close
to 1. The rationale at the basis of this strategy is that if the value of a variable
is sufficiently close to 1, then there is a quite good indication that we should
fix the decision variable to 1 a good feasible solution. Formally, if we denote by
yILR the value of variable y,. in an optimal solution of the (strengthened) linear
relaxation, the fixing rule is: if TR > 1 — € then impose y, = 1, where € > 0 is
a parameter to choose. We focus on the relay activation variables as their fixing
results particularly effective in reducing the difficulty of solving the complete
problem Rob-BAND-ILP. Once that this fixing has been operated, we obtain a
smaller version of the original problem, denoted by Rob-BAND-ILPF/X  where
the fixed variables y, are no more part of the decision problem.

Probabilistic Fixing Phase. This phase is aimed at identifying the data rout-
ing paths within the BAN and consists of fixing the unsplittable flow vari-
ables xf; As first step, let us denote by C the set of biosensor-sink pairs
for which there exists at least one data scenario with positive bitrate, i.e.
C ={(b,s) €e BxS:3 0 e X withd], > 0}. We then refer to the concept
of routing state.

Definition 2 (Routing state - RS [13]). Consider a subset of biosensor-sink
couples C C C. We define routing state a fizing of the unsplittable flow variables
xfjs Y(i,j) € E for each (b,s) € C such that the fizing is feasible for the flow
conservation constraints (10-12). O
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A routing state assigns one routing path to each pair (b,s) € C. It is said
partial when C' C C (i.e., only a subset of data flows is routed), whereas it is
said complete when C' = C (i.e., all data flows are routed).

We build a complete routing state by assigning paths to biosensor-sink pairs
according to the following procedure, which we call SET-PATHS. The pairs are
considered according to an a-priori defined order, as done in [13]: we sort pairs
(b, s) € C for decreasing value of the highest bitrate df, over all the data scenarios
o € Y. Following the pair order, for each couple ¢ = (b, s) € C, we assign the
entire data flow to a path p connecting b to s. The routing path for the pair
¢ is chosen from a set of candidates P., defined as follows: (1) we solve the
linear relaxation of Rob-BAND-ILP#7X  which includes the deterministic fixing
of the first phase and where we have additionally fixed the value of variables of
pairs ¢ € C for which a path has been assigned in previous executions of the
external loop; (2) using the optimal solution (2%, yZ%) of the linear relaxation,
we define a graph H¢(V, A™°4) from G(V, A): the set of vertices does not change,
while in A™°? we keep only those arcs (i, j) € A with a positive flow, i.e. such

LR c=(b,s)

that > 0. Furthermore, for each arc (i,7) € A™°% we define a weight

wi; = ziLjR =) We derive L candidate paths for the pair ¢ = (b, s) on graph
He(V, Am°d) by iteratively modifying H¢(V, A™°?): in an internal loop, at each
iteration we find the shortest path p considering the weights w;; in H¢(V, A™°4),
then we add p to the set P, and we delete the arc of p with lowest weight
from H¢(V, A™°?), This is a straightforward procedure that, however, can be
fast implemented and that we have observed among professionals in real-world
telecommunication applications. The rationale behind the exclusion of the arc
with lowest weight is that, if the fractional value in the range [0,1] of a binary
variable is seen as the probability of fixing to 1 the variable in a good solution,
then smaller values should lead to fixing to 1 of lower quality (we refer the reader
to the book [28] about randomized rounding algorithms for a good discussion on
looking at fractional binary solutions as measures of probability). After having
established the set of candidate paths P. for ¢, we compute the probability of
choosing each path p € P, to route the entire flow of couple ¢ using the formula:

at,+(1—a)n,

PROB, =
? ZwePCO‘TﬂJF(l*a) N

(15)

where both 7, and 7, are obtained as the sum of the current values of the a-
priori and the a-posteriori measures 7;;, n;; for the edges in path p for pair c.
In particular, the a-priori measures 7{; are initialized with the values that flow
variables assume in an optimal solution to the (strengthened) linear relaxation of
Rob-BAND-ILPF'X and are updated at the end of each construction phase (see
below for more details). Instead, the a-posteriori measures n;; are set equal to the
values that flow variables assume in an optimal solution to the linear relaxation
of Rob-BAND-ILP# /X plus the additional fixing that have been operated while
building a complete routing state. After having probabilistically chosen a path
p* € P, through formula (15), we derive a fixing of the flow variables 2°*, where
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xfj = 1if (4,) belongs to p* and xf; = 0 otherwise. Finally, we add the couple
c to the set of processed couples C for which the routing has been established.

After having executed the external loop |C| times, following the ordering
of the pairs, we obtain a complete routing state. However, since the procedure
adopted to define a routing state does not take into account the capacity of
relays, we may actually produce routing solutions that are infeasible: this can
occur, for example, if many routing paths use the same relay and the sum of
the data exceeds the relay capacity. Due to this possibility, we include in the
algorithm a check-and-repair phase: this phase first verifies the feasibility of
the routing state and, in case of infeasibility, tries to repair the solution. The
reparation is attempted through the same ILP heuristic that we adopt to find
better solutions (see the next subsection for a description of the ILP heuristic).

The feasibility of a complete routing state for the complete problem Rob-
BAND-ILP can be fast and easily operated: we deploy all relays appearing in
paths used in the routing state (i.e., we fix to 1 the corresponding relay deploy-
ment variables y, and to 0 all the other variables y,.) and we verify the presence
of relay-capacity constraints (13) violated for some data scenario in Y. Addi-
tionally, we must check if the number of activated relays is higher than the limit
expressed by constraint (14). If all constraints are satisfied, then we have built
a feasible solution for Rob-BAND-ILP: the complete routing state specifies the
values of the flow variables x and these allows us to also derive a feasible activa-
tion of the relay activation variables y. In contrast, any violation of a capacity or
activation constraint immediately certifies that the built routing state is infea-
sible and we must therefore repair it.

We present the pseudocode of the heuristic in Algorithm 1. There, the energy
value of a solution (Z,7) is denoted by E(Z,7). Additionally, we denote by
(z*,y*) the best solution found during the entire execution of the algorithm.
The heuristic includes two main loops: the external loop is executed until a time
limit is reached, whereas the internal loop provides for building m feasible solu-
tions according to the routing state construction that we have explained above.
Specifically, the first task of the algorithm is to solve the (strengthened) linear
relaxation of Rob-BAND-ILP that is used to execute the first deterministic fixing
phase, leading to problem Rob-BAND-ILPF/X_ Then the (strengthened) linear
relaxation of Rob-BAND-ILP¥/¥ is solved and its optimal solution is used to
initialize the a-priori measure of attractiveness 7;;(0). In each execution of the
internal loop, the first task is to define a complete routing state as previously
detailed. The complete routing state provides a complete valorization of the
variables  and is used as basis to derive a relay installation g. This leads to
an integral solution (Z, ) whose feasibility is not guaranteed and must thus be
checked and eventually repaired through the ILP heuristic. If the solution (Z, 3)
found is feasible and is better than the current best solution (z2,y%), (2, y?)
is updated and the internal loop continues. At the end of the internal loop, the
a-priori measures 7 are updated, evaluating how good the fixing resulted in the
obtained solutions. The update formula uses the optimality gap (OGap) corre-
sponding with a feasible solution of value v and a lower bound L for the optimal
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value v* of the problem (since we consider a minimization problem, we have

L <v* <wvand OGap(v,L) = (v—L)/v):

F _
700 =5 (= 1+ 30 An with A =50 (OG“p(”bgap (gi‘;p(”f : L)>
(16)
where 75 (h) is the a-priori attractiveness of fixing variable xfj:(b’s) at fixing
iteration h, L is the lower bound (in our case, the strengthened linear relaxation
of Rob-BAND-ILP), vy is the value of the f-th feasible solution built in the last
construction cycle and v is the (moving) average of the values of the F' solutions
produced in the previous construction phase. ATfjf is the penalization/reward
factor for a fixing and depends upon the initialization value 7j; of 7, combined
with the relative variation in the optimality gap that v, implies w.r.t. ©. Since
in (16) we use a relative gap difference, we are able to encourage or discourage
fixings made in the last produced solution through a comparison with the average
quality of the last F' solutions produced. Once the time limit is reached, we
execute the ILP heuristic for improving the best solution found and at the end
of the execution we return (z*,y*).

Algorithm 1. Heuristic for Min-Max BAND

1: compute the strengthened linear relaxation of Rob-BAND-ILP

2: execute the deterministic fixing phase of variables y, using a fixing threshold ¢ > 0
and define Rob-BAND-ILP*/*

3: compute the strengthened linear relaxation of Rob-BAND-ILPF'¥ and initialize
the values 7;;(0) through it

4: let (z*,y") denote the best solution found by the algorithm

5: while a global time limit is not reached do

6: let (2%, y®) denote the best solution found in the inner loop

7 for k:=1tom do

8: build a complete routing state Z following the procedure SET-PATHS
9: derive a relay installation ¢ using Z

10: if (Z,7y) is not feasible for Rob-BAND-ILP then

11: run mod-RINS for repairing (T, 3)

12: end if

13: if (Z,7) is feasible and E(%,7) < E(2?,4?) then

14: update the best solution found (z?,3?) := (%, )

15: end if

16: end for

17: update 7;;(t) according to (16)

18: if E(z®,y”) < BE(z*,y*) then

19: update the best solution found (z*,y*) := (2, y?)
20: end if

21: end while

22: run mod-RINS(z*,y*) for improving (z*,y")

23: return (z*,y")




246 F. D’Andreagiovanni et al.

Reparation/Improvement by an ILP Heuristic. To either repair an infea-
sible fixing of the decision variables or to improve a feasible solution, we rely
on an ILP heuristic exactly executing a very large neighborhood search, i.e. the
search is formulated as an integer linear programming problem solved through
a state-of-the-art MIP solver (see also, e.g., [35]). Specifically, we rely on a mod-
ified Relazation Induced Neighborhood Search (RINS) (see [29] for an exhaus-
tive description of this search method). Let (Z, %) be a solution found for Rob-
BAND-ILP, (z7T% yTLH) he an optimal solution of the linear relaxation of Rob-
BAND-ILPFZX strengthened by the cuts found by CPLEX in the root node of
the branch-and-bound tree. Moreover, denote by (z,7);, (z7 X%, yTL1); the j-th
component of the vectors.

The modified RINS (mod-RINS) that we adopt solves a subproblem of Rob-
BAND-ILP where we fix the variables whose value in (Z,9) and (z71F, yTLH)
differs of at most p > 0 according to the following rules:

(#,9); =0 A (PR yTER) < p = (2,9); =0
(Z,9); =1 A @TER yTLRY > 1 - p = (2,y); = 1.

The resulting problem is then passed to CPLEX, which attempts at solving
it within a time limit. The rationale is that CPLEX, though not being able to
fast finding good quality solutions to the complete problem, is instead able to
fast finding good solutions to subproblems obtained by smartly fixing variables.

4 Experimental Results

We evaluated the performance of the new heuristic on the same set of 30 instances
considered in [13]. We refer the reader to that paper for a detailed description of
the instances; here we just remind the major topology features of the correspond-
ing graph: all instances consider a BAN including 16 biosensors (i.e., |B| = 16)
and 2 sinks (i.e., |S| = 2). Moreover, 400 potential sites over the human body
(excluding head, hands and feet) are considered for the deployment of relays
(i.e., |R| = 400), chosen randomly over the human body.

We performed all the experiments on a 2.70 GHz machine with 8 GB, using
a C/C++ code interfaced with IBM ILOG CPLEX 12.5 through Concert Tech-
nology and running with a time limit of 2400s. The results of the computational
tests are presented in Table 1, where ID is the identifier of the instance and
where we show the performance of all the considered algorithms in terms of the
optimality gap associated with the best solutions found within the time limit.
Specifically, we show the optimality gaps of: (1) CPLEX (GapILP%) applied
directly to solve Rob-BAND-ILP; (2) the heuristic presented in [13] (GapRB%)
- we denote this heuristic by RB; (3) our new heuristic (GapHEU%) - we denote
our heuristic by HEU. Finally, AGap% is the percentage increase of the opti-
mality gap of CPLEX w.r.t. that of the heuristics. For both RB and HEU, the
optimality gap is derived comparing the value of the linear relaxation of Rob-
BAND-ILP computed by CPLEX with the value of the best feasible solution
found by the heuristic within the time limit. For both heuristics, the number of
candidate paths for each biosensor-sink routing path assignment equals 5, the
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Table 1. Experimental results.

ID | GapILP% GapRB% | GapHEU% | A Gap% HEU-ILP | A Gap HEU-RB
Il | 55.22 41.63 36.85 33.2 115
12 | 67.17 57.10 49.28 26.6 13.7
I3 |40.26 35.83 32.21 19.9 10.1
14 | 45.20 42.16 26.10 25.1 10.1
I5 | 68.60 54.54 51.65 24.7 5.3
16 |60.45 38.33 35.34 41.5 7.8
17 | 45.65 34.52 33.07 27.5 4.2
I8 | 64.09 48.78 44.68 30.2 8.4
19 |60.66 47.77 42.13 30.5 11.8
110 | 34.08 28.10 23.07 32.3 17.9
111 61.42 48.50 32.20 46.2 14.5
112 60.97 46.65 43.56 31.8 14.2
113 | 59.96 37.66 27.27 21.2 5.8
114 | 63.92 50.77 28.73 25.0 9.9
115 | 34.61 28.95 32.47 10.9 21.0
116 | 38.33 31.89 40.21 34.5 17.1
117 | 36.45 41.10 41.23 32.3 11.6
118 | 53.04 41.61 32.17 39.3 22.7
119 | 36.81 31.97 28.36 22.9 11.3
120 | 36.08 30.87 26.70 25.9 135
121 | 34.89 29.03 35.96 20.4 14.7
122 | 56.89 42.63 37.00 34.9 13.2
123 | 52.83 43.58 39.92 24.4 8.4
124 | 47.13 50.34 40.93 13.1 18.7
125 | 41.50 35.06 37.34 10.0 6.5
126 | 67.46 38.43 35.47 47.4 7.7
127 | 34.18 29.52 24.38 28.6 17.4
128 | 64.75 52.11 40.48 37.4 22.3
129 | 70.31 41.25 34.61 50.7 16.1
130 | 59.95 48.35 42.50 29.1 12.1
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combination factor of the a-priori and a-posteriori measures « is set equal to
0.5 and the width F' of the moving average is 4. To solve the linear relaxation
of Rob-BAND-ILP and of BAND-ILP we used CPLEX. The threshold e for
the deterministic fixing threshold is set equal to 10~!. The repair/improvement
heuristic mod-RINS uses a threshold p = 107! and runs with a time limit of
10 min for finding improvements and of 1 min when used for solution reparation.
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The external cycle of HEU ran with a time limit of 30 min, which matches the
time limit of CPLEX when added up to the time reserved for mod-RINS.

The optimality gaps GapILP% indicate that the instances proved challenging
to solve even for a state-of-the-art solver like CPLEX, which produces solutions
that are distant from the optimum at the time limit. In contrast, HEU provides
solutions associated with a great reduction in the optimality gap that is on
average equal to about 29% and can be sensibly over 40%, as in the case of
instances I11, 126 and 129. HEU is also able to grant a significative reduction with
respect to the benchmark heuristic RB, which already grants a high reduction
in the optimality gap with respect to CPLEX: the average reduction in gap is
about 12% and can be over 20% as for 118 and 128. We think that the better
performance of HEU with respect to BR is due to the inclusion of an additional
fixing phase that involve the relay activation variables, which are excluded from
the linear relaxation-guided fixing of BR.

As future work, we plan to further reduce the optimality gap by considering
other integration of heuristics (in particular, genetic and sequential heuristics
like in [30,31]) and cutting plane methods identifying conflicts between variables,
as in [32,33]. Also, we intend to evaluate biobjective versions of the problem,
considering the trade-off between relay deployment cost and energy consumption
and adopting an algorithm similar to [34]. Finally, we plan to investigate the
adoption of another robustness paradigm, namely Multiband Robustness [19].
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