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Power Savings with Data Rate Guarantee in
Dense WLANs

Fabio D’Andreagiovanni, Rosario G. Garroppo, Maria Grazia Scutellà

Abstract—We investigate the problem of minimising
power consumption in dense Wireless Local Area Networks
(WLANs), by optimally establishing the association of User
Terminals (UTs) to Access Points (APs). This management
allows to switch off some APs, granting important power
savings, while at the same time guaranteeing to satisfy
the data rate requirements of all UTs. The considered
WLAN power minimization problem can be formulated as
an Integer Linear Programming (ILP) model and can be
in principle solved by any commercial optimization solver.
However, the problem is NP-hard and, as we show through
thorough computational tests, even a last generation state-
of-the-art solver like IBM ILOG CPLEX can have diffi-
culties in finding solutions of good quality in short amount
of time, as required in real WLAN deployments. As a
consequence, we propose two new fast heuristic algorithms
for WLAN power minimization. Furthermore, we show
that, in some cases, also a proper setting of the parameters
of CPLEX can compute solutions associated with good
power savings in a reasonable time.

Index Terms—Wireless LAN; Power Efficiency; Resource
Allocation; Integer Linear Programming; Network Man-
agement; Heuristics.

I. INTRODUCTION

Dense WLANs are usually deployed where a lot of
users require WiFi access to the Internet (e.g., public lo-
cations and large enterprises). In these scenarios, besides
coverage, a relevant design target is to provide enough
capacity for the large amount of traffic generated by the
users. The solution is to increase the density of APs (in
the order of 0.01 AP/m2). In this scenario, the design
of efficient reconfiguration algorithms, aimed at reducing
the power consumption of the WLAN infrastructure, is
of paramount relevance, since it may lead to a relevant
cost reduction.

Most (or even all) of the currently deployed enterprise
dense WLANs are continuously operated at full power,
i.e. all the APs are always on and their transmission
power is set to the maximum possible value. This leads

F. D’Andreagiovanni is with Heudiasyc UMR 7253, Sorbonne
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to a considerable energy wastage, because the same
power is employed at the peak hours (e.g., 11 AM of
weekdays) and during the off-peak periods (e.g., nights
and weekends).

In this work, we address the problem of saving power,
taking into account the generated traffic, while satisfying
the data rate requirements of the users. To achieve this
goal, we operate at the network management level by
establishing a suitable association UTs-APs, in order to
select the APs that can be turned off.

In the first step of our study, we formally characterize
the WLAN system, in order to detail all the system-level
features in their more general form, without perform-
ing any kind of approximations or simplifications. The
WLAN system characterization is then used to propose
an Integer Linear Programming (ILP) model, which
formulates the optimization problem of reconfiguring the
WLAN network for power minimization. The resulting
WLAN power minimization problem is NP-hard and
even state-of-the-art commercial optimization software
can solve to optimality only instances of the problem
of moderate size. Therefore, in the second part of our
study we investigate the adoption of alternative, fast and
computationally efficient, heuristic solution approaches,
in order to be able to tackle larger instances.

To cope with the complexity of the ILP model solu-
tion, in this paper we carry out two kinds of analysis.
The first one is devoted to evaluate at what extent the
ILP model, when solved by a commercial optimization
solver, can be actually useful to compute solutions for
realistic scenarios, in a time that is acceptable from the
engineering perspective. In our case, this is carried out
by using the sophisticated state-of-the-art optimization
solver IBM ILOG CPLEX, studying different settings
of the solver parameters, and evaluating the quality of
the computed solutions. Indeed, the ILP model for the
WLAN power minimization problem can be solved,
at least in principle, by any commercial optimization
solver, such as IBM ILOG CPLEX. However, the prob-
lem can result hard to solve even for CPLEX, when the
size of the instances increases: CPLEX can find difficul-
ties in identifying feasible solutions of satisfying quality
in a short amount of time and presents a very slow
convergence to an optimal solution. Such a performance

2017 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT)

978-1-5090-4977-6/17/$31.00 ©2017 IEEE



2

is unacceptable for real-world deployment of WLANs,
where the time factor is critical: since the conditions
of the network vary over time, an optimal solution
computed after a large amount of time would result
useless, since in the meantime the network conditions
would have changed radically.

To tackle such an unsatisfactory performance of
CPLEX, in this paper we propose two new heuristics
which are able to determine solutions of high quality,
often near to the optimal ones, in much shorter time
than CPLEX, especially in dense scenarios. The second
computational analysis that we make is thus devoted
to evaluate the performance of two new heuristics as a
computationally efficient alternative to the direct use of
a commercial solver. CPLEX and the two heuristics are
compared in terms of quality of the returned solutions,
evaluated in terms of power consumption, and also in
terms of computational time.

In summary, the main contributions of this paper are
the following. We first give a general characterization of
the WLAN system and state an ILP model that takes into
account all the system features. Then, we propose two
heuristics to solve the problem. Furthermore, we study
the performance of CPLEX when dealing with the ILP
in realistic network scenarios and perform a comparison
of its performance with that of the proposed heuristics.

The rest of the paper is structured as follows. The next
Section reviews the state-of-the-art of energy-efficient
resource allocation in WLANs. Section III illustrates
the analytical model of the WLAN system and the
ILP formulation to the problem. Section IV describes
the proposed heuristics, whereas Section V presents
the simulation analysis involving both CPLEX and the
heuristics. Finally, we draw conclusions in Section VI.

II. RELATED WORK

The literature on energy efficiency in WLANs is con-
spicuous, as well as the one on the different approaches
used to obtain power savings. We review here some
works which are particularly relevant for our study.

A first approach is based on the concept of Resource
on Demand (RoD). In a dense WLAN, RoD means that
APs dynamically switch on and off based on users’ need
for capacity. A seminal work on this topic is [1] by
Jardosh et al., who proposed a strategy to dynamically
power on/off APs depending on the resource demand
of the users. This approach has been translated into
a working testbed, proving the feasibility of the idea
and the related energy gains. However, the strategy is
based on empirical considerations, has no guarantees
of optimality, and is tested on a very small network.
Based on actual data traffic, Meo et al. [2] investigate the
users’ behaviour in accessing the WLAN and formulate a
stochastic characterisation of it. They propose a simple

model that describes the RoD strategies and use it to
study the system performance that is evaluated in terms
of AP activity and inactivity periods, AP switching
frequency, and energy saving. Through an experimen-
tal analysis, they show that RoD strategies for dense
WLANs are feasible and effective in trading-off the
contrasting needs of saving energy and guaranteeing a
smooth network operation and a high quality of service.
However, the experimental analysis is limited to a small
network composed of a few APs and a few tens of UTs.

To save power consumption of APs, radio-on-demand
WLAN techniques are proposed for example in [3].
Power savings is achieved using APs’ sleep interval
with length dynamically selected taking into account the
offered load during different parts of a day (peak hours,
off-peak hours). Recently, Hyeontaek Oh et al. [4] have
proposed a novel sleep mechanism that dynamically sets
bounds of sleep duration considering traffic arrival rate
and traffic delay requirements at a given time. However,
such works do not consider the bandwidth of the AP
capacity and the link quality between APs and devices in
a Green WLAN. Differently from the mentioned works,
the Quality of Service (QoS) is taken into account in
our study: to satisfy the user data rate requirements of
a user, in our model we can turn on an AP even if its
utilisation is low.

Finally, we mention the work of Garcia-Saavedra et
al. [5], who studied the trade-off between energy and
throughput optimisation in case of heterogeneous user
devices. Even if the authors present an exact analytical
model, then they simplify it due to its complexity. In any
case, the addressed problem is different from ours, since
it targets the energy consumption of the user devices in
a single WLAN, rather than consumption of the overall
WLAN infrastructure.

III. THE SYSTEM MODEL

The physical problem considers a set J of deployed
APs that must serve a set I of UTs. Each UT i ∈ I
requires a data rate wi that must be provided by ex-
actly one AP. As shown in our previous analysis [6],
the power Pj consumed by the generic AP j can be
essentially ascribed to two major components. There
is a constant component bj , which is bound to the
mere fact that the device is powered on. In addition,
there is a variable component aj , which accounts for
the so-called “airtime”, i.e. the fraction of time the
device is either transmitting or receiving frames. It is
weighted by a constant “wireless” factor, say pw, which
accounts for the power drain of the radio front–end
for the transmission and reception operations. The two
components are combined so that the power Pj can be
expressed as:

Pj = bj + pw aj ∀j ∈ J . (1)
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Other parameters characterising the WLAN system are
the data rates (or capacities) rij available between the
UT i and the AP j, for i ∈ I and j ∈ J . They depend on
the physical properties of the system (e.g., the position of
the UT i and the AP j, the transmission power, the radio
propagation rules). To keep the notation simpler, we shall
assume that the links are symmetric, i.e. rij = rji, for
i ∈ I and j ∈ J .

In an actual scenario, both user movements and capac-
ity fluctuations due to radio channel variability should be
taken into account to establish the available rij over the
time. As an example, UTs can roam across the service
area and this has a direct impact on the link capacities
rij , which are a function of the distance between the UT
i and the AP j, for i ∈ I and j ∈ J . However, here
we assume to be able to determine a solution, and to
implement it, before significant variations in the network
conditions happen. In particular, we assume to be on
average in an almost static scenario, as in the case of
corporate environments (see [1]), where we can assume
that the network conditions do not vary in a time scale
of one-two hundreds of seconds. Consequently, putting
a time limit lower than 100s to determine a WLAN
solution, we can reasonably assume that the UTs are
static while solving the problem and that the data rates,
estimated before the solution starts, are certain.

Under the stated conditions and assumptions, the
problem to be solved thus consists in deciding what APs
to power on and to which powered-on AP to assign each
UT (each UT must be assigned to exactly one AP), so as
to satisfy the data rate requirements of all UTs and the
capacity constraints. The goal is to minimise the overall
power consumption of the APs.

A. The problem formulation

The WLAN power optimization problem introduced
above can be formulated by means of the following ILP
model, formerly introduced in [7]. The model is based
on two sets of binary decision variables:
• xij , which is set to 1 if UT i is assigned to AP j,

and to 0 otherwise, ∀i ∈ I, j ∈ J ;
• yj , which is set to 1 if AP j is powered-on, and to

0 otherwise, ∀j ∈ J .
As indicated before, the objective is to minimise the

total power consumption:

z = min
∑
j∈J

Pj = min
∑
j∈J

{
bj yj + pw

∑
i∈I

wi

rij
xij

}
,

(2)
where the airtime aj has been expressed in terms of the
variables xij :

aj =
∑
i∈I

wi

rij
xij . (3)

The minimisation is subject to the constraints:∑
j∈J

xij = 1 i ∈ I (4)

∑
i∈I

wi

rij
xij ≤ yjρj j ∈ J (5)

xij ∈ {0, 1} i ∈ I, j ∈ J (6)
yj ∈ {0, 1} j ∈ J . (7)

Equations (4) are the single assignment constraints im-
posing that each UT must be assigned to exactly one
AP. Equations (5) are the capacity constraints. They
impose that the load of each AP j ∈ J , which is
defined as the sum in the left-hand-side of the constraint
(5) related to j, be at most ρj ≤ 1. They also ensure
that no UT is assigned to powered-off APs. It is worth
emphasizing that these constraints imply wi ≤ ρjrij ,
i ∈ I, j ∈ J , and consequently, since ρj ≤ 1, they also
imply wi ≤ rij for any UT i associated with an AP j. In
other words, constraints (5) guarantee that the computed
solution satisfies the data rate requirements for all the
users. Finally, (6) and (7) declare the decision variables.

IV. HEURISTIC ALGORITHMS

To tackle the unsatisfactory performance of state-of-
the-art solvers, similarly to other works (e.g., [8]), in this
section we introduce two new computationally efficient
heuristics, which can very fast find solutions of high
quality and can be used in real WLAN applications.

A. A clustering heuristic approach

In order to solve the problem in a few hundreds of
seconds, also for network scenarios composed of a high
number of UTs and APs, we present a first heuristic
based on the observation that the network scenario can
be spatially divided into subareas. In particular, since the
distance between a UT and an AP is a key parameter
for determining the data rate necessary for the requested
service, the idea is to decompose the overall network
into clusters of UTs and APs, and then to solve each
resulting subproblem of the ILP model described in
Section III-A. The solutions obtained by solving the
subproblems, which are smaller and easier to solve than
the overall problem, are then combined to determine a
solution to the overall problem. We call this heuristic
“CHER” (Clustering HEuRistic - see Algorithm 1).

The number of the clusters has been determined
experimentally by considering the trade-off between
performance and computational time. In particular, in
the simulation analysis presented in the next section, we
will show the results for different values of K.

It is worth mentioning the relevance of the cycle used
to determine the load limit of each AP j when j is
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Algorithm 1 CHER - Clustering HEuRistic
1: Calculate the Distance Matrix, where the element

(i, j) contains the distance between UT i (row) and
AP j (column)

2: Consider the row i of the Distance Matrix as the
features list of UT i

3: Set the number of clusters K;
4: Determine UTs and APs belonging to each cluster
5: for k = 1 to K do
6: for each AP in cluster k do
7: Calculate the amount of “potential” load given

by the UTs nearest to the considered AP in
cluster k

8: end for
9: end for

10: for each AP do
11: for k = 1 to K do
12: Calculate the load limit ρj,k
13: end for
14: end for
15: for k = 1 to K do
16: Solve the ILP model restricted to the subproblem

defined by cluster k
17: end for

associated with cluster k, also denoted as ρj,k. Indeed,
the clustering procedure assigns each UT to exactly one
cluster. On the contrary, an AP can be associated with
different clusters. This implies that, for a particular AP
associated with more clusters, the capacity constraint (5)
is certainly satisfied in each subproblem, whereas the
sum of the loads given by the different clusters to which
the AP belongs might violate its capacity constraint. To
avoid this, the strategy implemented within the cycle
of lines 10-14 in Algorithm 1 computes the ρj,k values
related to an AP j, for each cluster k where j is present,
as the ratio between the “potential” load of the AP in k
and the sum of “potential” loads of the AP over all the
clusters. The “potential” load is estimated as the sum of
the load offered by the UTs having the considered AP
as the nearest one.

Also observe that, depending on the network scenario,
the clustering algorithm could generate subareas where
one of the subproblems is unfeasible, even if the whole
network scenario indeed admits a feasible solution. How-
ever, in the dense network scenarios considered in the
simulation analysis we did not experience this kind of
unfeasibility issue.

B. A two-phase heuristic approach

The second heuristic is based on the idea of exploiting
the linear feature of the AP power model function (1),
and the realistic assumption that bj > pw. As shown

in [9], these conditions suggest traffic consolidation as
the right strategy to obtain power savings. Hence, the
proposed heuristic tries to find a good quality solution,
near to the optimal one, performing two phases: 1)
associating each UT i with the AP j with the minimum
αi,j = wi

rij
value (i.e., minimizing the AP power con-

sumption due to the variable component with parameter
pw); 2) trying to consolidate the traffic (i.e., trying to
switch off some APs in order to save the constant part
bj of the AP power consumption).

The heuristic is therefore made up of two main phases,
one for each strategy. The first phase is reported in
Algorithm 2. In the following the application of only
this part will be denoted as “MinDist”. When MinDist
finds a feasible solution, we can start the second phase,
aimed at consolidating the traffic in order to switch off
some APs, as detailed in Algorithm 3. In the following,
the overall two-phase heuristic will be indicated by the
name “HECTIC” (HEuristiC for TraffIC Consolidation).

V. SIMULATION ANALYSIS

The simulation analysis has been carried out by using
MATLAB R2015b and CPLEX 12.6.3 running on a
MacBook Pro with 2.9 GHz Intel Core i5 CPU with 16
GB RAM memory. The goal of the experimentation is to
analyse the performance of the two proposed heuristics.
In addition we investigate a suitable setting of some
CPLEX parameters, which allows one to convert the
exact approach, consisting in solving the ILP model
in Section III-A to optimality, into what we call an
approximation approach, and compare the performance
of the heuristics and of the approximation CPLEX based
approach from the perspective of the trade–off between
power consumption and computational time.

Three different performance parameters have been
considered: the power consumption of the network, de-
noted by PC, the computational time required to compute
a solution, denoted by CT, and the number of APs which
are switched off in the considered solution, denoted by
NOFF. Each performance parameter has been evaluated
by solving 50 independent instances, obtained by ran-
domly generating the positions of the UTs and the APs
in the considered area. For each performance parameter
we report both the mean value and the 95% Confidence
Interval (CI). Since MinDist uses the most common
association strategy (i.e., each UT is associated with the
AP with the best received signal), we can assume the
performance obtained with this strategy as reference.

The main achievements of the simulation analysis can
be summarised as follows:
1) with suitable configuration settings, the approxima-
tion CPLEX based approach is able to obtain solutions
providing interesting power savings in an acceptable
computational time;
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Algorithm 2 HECTIC - Phase I
1: Initialize yj := 1 all j
2: for i = 1 to |I| do
3: set xij := 1 for j given by minjαi,j ;
4: end for
5: ULIST = {Set of APs not satisfying constraint on

the load}
6: Sort the ULIST in descending order of the load.
7: repeat
8: Select ĵ from the ULIST
9: UT2M = {Set of UTs with αi,̂j 6= ∞ sorted in

increasing values of α}
10: IndexUT2M = 2
11: Select î as UT2M(IndexUT2M)
12: PAAP = {Set of APs where î can move sorted

in increasing order of αî,j }
13: indexPAAP = 2
14: repeat
15: Select the Potential New AP PNAP as

PAAP (indexPAAP )
16: if Load constraint of PNAP is satisfied then
17: Move î from ĵ to PNAP
18: else
19: Increment indexPAAP
20: if indexPAAP > |J | then
21: î cannot be associated to a new AP
22: Try with another UT
23: end if
24: end if
25: until î is associated to a new AP or

indexPAAP > |J |
26: if indexPAAP < |J | then
27: Remove ĵ from the ULIST
28: else
29: The problem is Infeasible
30: end if
31: until ULIST is empty or indexPAAP > |J |

2) the proposed heuristics, in dense WLAN scenarios,
show a very good performance depending on the ratio
|I|
|J| .

A. Simulation settings of network scenarios

The area of each considered scenario is a square of
side 100 m. Four different scenarios have been consid-
ered. Each scenario is characterised by a higher number
of APs and UTs, which have been set by imposing
the ratio |I|

|J| = 10, 50, and the density of the APs
|J|
m2 ∈ {0.001, 0.005, 0.01}.

The positions of the APs and of the UTs in each
instance are randomly determined as follows. Firstly, we
divide the test area into a regular grid of |J | squares.

Algorithm 3 HECTIC - Phase II
1: AP2OFF = {Set of turned on APs sorted in

increasing values of load}
2: repeat
3: Select the APtryOFF from the AP2OFF
4: UT2APtryOFF = {Set of UTs connected

to APtryOFF sorted in decreasing values of
αi,APtryOFF }

5: repeat
6: Select UT2MOV E from UT2APtryOFF
7: ArrAP = {Set of APs sorted in increasing

order of αUT2MOVE,j}
8: repeat
9: Try to move the UT2MOV E to one of APs

in ArrAP
10: if the movement of UT2MOV E is not pos-

sible then
11: APtryOFF cannot be switched off
12: else
13: Remove UT2MOV E from

UT2APtryOFF
14: end if
15: until A new AP is found for UT2MOV E or

movement is not possible
16: until UT2APtryOFF is empty or APtryOFF

cannot be switched off
17: if UT2APtryOFF is empty then
18: Switch off APtryOFF , Update the sorted set

AP2OFF
19: end if
20: until all APs in the AP2OFF list are considered

Then, the APs are placed one per square, with their
coordinates chosen randomly within the square. The set
of the UTs is also split into |J | subsets and the elements
of each subset are randomly spread over each square.
This strategy ensures enough uniformity in the placement
of the UTs and of the APs, so as to mimic a corporate
scenario and to avoid heavily unbalanced instances.

The data rate requirement of each UT has been
randomly generated from a uniform distribution in the
range [270, 330] Kbps.

Concerning the evaluation of the ri,j starting from the
distance di,j between a UT i and an AP j, in general
it can be determined by means of two steps. Firstly, the
received power is estimated starting from the transmitted
power and the path loss model, which takes into account
the propagation properties of the considered network
scenario. In the simulation analysis, we considered the
COST-231 multi-wall path loss model for indoor, with
non-LOS environments [10]. By assuming that all the
APs are in the same floor, the path loss model in dB is:
PL(di,j)dB = Pref +LC+10log10

di,j

d0
+nwLw+ncLc,
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where Pref is the reference free space value evaluated
at the distance d0, and LC is a constant loss term (set
to 14.2 dB). The integer nw and ncl are the number of
walls and columns in di,j respectively. These numbers
are estimated assuming to have a mean distance between
walls of 8 m and between columns of 20 m. The terms
Lw and Lcl denote the loss in dB added by each single
wall (set to 1.4) and column (set to 2).

The transmission capacity has been calculated as
follows:
i) if the received power in the link (i, j), PRij , is higher
than a sensitivity threshold γij , then rij = 0. Thus,
j ∈ J can only be assigned to i ∈ I when its radiated
power PRij remains above γij ;
ii) otherwise, the SNIR (Signal to Noise plus Interference
Ratio) is calculated and the capacity rij is extracted.
Examples of curves reporting the relation between the
capacity and the SNIR can be found in [11], [12]. In
addition, an experimental study where the “capacity vs.
transmitted power” curves are estimated for different
system configurations is presented in [13]. If rij ≤ rmax,
then rij is set to rmax, which represents the maximum
rate achievable by any physical connection.

In the simulation study, we set rmax = 54 Mbps
according to the 802.11g standard, and the sensitivity
thresholds γij = −121dBm. The setting of the param-
eters for the power consumption model is pw = 11 w
and bj = 24 w for all APs. All these parameters refer to
the data sheet of [14], and to the results shown in [15].

B. Simulation Results

We analysed the results obtained with the six scenarios
obtained by the combination of the two parameters |I||J| ∈
{10, 50}, and the AP density |J|m2 ∈ {0.001, 0.005, 0.01}.
However, for sake of clarity we report here only the
results showing the main achievements. The others are
not shown since they simply confirm the conclusions
reported in the following.
Impact of CPLEX configuration setting. Concerning
the study devoted to evaluate the impact on the perfor-
mance of different settings of the solver CPLEX, we
consider the following parameters:
• the relative tolerance on the gap between the best

integer objective function value and the objective
value of the best node remaining, denoted as (EG);
it provides an estimate of the distance of the solu-
tion returned by the optimization solver with respect
to an optimal solution;

• the maximum time, in seconds, given to the solver
for computing a solution, denoted as Time Limit
(TL).

This analysis considers the scenario with the highest
number of variables that CPLEX was able to solve, i.e.

|J | = 50 and |I| = 2500. Three alternative settings
have been considered. Two have the default EG value
(10−4) and differ in the TL (TL=200 s and TL=1800
s, respectively). The third setting associates TL=1800 s
with EG = 0.05. Notice that these alternatives, which
have been set based on a preliminary analysis carried
out with the default parameter settings of CPLEX, turns
out the exact approach, consisting in solving the ILP
model to optimality, into what we call an approximation
CPLEX-based approach.

The results in terms of mean values and 95% CI
are summarised in Table I for all the algorithms except
CHER. The results clearly show that accepting a solution
with EG = 0.05 allows to reduce the computational time
of one order of magnitude, with a loss in terms of power
consumption less than 2% with respect to the solution
with TL = 1800s. Furthermore, HECTIC provides a
solution in a few hundreds of ms, with a power saving
of 8% with respect to the one provided by MinDist.

It is worth noting that the optimisation with EG =
0.05 permits to save the 30% of power consumption with
respect to the solution of MinDist. However, this relevant
power saving is possible only if we are able to wait for
a few tens of second before establishing the association
AP-UT and what APs to switch off. The analysis of the
NOFF parameter clearly shows the ability of CPLEX to
switch off a significant number of APs, which is about
twice that obtained with HECTIC.

The GAP parameter reported in the table is the op-
timality gap EG certified by the solver when it stops
after having reached the arrest condition (either having
reached the time limit TL or the requested optimality gap
EG). We can observe that running the solver for 1800
s does not reduce considerably the GAP with respect to
the one obtained by setting TL = 200 s.

The power consumption results obtained with CHER
for different number of clusters are reported in Figure 1.
To solve the subproblem related to each cluster, we set
TL=1800 s and EG = 0.05. To simplify the comparison
with the results shown in Table I, the figure also reports
the results obtained by solving the whole scenario with
CPLEX (using the setting TL = 1800s and EG =
0.05). These results correspond to the curve denoted
as FSol_G5. We report also the curves corresponding
to HECTIC and MinDist. The figure shows that CHER
allows to achieve about the 10% of power savings with
respect to the one guaranteed by HECTIC for a number
of clusters equal to 15. However, this result is obtained
with a computational time of about 5s, as shown in Fig.2.

It is relevant to note that, for K < 12, CHER does
not provide advantages with respect to the solution of
the whole problem via the CPLEX settings TL=1800
s and EG = 0.05. This result is due to the fact that
in about the 10% of the independent distributions of
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PP TL=200s TL=1800s TL=1800s EG = 0.05 HECTIC MinDist
CT 200.11±0.06 1802.9± 2.69 37.62± 77.74 0.300± 0.111 0.293 ± 0.107
PC 867.47± 9.62 866.54 ± 0.70 882.14 ± 22.53 1161.3± 44.99 1262.7 ± 66.22

NOFF 24.94±0.48 24.96±0.39 24.35±0.48 12.85±1.84 8.72 ± 2.68
GAP 2.24 ± 1.03 2.13 ± 0.18 3.85 ± 2.47 – –

Table I
PERFORMANCE COMPARISON FOR DIFFERENT CPLEX SETTINGS - MEAN VALUES AND 95% C.I. - 50 APS, 2500 UTS, SQUARE OF SIDE
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Figure 1. Power vs. K - 2500 UTs, 50 APs in a square of side 100
m - Mean Values
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Figure 2. Time vs. K - 2500 UTs, 50 APs in a square of side 100 m
- Mean Values

the APs and UTs, we have observed one cluster whose
solution requires more than 1000 s. In some cases, for
this particular cluster the Time Limit is achieved.

Scenario with the highest AP density (0.01 AP/m2).
In the case of the most dense WLAN scenario analysed
in this study, i.e. with 100 APs in the considered area,
CPLEX was able to solve the whole problem only for
|I| = 1000, while for 5000 UTs the number of variables
is too high to be managed by the solver. Figures 3 and
4 show the results obtained for |I| = 1000 in terms of
PC and CT, respectively. We can observe that CHER
provides high power savings with respect to HECTIC,

with an acceptable CT. Indeed, for K = 20 in about 4
s, CHER is able to find a solution with a power savings
of about 57% w.r.t. HECTIC.
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Figure 3. Power vs. K - 1000 UTs, 100 APs in a square of side 100
m - Mean Values
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Figure 4. Computation Time vs. K - 1000 UTs, 100 APs in a square
of side 100 m - Mean Values

Concerning the scenario with 5000 UTs, we can
observe in Figure 5 that we need about 25 s to have
a solution from CHER. This solution is achieved with
K = 25 and generates a power savings of about 13%
w.r.t. HECTIC, as shown in Figure 6.

The comparison of these two results confirms a gen-
eral trend observed for all the scenarios: CHER provides
higher power savings for lower |I||J| ratio. In this situation,
for each UT there are different AP association alterna-
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tives that can satisfy its data rate requirement. Thus,
CHER is able to find a solution for each cluster sub-
problem very fast. Consequently, CHER can determine
a solution near to the one obtained by solving the whole
network scenario, in less than 5 s. On the contrary, when
the |I||J| ratio is higher, some subproblems can be hardly
solved given the constraints on the AP capacity, which
imply the satisfaction of the data rate requirements of
each UT. In this case, the advantages of CHER w.r.t.
HECTIC are less evident.
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Figure 5. Computation Time vs. K - 5000 UTs, 100 APs in a square
of side 100 m - Mean Values
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Figure 6. Power vs. K - 5000 UTs, 100 APs in a square of side 100
m - Mean Values

VI. CONCLUSION

We have addressed the optimization problem of power
consumption minimization in dense WLANs, pointing
out the limits of solving the resulting ILP model even
by using a state-of-the-art solver like CPLEX. Given the
unsatisfying performance of CPLEX, we have proposed
two heuristic solution algorithms which can determine
solutions of high quality very rapidly, and therefore
can be used in real WLAN applications. We have also

shown that, in some cases, also an approximated CPLEX
based-approach can compute acceptable solutions in a
reasonable amount of time. As future work, we plan to
investigate refined integration of the new heuristics with
branch-and-cut algorithms (see e.g., [16]) and study the
extension of the heuristics to a multiband robust opti-
mization case (see e.g., [17]), addressing the uncertainty
of data rates.
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[17] C. Büsing and F. D’Andreagiovanni, “New results about multi-
band uncertainty in robust optimization,” in Experimental Algo-
rithms (R. Klasing, ed.), vol. 7276 of LNCS, pp. 63–74, Springer,
Heidelberg, 2012.

2017 International Conference on Selected Topics in Mobile and Wireless Networking (MoWNeT)


