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a  b  s  t  r  a  c  t

We  investigate  the Robust  Multiperiod  Network  Design  Problem,  a generalization  of the  Capacitated
Network  Design  Problem  (CNDP)  that,  besides  establishing  flow  routing  and  network  capacity  installation
as  in  a  canonical  CNDP,  also  considers  a  planning  horizon  made  up  of  multiple  time  periods  and  protection
against  fluctuations  in traffic  volumes.  As  a remedy  against  traffic  volume  uncertainty,  we propose  a
Robust  Optimization  model  based  on  Multiband  Robustness  (Büsing  and  D’Andreagiovanni,  2012),  a
refinement  of classical  �-Robustness  by  Bertsimas  and  Sim  that  uses  a system  of  multiple  deviation
bands.

Since  the  resulting  optimization  problem  may  prove  very  challenging  even  for  instances  of  moderate
ultiperiod design
ultiband Robust Optimization
etaheuristic

nt colony optimization
xact large neighborhood search

size  solved  by a state-of-the-art  optimization  solver,  we  propose  a hybrid  primal  heuristic  that  combines
a  randomized  fixing  strategy  inspired  by  ant  colony  optimization  and  an exact  large  neighbourhood
search.  Computational  experiments  on  a set  of  realistic  instances  from  the SNDlib  show  that  our original
heuristic  can  run  fast and  produce  solutions  of  extremely  high  quality  associated  with  low  optimality
gaps.
. Introduction

In the last two decades, telecommunications have increasingly
ervaded our everyday life and the volume of traffic sent and
xchanged over networks has astonishingly increased: major com-
anies like Nokia Siemens Networks expect that the increase in
he amount of traffic will strongly continue, reaching a volume of

ore than 1000 exabyte per year in fixed networks by 2015 [34].
his dramatic growth that telecommunications have experienced

as greatly compounded the challenge for network professionals,
ho are facing design problems of increasing complexity and diffi-

ulty. In order to cope with traffic growth, the professionals have to
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plan much in advance how the network will be expanded in topol-
ogy and capacity to accommodate the new traffic. This is especially
important in the case of fixed networks, which require (costly) dig-
ging operations for the installation of cables in areas with possibly
high population density.

To make the design task even more complicated, the future
behaviour of traffic over a network is not exactly known when
the network is designed and thus the decision problem is also
affected by tricky data uncertainty: until recent times data uncer-
tainty has been generally neglected in real studies. However, as
indicated by recent industrial cooperations between industry and
academia, (e.g., [2,3,10,30]), professionals are not only becoming
aware of the importance of adopting mathematical optimization
to take better decisions, but are also understanding the neces-
sity of considering data uncertainty, in order to avoid unpleasant
surprises like infeasibility of implemented solutions due to data
deviations.

The task of designing a telecommunication network essentially
consists in establishing the topology of the network and the techno-
logical features (e.g., transmission capacity and rate) of its elements,

namely nodes and links. One of the most studied problem in net-
work design is the Capacitated Network Design Problem (CNDP):  the
CNDP consists in minimizing the total installation cost of capacity
modules in a network to route traffic flows generated by users. The

dx.doi.org/10.1016/j.asoc.2014.10.016
http://www.sciencedirect.com/science/journal/15684946
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NDP is a central problem in network optimization, which appears
n many real-world applications. For an exhaustive introduction to
t, we refer the reader to [1,5,8].

In this paper, we focus on the development of a new Robust
ptimization model to tackle traffic uncertainty in the Multiperiod
apacitated Network Design Problem (MP-CNDP). This problem con-
titutes a natural extension of the classical CNDP, where, instead of

 single design period, we consider the design over a time horizon
ade up of multiple periods. Moreover, traffic uncertainty is taken

nto account to protect design solutions against deviations in the
raffic input data, which may  compromise feasibility and optimality
f solutions.

We immediately stress that, though the problem of optimally
esigning networks over multiple time periods is not new and
an be traced back at least to the seminal work by Christofides
nd Brooker [17], to the best of our knowledge, the MP-CNDP has
eceived very little attention and just a few works have investigated
t – essentially, [31,25]. Checking literature, several other works
ealing with multiperiod design of networks can be found (just
o make a couple of examples, [26,27]): however, all these works
onsider problems that are application-specific or are sensibly dif-
erent from the more general setting that we consider here and we
hus avoid a more detailed discussion of them ([26] studies capacity
xpansion problem in access networks with tree topology, whereas
27] considers the design of utility networks modeled by non-linear

athematical programs).
Our main references for this work, namely [31,25], point out the

ifficulty of solving multiperiod CNDP problems already for just
wo periods and even in (easier) contexts: [31] considers CNDP
hen traffic flows may  be split, whereas [25] considers a pure

outing problem in satellite communications. Our direct and more
ecent computational experience have confirmed the challenging
ature of the MP-CNDP, even for instances of moderate size with a

ow number of time periods and solved by a state-of-the-art opti-
ization solver.
Uncertain versions of the MP-CNDP where traffic uncertainty

s considered have also been neglected, even though especially in
he last years there has been an increasing interest in network
esign under traffic uncertainty for the single design period case
e.g., [2,3,30]).

In this work, our main original contributions are:

 the first Robust Optimization model for tackling traffic uncer-
tainty in Multiperiod CNDP. Specifically, we adopt Multiband
Robustness, a new model for Robust Optimization recently
introduced by Büsing and D’Andreagiovanni [14];

 a hybrid primal heuristic, based on the combination of a random-
ized rounding heuristic resembling ant colony optimization [22]
with an exact large neighborhood search called RINS [19]. We
stress here that our aim was not to use a standard implementa-
tion of an ant colony algorithm: we wanted instead to strengthen
the performance of the ant algorithm using highly valuable infor-
mation from linear relaxations of the considered optimization
problems. Using this information allowed us to define a very
strong ant construction phase, which produces very high quality
solutions already before the execution of any local search;

 analytically proving how to solve the linear relaxation of the
Multiperiod CNDP in closed form, thus obtaining a substantial
reduction in solution times w.r.t. our first algorithm presented in
[20];

 computational experiments over a set of realistic instances

derived from the Survivable Network Design Library (SNDlib)
[33], showing that our hybrid algorithm is able to produce
solutions of extremely high quality associated with very small
optimality gap.
t Computing 26 (2015) 497–507

The remainder of this paper is organized as follows: in Section 2,
we review a canonical model for the CNDP; in Section 3, we intro-
duce the Multiperiod CNDP and we study its linear relaxation; in
Section 4, we introduce the new formulation for Robust Multiperiod
CNDP; in Sections 5 and 6, we present our hybrid heuristic and
computational results.

2. The Capacitated Network Design Problem

The CNDP is a central and highly studied problem in Network
Optimization that appears in a wide variety of real-world appli-
cations (see [1,5] for an exhaustive introduction to it) and can
be essentially described as follows: given a network and a set of
demands whose flows must be routed between vertices of the net-
work, we  want to install capacities on network edges and route the
flows through the network, so that the capacity constraint of each
edge is respected and the total cost of installing capacity is mini-
mized. More formally, we  can characterize the CNDP through the
following definition.

Definition 1 (The Capacitated Network Design Problem – CNDP).
Given

• a network represented by a graph G(V, E), where V is the set of
vertices and E the set of edges,

• a set of commodities C, each associated with a traffic flow dc to
route from an origin sc to a destination tc,

• a set of admissible paths Pc for routing the flow of each commod-
ity c from sc to tc,

• a cost �e for installing one module of capacity � > 0 on edge e ∈ E,

the CNDP consists in establishing the number of capacity modules
installed on each edge e ∈ E such that the resulting capacity instal-
lation has minimum cost and supports a feasible routing of the
commodities. A feasible routing assigns each commodity c ∈ C to
exactly one feasible path p ∈ Pc. �

Referring to the notation introduced above and introducing the
following two  families of decision variables:

• Binary path assignment variables xcp ∈ {0, 1} ∀ c ∈ C, p ∈ Pc such
that:

xcp =
{

1 if the entire traffic of commodity c is routed on path p

0 otherwise,

• Integer capacity variables ye ∈ Z+, ∀ e ∈ E, representing the num-
ber of capacity modules installed on edge e,

we can model the CNDP as the following integer linear program:

min
∑
e∈E
�e ye (CNDP − IP)

∑
c∈C

∑
p∈Pc : e∈p

dc xcp ≤ � ye e ∈ E
(1)

∑
p∈Pc

xcp = 1 c ∈ C

xcp ∈ {0, 1} c ∈ C, p ∈ Pc

ye ∈ Z+ e ∈ E .

(2)

The objective function minimizes the total cost of capacity

installation. Capacity constraints (1) impose that the summation
of all flows routed through an edge e ∈ E must not exceed the
capacity installed on e (equal to the number of installed modules
represented by ye multiplied by the capacity � granted by a single
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odule). Constraints (2) impose that the flow of each commodity
 ∈ C must be routed through a single path.

emark 1. This is an unsplittable version of the CNDP, namely
he traffic flow of a commodity c ∈ C cannot be split over multiple
aths going from sc to tc, but must be routed on exactly one path.
oreover, the set of feasible paths Pc of each commodity is pre-

et and constitutes an input of the problem. This is in line with
ther works based on industrial cooperations (e.g., [11]) and with
ur experience (e.g., [2]), in which a network operator typically
onsiders just a few paths that meet its own specific business and
uality-of-service considerations and uses state-of-the-art routing
chemes based on an Open Shortest Path First protocol.

. The Multiperiod Capacitated Network Design Problem

We  define the multiperiod generalization of the CNDP by
ntroducing a time horizon made up of a set of elementary periods

 = {1, 2, . . .,  |T|}. From a modeling point of view, this generaliza-
ion requires to add a new index t ∈ T to the decision variables,
o represent routing and capacity installation decisions taken in
ach period. This is a simple modeling operation, which, however,
reatly increases the size and complexity of the problem as pointed
ut in our computational section and by [25,31]. The introduction
f the new index leads to the new integer linear program:

min
∑
e∈E

∑
t∈T
�te y

t
e (MP  − CNDP − IP)

∑
c∈C

∑
p∈Pc : e∈p

dtc x
t
cp ≤ �

t∑
�=1

y�e e ∈ E, t ∈ T

∑
p∈Pc

xtcp = 1 c ∈ C, t ∈ T

xtcp ∈ {0, 1} c ∈ C, p ∈ Pc, t ∈ T

yte ∈ Z+ e ∈ E, t ∈ T .

(3)

Besides including the new index t ∈ T, the program presents a
odified right-hand-side in the capacity constraint (3): for each

ime period t, we must consider the presence of all the capacity
odules that are installed on an edge e ∈ E from period � = 1 to

eriod � = t.
Concerning costs and traffic demands, in what follows, we  real-

stically assume that the cost per unit of capacity is non-increasing
ver time and that the demand associated with each commodity
s non-decreasing over time (i.e., �te ≥ �t+1

e , ∀ t = 1, . . .,  |T| − 1 and
t
c ≤ dt+1

c , ∀ t = 1, . . .,  |T| − 1).

.1. Computing the linear relaxation of MP-CNDP-IP

After having introduced the problem MP-CNDP-IP, we  proceed
o formally characterize in closed-form the value and optimal solu-
ion of its linear relaxation, namely the problem that we obtain if
e relax the integrality requirements on variables x and y (so we
ave 0 ≤ xtcp ≤ 1, ∀c ∈ C, p ∈ Pc, t ∈ T and yte ≥ 0, ∀e ∈ E, t ∈ T). We  refer
o such relaxation as MP-CNDP-LP.

Characterizing the optimal value and the structure of an optimal
olution of MP-CNDP-LP has been a crucial objective for us. In our
reliminary computational experience presented in the proceeding
ersion of this paper [20], solving MP-CNDP-LP by using the state-
f-the-art optimization solver IBM ILOG CPLEX [28] proved indeed
low. Using a solver like CPLEX to solve linear relaxations thus con-
tituted a bottleneck that limited the possibility of running the

euristic a large number of times within the time limit. By using

nstead the closed-form expression coming from our new theoreti-
al results presented in this section, we were able to efficiently solve
P-CNDP-LP without using CPLEX, run the algorithm an incredibly
t Computing 26 (2015) 497–507 499

higher number of times in the same time limit and gain a determi-
nant speed up in the overall execution of the algorithm.

In the case of an MP-CNDP including a single time period (i.e.,
|T| = 1), it is well known that an optimal solution of the linear relax-
ation MP-CNDP-LP can be obtained by just considering the shortest
path p* ∈ Pc for each commodity c ∈ C and then by installing on each
edge of p* the smallest number of capacity modules needed to sup-
port the traffic request dc of c (see [1]).

Through the following propositions, we investigate how the
optimal value and an optimal solution of the MP-CNDP-LP with
|T| > 1 look like, proving that they can be characterized efficiently.
Note that in order to keep the exposition light, we decided to move
the more complex proofs of the statements to the Appendix A.

As first step, we  characterize the relation between flows in con-
secutive time periods.

Proposition 1. Let xtcp := 0, dtcp := 0 and �te := ∞ for t = 0. There
exists an optimal solution x of MP-CNDP-LP such that:

dt−1
c xt−1

cp ≤ dtc x
t
cp ∀ c ∈ C, p ∈ Pc, t ∈ T (4)

Proof. See the Appendix A. �

Using the previous Proposition, we  are able to derive the follow-
ing Theorem, which characterizes an optimal solution for the linear
relaxation of MP-CNDP-IP. In particular, we can show that to get an
optimal solution we just need to identify for each commodity c ∈ C
and time period t ∈ T a shortest path in edge length p∗

c ∈ Pc among
the feasible paths Pc of c. Of course, this operation can be done very
fast and efficiently.

Remark 2. We  stress that in what follows, we will just focus on the
determination of the optimal flows, since once we  have an optimal
flow, the capacity installation can be immediately derived over the
network.

Theorem 1. Consider problem MP-CNDP-LP, namely the linear relax-
ation of MP-CNDP-IP, and let p∗

c ∈ Pc be a shortest path in edge length
for each commodity c ∈ C. An optimal solution of MP-CNDP-LP can be
defined by routing in each time period t ∈ T the entire flow of each com-
modity c ∈ C on the shortest path p∗

c and by installing on each edge of
p∗
c the exact capacity needed to route the traffic flow dtc .

Proof. See the Appendix A. �

The previous theorem efficiently characterizes an optimal solu-
tion for MP-CNDP-LP. However, our hybrid algorithm requires a
feasible solution of the linear relaxation when the routing and
capacity installation has been established for a number of consecu-
tive time periods (see Section 5 for details). The following Corollary
shows how to characterize a feasible solution for the modified
linear relaxation and identifies the conditions under which this
solution becomes optimal.

Corollary 1. Consider problem MP-CNDP-IP and suppose that for
time periods t = 1, . . ., � − 1, � ≤ |T| and for all the commodities c ∈ C,
feasible path assignments and capacity installations have been estab-
lished (thus fixing the values of the corresponding variables x and y).
Moreover, suppose that for period t = � feasible path assignments and
capacity installations have been established for a subset of commodi-
ties C′ ⊆ C.

Denote now by MP-CNDP-IPFIX the version of MP-CNDP-IP obtained
from this variable fixing and consider the corresponding linear relax-
ation MP-CNDP-LPFIX. Let p∗

c ∈ Pc be a shortest path in edge cost for
each commodity c ∈ C. A feasible solution for MP-CNDP-LPFIX can be
defined by:
• routing in time period t = � the entire flow of each c ∈ C \ C′ on the
shortest path p∗

c and by installing on each edge of p∗
c the minimum

number of capacity modules needed to route the traffic flow d�c ;
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routing in each time period t = � + 1, . . .,  |T| the entire flow of each
c ∈ C on the shortest path p∗

c and by installing on each edge of p∗
c the

minimum number of capacity modules needed to route the traffic
flow dtc;

Furthermore, the solution determined above is optimal when for all
he commodities c ∈ C, the path p∗

c is chosen in every t ∈ T.

roof. The feasibility of the solution built as specified above is
lear. The optimality condition is instead a straightforward conse-
uence of Theorem 1 and we omit the proof. �

The new theoretical results that we have introduced provide an
lternative way to compute an (optimal) feasible solution of MP-
NDP-LP, which prove dramatically faster than the direct use of
PLEX. This allows us to greatly increase the number of executions
f the ant construction phase in the same time limit.

. Robust Optimization for traffic-uncertain Multiperiod
etwork Design

After having introduced the multiperiod generalization MP-
NDP, we can proceed to consider its version that takes into account
raffic uncertainty. To this end, in this section, we first state what we

ean by traffic uncertainty, then we present fundaments of Robust
ptimization, the methodology that we adopt to tackle data uncer-

ainty, and finally we present a Robust Optimization model for the
raffic-uncertain version of MP-CNDP.

.1. Traffic uncertainty and Robust Optimization

Uncertainty of traffic is naturally present in telecommunica-
ions network design, since the future behaviour of customers is
ot known in advance: the number of users and the traffic gener-
ted by them can just be estimated and these estimates can deeply
iffer from actual traffic conditions that will occur in the future
see [2]). In what follows, we thus assume that the demands dc are
ncertain for all the commodities c ∈ C, i.e., their value is not known
xactly when the optimization problem is solved. In order to clarify
he concept of traffic uncertainty, we anticipate here that we  will

odel data uncertainty by a refined interval deviation model.  In an
nterval model, we assume to know a nominal value of traffic dc and

aximum negative and positive deviations ı−c ≤ 0, ı+c ≥ 0 from it.
he (unknown) actual value dc is thus assumed to belong to the
nterval:

dc ∈ [dc + ı−c , dc + ı+c ].

In our direct experience with real-world network design, we
ave observed that professionals often identify dc with the value
f forecast traffic volume (e.g., an expected value derived from his-
orical data), whereas the deviations ı−c , ı+c are identified as the

aximum deviations from the forecast considered relevant by the
etwork designer, again using historical data as reference.

xample 1. (Traffic uncertainty) Consider two commodities c1,
2 associated with nominal traffic demands dc1 = 200 Mb,  dc2 =
00 Mb  and suppose that these values may  deviate up to 10%. So the
aximum negative and positive deviations for c1, c2 are ı−c1 = −20,

+
c1

= 20 Mb,  ı−c2 = −30, ı+c2 = 30 Mb,  respectively. The actual values
f traffic are therefore dc1 ∈ [180, 220] Mb,  dc2 ∈ [270, 330] Mb.

As it is well-known from sensitivity analysis, dealing with data
ncertainty in optimization problems may  result really tricky:

mall variations in the value of input data may  completely compro-
ise the optimality and feasibility of produced solutions. Solutions

hat are supposed to be optimal may  reveal to be heavily subop-
imal, whereas solutions supposed to be feasible may  reveal to be
t Computing 26 (2015) 497–507

infeasible and thus meaningless when implemented. For a detailed
discussion of the issues associated with data uncertainty, we  refer
the reader to [4,6]. The following example can immediately help to
visualize the possibly catastrophic effects of neglecting data uncer-
tainty.

Example 2. (Infeasibility caused by deviations) Consider again
the commodities of Example 1 and suppose that in some link we
have installed exactly the capacity to handle the sum of their nom-
inal values (i.e., we have installed 200 + 300 Mb  of capacity). This
capacity installation neglects the fact that the demands may  deviate
up to 10%. So, it is sufficient that just one commodity experiences
a positive deviation to violate the capacity constraint of the link,
thus making the design solution infeasible in practice.

The previous example makes clear that we cannot afford to
neglect traffic uncertainty and therefore risk that our design
solution will turn out to be infeasible or of bad quality when
implemented. As a consequence, we have decided to tackle data
uncertainty by adopting a Robust Optimization (RO) approach. RO is
a methodology for dealing with data uncertainty that has received a
lot of attention in recent times and has been preferred to traditional
methodologies like Stochastic Programming, especially thanks to
its accessibility and computational tractability. We  refer the reader
to [4,6] for an exhaustive introduction to theory and applications
of RO and for a discussion about its determinant advantages over
Stochastic Programming.

RO is founded on two  main facts:

• the decision maker must define an uncertainty set,  which reflects
his risk aversion and identifies the deviations of coefficients
against which protection must be guaranteed;

• protection against deviations included in the uncertainty set is
guaranteed through hard constraints that cut off all those feasible
solutions that may  become infeasible for some deviations of the
uncertainty set.

In a more formal way, suppose that we are given a generic inte-
ger linear program:

v = max  c′ x subject to x ∈ F = {A x ≤ b, x ∈ Zn+}
whose coefficient matrix A is uncertain, namely we do not know
the exact value of its entries. However, we  can identify a family
A  of coefficient matrices that constitute possible valorizations of
the uncertain matrix A. The family A  is the uncertainty set of the
robust problem. A robust optimal solution, i.e., a solution that is pro-
tected against data deviations, can then be found by considering
the following robust counterpart of the original problem:

vR = max  c′ x subject to x ∈ R = {A x ≤ b ∀A ∈ A, x ∈ Zn+}
The feasible set R of the robust counterpart includes only the

solutions of F that are feasible for all the coefficient matrices in the
uncertainty set A. Consequently, R is a subset of the feasible set
of the original problem, i.e., R ⊆ F.  We  stress that the definition
of robust counterpart can be extended to any mixed-integer linear
program, involving continuous and integer variables at the same
time. Additionally, we remark that the decision maker should
include in A  coefficient matrices that reflect his specific risk
aversion.

Ensuring protection against data deviations according to an
RO paradigm comes at a price: the so-called price of robustness
(PoR) [7]. The PoR is the deterioration of the optimal value of the

robust counterpart w.r.t. the optimal value of the original problem
(we have vR ≤ v) and is caused by the hard constraints imposing
robustness, which restrict the feasible set F to the (in general
smaller) set of robust solutions R. The PoR depends upon the
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eatures of the uncertainty set: uncertainty sets reflecting higher
evels of risk aversion of the decision maker will include more
nlikely and extreme deviations, leading to higher protection yet
ssociated with higher PoR; uncertainty sets reflecting low risk
version will instead tend to neglect unlikely deviations, thus
uaranteeing lower protection yet associated with lower PoR.

xample 3. (Protection against deviations) Following Example
, a simple way to grant protection would be to install sufficient
apacity to deal with the peak deviations of each commodity. So
e should install 220+330 Mb  of capacity. We  note that in practice

t is unlikely that all coefficients will experience the worst devia-
ion, so one of the aim of “smart” RO models is to define appropriate
ncertainty sets that result not too conservative, while guarantee-

ng a satisfying level of protection (for example, we could assume
hat at most one of the two demands will deviate from its nominal
alue).

In the next paragraph, we provide a description of the model of
ncertainty that we adopt.

.2. A concise introduction to Multiband Robust Optimization

In this work, we tackle uncertainty through Multiband Robust
ptimization (MB), a new robust optimization model based on
ardinality-constrained uncertainty set that was proposed by Büs-
ng and D’Andreagiovanni [14] and then extended and applied in a
eries of successive works (e.g., [14–16,2]). MB represents a refine-
ent and generalization of the well-known �-Robustness (�-Rob)

y Bertsimas and Sim [7] that we developed to satisfy practical
eeds of our industrial partners in real-world applications (see
15,2]).

We recall here the main results of MB,  referring to the following
eneric uncertain Mixed-Integer Linear Program (MILP):

max
∑
j∈J
cj xj (MILP)

∑
j∈J
aij xj ≤ bi i ∈ I = {1, . . .,  m}

xj ≥ 0 j ∈ J = {1, . . .,  n}
xj ∈ Z+ j ∈ JZ ⊆ J .

here w.l.o.g we assume that the uncertainty only affects the
oefficients aij (uncertainty affecting cost coefficients or the
ight-hand-sides can be easily reformulated as coefficient matrix
ncertainty).

Moving from the hypothesis that the actual value aij of the
oefficients is unknown, the multiband uncertainty model at the
asis of MB  assumes that:

 for each coefficient aij, the decision maker knows its nominal
value aij as well as the maximum negative and positive deviations
dK

−
ij
, dK

+
ij

from aij (so aij ∈ [aij + dK
−
ij
, aij + dK

+
ij

]);

 the overall single deviation band [dK−
ij
, dK+
ij

] of each coefficient aij

is partitioned into K bands, defined on the basis of K deviation
values:

−∞ < dK
−
ij < . . . < d−1

ij
< d0

ij = 0 < d1
ij < . . . < dK

+
ij < +∞;

 through these deviation values, K deviation bands are defined,
namely: a set of positive deviation bands k ∈ {1, . . .,  K+} and a

set of negative deviation bands k ∈ {K− + 1, . . .,  −1, 0}, such that a
band k ∈ {K− + 1, . . .,  K+} corresponds to the range (dk−1

ij
, dk
ij
], and

band k = K− corresponds to the single value dK
−
ij

;
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4 for each constraint i ∈ I and each band k ∈ K, a lower bound lik and
an upper bound uik on the number of deviations that may  fall in
k are defined, so 0 ≤ lik ≤ uik ≤ n;

5 the number of coefficients that take their nominal value is not
limited, i.e., ui0 = n for all i ∈ I;

6
∑

k∈Klik ≤ n for all i ∈ I, so that there always exists a feasible real-
ization of the coefficient matrix.

We call this typology of uncertainty set a multiband uncertainty
set.

MB  thus generalizes the uncertainty definition of the �-Rob
model by Bertsimas and Sim [7]: the single deviation band is parti-
tioned into multiple bands and each band k ∈ K is associated not
only with an upper bound uik, but also with a lower bound lik
on the number of coefficients deviating in that band. The lower
bound improves the modeling power of the decision maker and,
more importantly, allows to take into account the presence of neg-
ative value deviations, that are neglected in �-Rob. Of course, taking
into account negative deviations allows to improve the modeling
of deviations commonly found in real-world problems and, even
more critically, reduces the value of the overall worst deviation and
thus the price of robustness. The multiband model results particu-
larly suitable to model histograms that are commonly adopted by
practitioners to visualize and analyze data deviations (see [14,2]).

Since the robust optimization paradigm entails that we must
be protected against any possible deviation considered in the
uncertainty set, the robust counterpart of MILP under multiband
uncertainty is:

max
∑
j∈J
cj xj

∑
j∈J
aij xj + DEV(x, MBi) ≤ bi i ∈ I

xj ≥ 0 j ∈ J

xj ∈ Z+ j ∈ JZ ⊆ J ,

(5)

where an additional term DEV(x, MBi) is introduced in every fea-
sibility constraint to represent the maximum total deviation that
could be incurred by constraint i under the multiband uncertainty
set for a solution x. This problem is actually non-linear since the
term DEV(x, MBi) hides the following maximization problem:

DEV(x, MBi) = max
∑
j∈J

∑
k∈K
dkij xj y

k
ij (6)

lik ≤
∑
j∈J
ykij ≤ uikk ∈ K (7)

∑
k∈K
ykij ≤ 1j ∈ J (8)

ykij ∈ {0, 1}j ∈ J, k ∈ K (9)

A binary variable yk
ij

of the problem is equal to 1 when the coef-
ficient j in constraint i falls in deviation band k and is equal to 0
otherwise. Each coefficient j in the constraint must fall in at most
one deviation band, thus requiring the introduction of the family of
constraints (7) (note that when

∑
k∈Ky

k
ij

= 0 then it is like having
the coefficient falling in the zero deviation band). Constraints (8)
impose the bounds on the number of coefficients that may deviate
in each band k ∈ K. Finally, the objective function (6) aims at maxi-
mizing the deviation allowed by the multiband uncertainty set for

a given solution x and constraint i.

The robust counterpart (5) is a (non-linear) max-max problem,
since it includes the binary program ((6)–(9)). This is anyway not
a real issue, since we  have proved that the robust counterpart is
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quivalent to a compact and linear mixed-integer linear program,
s stated in the following theorem.

heorem 2. [Büsing and D’Andreagiovanni[14]] The robust coun-
erpart of problem (MILP) for the multiband uncertainty set MB is
quivalent to the following compact and linear mixed-integer pro-
ram:

ax
∑
j∈J
cj xj (Rob − MILP) (10)

j∈J
aij xj +

∑
k∈K
�k w

k
i +

∑
j∈J
zij ≤ bi i ∈ I (11)

k
i + zij ≥ dkij xj i ∈ I, j ∈ J, k ∈ K (12)

k
i ∈ R  i ∈ I, k ∈ K (13)

ij ≥ 0 i ∈ I, j ∈ J (14)

xj ≥ 0 j ∈ J

xj ∈ Z+ j ∈ JZ ⊆ J .

This problem includes K · m + n · m additional continuous vari-
bles ((13) and (14)) and K · n · m additional constraints (12) to clear
p the non-linearity of the trivial robust counterpart (5). Moreover,
onstraints (11) include additional terms and involve the values
k ≥ 0 that express the number of deviations that occur in each
eviation band k ∈ K (these values constitute the so-called profile
f the multiband uncertainty set and are derived on the basis of the
ounds lk, uk – see [15] for details). The resulting formulation has
hus the nice properties of being compact and linear.  The proof of
he theorem is based on pointing out the integrality of the polyhe-
ron associated with and on exploiting strong duality. We  refer the
eader to [14,15] for the formal complete statement and proof of
he presented theorem.

Theorem 2 is a central result from the theory of Multiband
obust Optimization that we will use to derive a robust model for
P-CNDP.

.3. Multiband-Robust Multiperiod Network Design

We  proceed now to use Multiband Robust Optimization and the
elated Theorem (2) to tackle traffic uncertainty in the MP-CNDP.
f we denote by D  the uncertainty set associated with the demands
f the commodities, we can write the general form of the robust
ounterpart of the MP-CNDP-IP as follows:

in
∑
e∈E

∑
t∈T
�te y

t
e (15)

c∈C

∑
p∈Pc : e∈p

d
t
c x
t
cp + DEVte(x, D) ≤ �

t∑
�=1

y�ee ∈ E, t ∈ T (16)

∑
p∈Pc

xtcp = 1 c ∈ C, t ∈ T

xtcp ∈ {0, 1} c ∈ C, p ∈ Pc, t ∈ T

yte ∈ Z+ e ∈ E, t ∈ T .

This robust counterpart differs from MP-CNDP-IP in the capac-
ty constraints (16): these constraints indeed consider the nominal
raffic demands values d
t
c and include the terms DEVte(x, D) to rep-

esent the total maximum positive deviation that demands may
xperience on edge e in period t for a routing vector x and the
ncertainty set D.
t Computing 26 (2015) 497–507

We  structure the uncertainty set D  according to the principles
of Multiband Robust Optimization introduced in the previous
subsection. Specifically, we  build a multiband uncertainty set for
the MP-CNDP as follows:

1. for each commodity c ∈ C and time period t ∈ T, we know the nom-

inal value d
t
c of the traffic coefficient and maximum negative and

positive deviations ıt−c ≤ 0, ıt+c ≥ 0 from it. The actual value dtc is

then such that dtc ∈ [d
t
c + ıt−c , d

t
c + ıt+c ];

2. the overall deviation range [d
t
c + ıt−c , d

t
c + ıt+c ] of each coefficient

dtc is partitioned into K bands, defined on the basis of K deviation
values:

−∞ < ıt−c = ıtK
−

c < · · · < ıt−1
c < ıt0c = 0 < ıt1c < · · · < ıtK

+
c

= ıt+c < +∞;

3. through these deviation values, K deviation bands are defined,
namely: a set of positive deviation bands k ∈ {1, . . .,  K+} and a
set of negative deviation bands k ∈ {K− + 1, . . .,  −1, 0}, such that
a band k ∈ {K− + 1, . . .,  K+} corresponds to the range (dtk−1

c , dtkc ],
and band k = K− corresponds to the single value dtK

−
c ;

4. for each capacity constraint (16) defined for an edge e ∈ E and
period t ∈ T and for each band k ∈ K, we  introduce two val-
ues ltke , utke : 0 ≤ ltke ≤ utke ≤ nte to represent the lower and upper
bound on the number of traffic coefficients whose value deviates
in band k (nte is the number of uncertain coefficients in the con-
straint). These bounds can be used to derive the profile of the
uncertainty set, namely the values �tke ≥ 0 indicating the exact
number of coefficients deviating in each band (see [15] for details
about the definition of profile);

5. the number of coefficients that take their nominal value is not
limited, i.e., ut0e = nte for all e ∈ E, t ∈ T;

6.
∑

k∈K l
tk
e ≤ nte for all e ∈ E, t ∈ T, so that there always exists a fea-

sible realization of the coefficient matrix.

By using the previous characterization of the multiband uncer-
tainty set and Theorem 2, we can reformulate the non-linear robust
counterpart (15) as the following linear and compact robust coun-
terpart:

min
∑
e∈E

∑
t∈T

�te y
t
e (Rob − MP − CNDP)

∑
c∈C

∑
p∈Pc : e∈p

d
t

c x
t
cp +

+
∑
k∈K

�tke w
tk
e +

∑
c∈C

∑
p∈Pc : e∈p

ztecp ≤ �

t∑
�=1

y�e e ∈ E, t ∈ T

wtke + ztecp ≥ ıtkc x
t
cp e ∈ E, c ∈ C, p ∈ Pc : e ∈ p,

(17)

t ∈ T, k ∈ K

wtke ∈ R  e ∈ E, t ∈ T, k ∈ K
(18)

ztecp ≥ 0e ∈ E, c ∈ C, p ∈ Pc : e ∈ p, t ∈ T (19)

∑
p∈Pc

xtcp = 1 c ∈ C, t ∈ T

xtcp ∈ {0, 1} c ∈ C, p ∈ Pc, t ∈ T

yte ∈ Z+ e ∈ E, t ∈ T .

This formulation includes the additional constraints (17) and
variables (18) and (19) to linearly reformulate the original (non-

linear) problem including the term DEVte(x, D) in each capacity
constraint. Rob-MP-CNDP is the problem that we want to solve in
the computational section to get robust solutions to the MP-CNDP.
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. A hybrid primal heuristic for the Rob-MP-CNDP

In principle, we can get a robust optimal solution for Rob-
P-CNDP by using any commercial mixed-integer programming

oftware, such as CPLEX. However, as showed in the computa-
ional section, solving Rob-MP-CNDP constitutes a difficult task
ven when considering a small number of time periods and using

 state-of-the-art solver like CPLEX: after several hours of compu-
ation, solutions are still typically of low quality and far away from
he optimum. As a remedy, we were attracted by the effectiveness
f (hybrid) MIP-based and bio-inspired heuristics in hard network
esign problems. Valid examples of such effectiveness are provided
y [18], proposing a cooperative parallel tabu search algorithm for
he single-period CNDP tested on transshipment networks, by [21],
roposing a linear relaxation-based decomposition method for a
ariant of the single-period CNDP related to fair routing in wireless
esh networks, and by [29], proposing a multiobjective evolution-

ry algorithm to solve a single-period CNDP arising in the design
f large communications networks. Concerning hybrid heuristics,
e refer the reader to [13] for a recent survey. In the case of Rob-
P-CNDP, we developed a fast hybrid primal heuristic based on the

ombination of a randomized variable-fixing strategy resembling
nt Colony Optimization (ACO) and an exact large neighbourhood
earch.

It is widely known that ACO is a metaheuristic that was inspired
y the foraging behaviour of ants. The seminal work by Dorigo
t al. [23] presenting an ACO algorithm for combinatorial problems
as later been extended to integer and continuous problems (e.g.,
22]) and has been followed by hundreds of other papers proposing
efinements of the basic algorithms (e.g., [24,32]) and investigat-
ng applications to relevant optimization problems (see [12] for an
verview). An ACO algorithm presents the general structure spec-
fied in Algorithm 1. A loop consisting of two  phases is executed
ntil an arrest condition is satisfied: in a first phase, an ant builds
p a solution under the guidance of probabilistic functions of vari-
ble fixing that resemble pheromone trails; then the pheromone
rails are updated on the basis of how effective the adopted vari-
ble fixing has resulted. Once that the arrest condition is reached, a
aemon action phase takes place and some solution improvement
trategy is applied to bring the feasible solution built by the ants to

 (local) optimum.

lgorithm 1. General structure of an ACO algorithm (Gen-ACO)

: while an arrest condition is reached do
:  ant-based solution construction
: pheromone trail update
: end while
: daemon actions

We  now proceed to detail each phase of the previous sketch
or our hybrid ACO-exact algorithm for the (Rob-MP-CNDP). Our
lgorithm is defined hybrid since after having passed the ACO
onstruction phase, the daemon action phase operates an exact
arge neighborhood search that is formulated as an integer lin-
ar program and is solved exactly relying on the power of modern
tate-of-the-art commercial solvers.

.1. Ant-based solution construction

In the first step of the inner cycle of (Gen-ACO), a number m ≥ 0
f ants are defined and each ant iteratively builds a feasible solution
or the problem. At a generic iteration of the construction, the ant

s in a state corresponding with a partial solution and can make a
urther step towards completing the solution by making a move: a

ove corresponds to fixing the value of some not-yet-fixed vari-
ble. The move that is executed is chosen according to a probability
t Computing 26 (2015) 497–507 503

function: the function specifies the probability of implementing a
move and thus of fixing a variable and is derived by combining an a
priori measure of the efficacy of the move and an a posteriori mea-
sure of the efficacy of the move. More in detail, the probability of
choosing a move that fixes a variable j after having fixed a variable
i is specified by the following canonical formula:

pij =
�ˇ
ij

+ �ı
ij∑

f ∈F�
ˇ
if

+ �ı
if

, (20)

where �ij represents the a priori measure of efficacy, commonly
called pheromone trail value, and �ij represents the a posteriori
measure of efficacy, commonly called attractiveness.  Note that this
formula is influenced by the two  parameters ˇ,  ı that appear as
exponents of the measures and should be chosen by the deci-
sion maker on the basis of the specific problem considered. For
a more detailed description of the elements and actions of this
phase, we  refer the reader to the paper [32], which presents ANTS,
an improved ant algorithm used for solving the quadratic assign-
ment problem, which we  have taken as reference for our work. We
considered ANTS particularly attractive as it proposes a series of
refinements for classical ACO that allow to better exploit polyhedral
information about the problem. Specifically, [32] sketches some
ideas about how alternative formulations of the original problem
could be exploited to define the pheromone trail and the attractive-
ness values. As additional desirable feature, ANTS makes use of a
reduced number of parameters and adopts more efficient math-
ematical operations w.r.t. the canonical ant algorithms (products
instead of exponentiations). For an exhaustive description of ANTS,
we refer the reader to [32].

Before describing how our ANTS implementation is structured,
we make some preliminary considerations. The formulation Rob-
MP-CNDP is based on four families of variables: (1) the path
assignment variables xtcp; (2) the capacity variables yte; (3 and 4)
the auxiliary variables wtke , ztecp coming from robust dualization.
Though we  have to deal with four families, we  can notice that once
routing decisions are taken over the entire time horizon, then we
can immediately derive the capacity installation of minimum cost.
Indeed, once the values of all path assignment variables are fixed,
the routing is completely established and the worst traffic devi-
ation term DEVte(x, D) can be efficiently derived without need of
using the auxiliary variables wtke , ztecp (this can be indeed traced
back to solving a min-cost flow problem, as explained in [14,15]).
So we  can easily derive the total traffic Dte sent over an edge e in
period t in the worst case. We  can then derive the minimum cost
installation by a sequential evaluation from period 1 to period |T|,
keeping in mind that we  must have

⌈
Dte
�

⌉
capacity modules on e in

t to accommodate the traffic. In the ant-construction phase, we  can
consequently limit our attention to the binary assignment variables
and we introduce the concept of routing state.

Definition 2. [Routing State – RS] Let P =
⋃

c∈CPc and let
R ⊆ C × P × T be the subset of triples (c, p, t) representing the assign-
ment of path p ∈ Pc to commodity c ∈ C in period t ∈ T. A routing state
is an assignment of paths to a subset of commodities in a subset of
time periods which excludes that multiple paths are assigned to a
single commodity. Formally:

RS ⊆ R : �(c1, p1, t1), (c2, p2, t2) ∈ RS : c1

= c2 ∧ p1, p2 ∈ Pc1 ∧ t1 = t2 .
We say that a routing state RS is complete when it specifies the
path used by each commodity in each time period (thus |RS|  = |C||T|).
Otherwise the RS is called partial and we have |RS|  < |C||T|).
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In the ANTS algorithm that we propose, we  decided to
ssign paths considering time periods and commodities in a pre-
stablished order. Specifically, we establish the routing in each time
eriod separately, starting from t = 1 and continuing up to t = |T|,
nd in each time period commodities are sorted in descending
rder w.r.t. their nominal traffic demand. Formally, this is operated
hrough the cycle specified in Algorithm 2 that builds a complete
outing state.

lgorithm 2. Construction of a complete routing state

: for t : =1 to |T| do
:  sort c ∈ C in descending order of dct
: for (sorted c ∈ C) do
:  assign a single path p ∈ Pc to c
:  end for
: end for

For an iteration (t, c) of the nested cycles of Algorithm 2, the
ssignment of a path to a commodity is equivalent to an ant that
oves from a partial routing state RSi to a partial routing state RSj

uch that:

Sj = RSi ∪ {(c, p, t)} with p ∈ Pc .

We  note that, by the definition of routing state, a sequence of
oves is actually a sequence of fixings of decision variables, as in

32].
The probability that an ant k moves from a routing state i to

 more complete routing state j, chosen among a set of feasible
outing states, is defined by the improved formula proposed in [32]:

k
ij =  ̨ �ij + (1 − ˛) �ij∑

f ∈F  ̨ �if + (1 − ˛) �if
,

here  ̨ ∈ [0, 1] is a parameter assessing the relative importance
f trail and attractiveness. This formula presents two pecu-
iar advantages over the canonical formula (20): it adopts the
ingle parameter  ̨ in place of the two parameters ˇ, ı and
ses  ̨ as coefficient of a product instead of an index of an
xponentiation.

As discussed in [32], the trail values �ij and the attractiveness
alues �ij should be provided by suitable lower bounds of the
onsidered optimization problem. In our particular case: (1) �ij is
erived from the values of the variables in the solution associated
ith the linear relaxation of the robust counterpart Rob-MP-CNDP;

2) �ij is equal to the value of a (good) feasible solution of the linear
elaxation MP-CNDP-LP where a subset of the decision variables
ave fixed values as effect of the fixing decision taken in previous
teps of the algorithm.

.2. Daemon actions: Relaxation Induced Neighborhood Search

At the end of the ant-construction phase, we attempt at improv-
ng the quality of the feasible solution found by executing an exact
ocal search in a large neighborhood.  In particular, we  adopt a modi-
ed Relaxation Induced Neighborhood Search (RINS) (see [19] for an
xhaustive description of the method).

In an integer linear program, we look for a solution that is inte-
ral and at the same time guarantees the best objective value. In
INS, it is observed that an optimal solution of the linear relaxation
f the problem provides an objective value that is better than that of
ny feasible solution. However, at the same time, such an optimal
olution is fractional and therefore does not guarantee integral-
ty. On the contrary, a feasible solution guarantees integrality, but

rovides a worse objective value. The fact that a variable is fixed
o the same value in the optimal solution of the linear relaxation
nd in a feasible solution is a good indication that the fixing of the
ariable is good and should thus be maintained. Given a feasible
t Computing 26 (2015) 497–507

solution, RINS profits from these observations by defining search
neighborhoods, where those variables that have the same value
in the feasible solution and in the optimal solution of the linear
relaxation are fixed, while the other are free to vary their value.
The neighborhood is then explored exhaustively by formulating
the search as an integer linear program, which is solved exactly,
possibly including an arrest condition such as a solution time
limit.

In our specific case, let (x, y) be a feasible solution of
Rob-MP-CNDP found by an ant and (xLR, yLR) be an optimal (con-
tinuous) solution of the linear relaxation of Rob-MP-CNDP. Our
modified RINS (mod-RINS) entails to solve exactly through an
optimization solver like CPLEX a subproblem of Rob-MP-CNDP
where:

1. we  fix the variables x whose value in (x, y) and (xLR, yLR) differs
of at most � > 0, i.e.,

xj = 0 ∩ xLRj ≤ � ⇒ xj = 0

xj = 1 ∩ xLRj ≥ 1 − � ⇒ xj = 1

2. impose a solution time limit of � to the optimization solver.

A time limit is imposed since the subproblem may  be difficult
to solve, so the exploration of the large neighbourhood of x, y may
need to be truncated. Note that in point 1 we  generalize the fixing
rule of RINS, in which � = 0. We  thus allow that fixed variables may
differ up to � in value, in contrast to canonical RINS where they must
have exactly the same value in the relaxation and in the feasible
solution.

5.3. Pheromone trail update

At the end of each ant-construction phase h, we update the
pheromone trails of a move �ij(h − 1) according to an improved
formula proposed in [32]:

�ij(h) = �ij(h − 1) +
m∑
k=1

�kij with �kij = �ij(0) ·
(

1 − zkcurr − LB

z − LB

)
,

(21)

where the values �ij(0) and LB are set by using the linear relaxation
of Rob-MP-CNDP: �ij(0) is set equal to the values of the correspond-
ing optimal decision variables and LB equal to the optimal value of
the relaxation. Additionally, zkcurr is the value of the solution built
by ant k and z is the moving average of the values of the last   fea-
sible solutions built. The formula (21) has the desirable property
of replacing the pheromone evaporation factor, a parameter whose
setting may  result tricky, with the moving average  , whose setting
has been proved to be much less critical.

Algorithm 3 shows the structure of our original hybrid exact-
ACO algorithm. The algorithm is based on the execution of two
nested loops: the outer loop is repeated until a time limit is reached
and, during each execution of it, an inner loop defines m ants to

build the solutions. Pheromone trail updates are done at the end of
each execution of the inner loop. Once the ant construction phase is
over, mod-RINS is applied so to try to get an improvement by exact
large neighborhood search.
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Table  1
Features of the instances.

Name ID |V| |E| |C|
Germany50 I1 50 88 662
Pioro40 I2 40 89 780
Norway I3 27 51 702
Geant I4 22 36 462
France I5 25 45 300
Dfn-Gwin I6 11 47 110
Pdh  I7 11 34 24
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Ta1  I8 24 55 396
Polska I9 12 18 66
Cost266 I10 37 57 1337

lgorithm 3. Hybrid ACO-exact algorithm for (Rob-MP-CNDP)

: compute the linear relaxation of (Rob-MP-CNDP) and
initialize the values of � ij(0) by it

: while the time limit is not reached do
:  for 	 : =1 to m do
: build a complete routing state
: derive a complete feasible solution for (Rob-MP-CNDP)
:  end for
: update � ij(t) according to (21)
: end while
: apply mod-RINS to the best feasible solution

. Experimental results

In order to assess the performance of our hybrid algorithm, we
xecuted computational tests on a set of 30 instances, based on
ealistic network topologies from the SNDlib [33] and defined in
ollaboration with industrial partners from former and ongoing
ndustrial projects (see e.g., [9,10,2]). The 30 instances consider 10
etwork topologies, whose main features are presented in Table 1.
or each instance, in Table 1 we report its identification code (ID)
nd features (|V| = no. vertices, |E| = no. edges, |C| = no. commodities).
or each network topology, we defined three instances of Rob-MP-
NDP, each considering a distinct number of time periods, namely
, 7, and 10. We  performed the experiments on a machine with

 2.40 GHz quad-core processor and 16 GB of RAM and using the
ixed-integer commercial solver IBM ILOG CPLEX version 12.4.
All the instances lead to (very) large and hard to solve Rob-MP-

NDP. We  observed that even a state-of-the-art solver like CPLEX
ad big difficulties in identifying good feasible solutions and in the
ajority of cases the final optimality gap was over 95%. In contrast,

s clear from Table 2, in most cases our hybrid primal heuristic was
ble to find very high quality solutions associated with very low
ptimality gaps. The optimality gap indicates how far the best fea-
ible solution found of value v∗ is from the best lower bound LB
vailable on the optimal value (formally gap% = |v∗ − LB|/v∗ · 100).
e note that using CPLEX is essential for providing a lower bound

n our problem instances and thus a quality guarantee for the given
olutions. In the case of solutions not produced by CPLEX, we com-
uted the optimality gap referring to the lower bound produced by
PLEX.

On the basis of preliminary tests, we found that an effective
etting of the parameters of our heuristic was:  ̨ = 0.5 (we  thus
alanced attractiveness and trail level), m = 10000 ants,   = m/10
width of the moving average equal to 1/10 the number of ants),

 = 0.1 (tolerance of fixing in mod-RINS), T = 30 min  (time limit
mposed to the execution of mod-RINS). Each commodity admits 5
easible paths, i.e., |Pc| = 5, ∀ c ∈ C and 5 deviations bands (2 positive,

 negative and the null deviation band). In contrast to our first com-

utational experience presented in [20], where linear relaxations
ere solved exactly by CPLEX requiring a non-negligible amount of

ime, we now 1) compute the linear relaxations of nominal prob-
ems by the results presented in Sections 2 and 3) we solve the
t Computing 26 (2015) 497–507 505

linear relaxation of Rob-MP-CNDP by a time-truncated primal sim-
plex method as implemented by CPLEX. This allowed to greatly
reduce the time of execution of the ant construction phase and
hugely increase the number of defined ants.

The complete set of results is presented in Table 2, where we
show the performance of the hybrid solution approach, that is
denoted by the three measures c*(ACO), c*(ACO + RINS), gapAR%,
which respectively represent the value of the best solution found
by pure ACO, the value of the best solution found by ACO followed
by RINS and the corresponding final optimality gap. Moreover, we
show the performance of CPLEX, which is denoted by measures
c*(IP) and gapIP% representing the value of the best solution found
and the corresponding final optimality gap. The value of the best
solutions found for each instance is highlighted in bold type. The
overall time limit for the execution of the heuristic was  1 hour. The
same time limit was  imposed on CPLEX when used to solve the
robust counterpart Rob-MP-CNDP. We  stress that increasing the
time limit did not bring any remarkable benefit to CPLEX: even
when letting CPLEX run for many hours, the only effects were get-
ting negligible improvements in the best lower bound (we observed
an extremely slow improvement rate of the bound) and running
out of memory because of the huge size of the search trees gener-
ated. In the case of two  instances of I10, CPLEX was  not even able
to find a feasible solution within the time limit (cases denoted by
*).

The best solutions found by our hybrid algorithm have in most
cases a value that is at least one order of magnitude better than
those found by CPLEX (3700% better on average, excluding of course
the cases for which CPLEX did not find any feasible solutions). The
results are of very high quality and, given the very low optimal-
ity gap, we  can suppose that some of these solutions are actually
optimal. The much higher performance is particularly evident for
instances I5, I8 and I9. We observe that, in contrast to our confer-
ence paper [20] where RINS was able to improve the value of the
best solution found by the ant construction phase, in these new
computations the role of RINS was reduced: thanks to the dramatic
speed-up in solving the linear relaxations, we were able to really
implement a swarm exploration of the feasible set, getting solu-
tions that we believe to be optimal or very close to the optimum.
So finding an improvement through RINS was  impossible or really
unlikely. We  also think that the fact that a powerful local search
like RINS has a minor or null role in finding higher quality solutions
is an indication that we  have defined a very strong and effective ant
construction phase: in contrast to common experience in ACO, we
indeed do not really require a final daemon/local search phase to
get solution of sufficiently high quality.

If we  focus on a specific network topology, it may be noticed
that the optimality gaps produced by our algorithm tend to become
smaller as the number of time periods grows. This may result sur-
prising and counterintuitive at first sight, as one would expect
exactly the opposite behaviour. Yet, considering our assumption
of non-increasing demands for each commodity, it is reasonable to
think that our primal hybrid heuristic discovers converging near-
optimal paths when the number of time periods is large, thus
performing better. We  observe that it is likely that this behaviour
would not occur in the case that the non-increasing demand
assumption is dropped.

As further way to assess the validity and effectiveness of our
new heuristic, we also used as benchmark a fast and easy method
to define a possibly good feasible solution to Rob-MP-CNDP, which
is suggested by the theoretical results presented in Section 3: in
each time period, we  simply route the entire flow of each commod-

ity on its shortest path. However, as clear from Table 2, where we
report the value c(SP) of the solution found by this approach and
the corresponding optimality gap gapSP%, in the vast majority of
the instances (in particular instances I4, I6, I7 and I8, for which the
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Table 2
Experimental results.

ID |T| c*(ACO) c*(ACO+RINS) gapAR% c*(SP) gapSP% c*(IP) gapIP%

5 4.26E+06 4.26E+06 3.8 4.35E+06 5.9 3.42E+08 98.8
I1  7 9.46E+06 9.46E+06 2.5 9.64E+06 4.3 8.28E+08 98.9

10  3.07E+07 3.07E+07 2.0 3.10E+07 3.0 2.89E+09 99.0
5  6.14E+06 6.14E+06 11.6 7.48E+06 27.4 2.58E+08 97.9

I2  7 1.34E+07 1.34E+07 11.5 1.64E+07 27.6 6.19E+08 98.1
10  4.32E+07 4.32E+07 8.4 5.45E+07 27.3 2.13E+09 98.1
5  3.14E+06 3.14E+06 14.6 3.61E+06 25.6 9.56E+07 97.2

I3  7 6.39E+06 6.39E+06 6.5 7.45E+06 19.7 2.29E+08 97.4
10  2.02E+07 2.02E+07 2.2 2.37E+07 16.8 7.88E+08 97.5
5  8.98E+05 8.98E+05 2.6 2.09E+06 58.0 4.13E+07 97.9

I4  7 2.15E+06 2.15E+06 11.6 4.94E+06 61.6 9.58E+07 98.0
10  6.49E+06 6.49E+06 8.8 1.98E+07 70.1 4.18E+08 98.6
5  1.34E+05 1.34E+05 3.0 1.35E+05 3.7 5.09E+06 97.5

I5  7 2.96E+05 2.96E+05 1.4 2.97E+05 1.7 1.56E+07 98.1
10  9.43E+05 9.43E+05 0.7 9.42E+05 0.6 4.46E+07 97.9
5  3.34E+05 3.34E+05 12.2 4.14E+05 29.1 7.07E+05 58.5

I6  7 6.54E+05 6.54E+05 5.6 8.37E+05 26.2 6.69E+05 7.7
10  2.08E+06 2.08E+06 1.7 2.77E+06 25.9 9.84E+07 97.9
5  1.19E+08 1.19E+08 1.1 1.50E+08 21.7 1.19E+08 1.1

I7  7 2.71E+08 2.71E+08 0.5 3.64E+08 25.8 2.73E+08 0.9
10  8.29E+08 8.29E+08 0.2 1.27E+09 34.8 8.34E+08 0.7
5  1.45E+08 1.39E+08 9.0 1.60E+08 21.2 7.02E+09 98.2

I8  7 2.83E+08 2.83E+08 3.8 3.36E+08 19.1 1.86E+10 98.5
10  9.14E+08 9.14E+08 2.1 1.08E+09 17.2 6.44E+10 98.6
5  2.12E+05 2.12E+05 1.1 2.22E+05 5.5 5.13E+05 59.2

I9  7 4.80E+05 4.80E+05 0.3 5.02E+05 4.9 6.08E+05 21.5
10  1.60E+06 1.60E+06 0.1 1.68E+06 4.9 9.80E+06 83.7
5  1.37E+08 1.37E+08 20.7 
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I10  7 2.78E+08 2.78E+08 12.
10  9.26E+08 9.26E+08 14.

erformance of our algorithm is far better), this simple approach
erformed much worse than our heuristic and we believe that this
rovides further evidence of the solidity of our algorithm.

. Conclusion and future work

In this paper, we introduce the first Robust Optimization
odel to handle the uncertainty that affects traffic demands in

he Multiperiod Capacitated Network Design Problem (MP-CNDP).
ata uncertainty may  compromise the quality and feasibility of
roduced solutions, so, as a remedy, we propose a Multiband
obustness model, following the well-established methodology
f Robust Optimization. We  thus produce robust solutions that
re protected against deviations of input traffic data. In general,
he MP-CNDP already constitutes a challenging problem, even
or state-of-the-art commercial solvers like CPLEX. Accounting for
obustness and considering multiple time periods has the effect of
urther increasing the complexity of the problem. As a matter of
act, solutions found by CPLEX are of low quality and associated
ith very large optimality gaps. To overcome these difficulties, we
efine a hybrid primal heuristic based on the combination of a ran-
omized fixing algorithm inspired by ant colony optimization and
n exact large neighborhood search. Computational experiments
n a set of 30 realistic instances from the SNDlib confirms that
ur heuristic drastically outperforms CPLEX, finding high quality
olutions associated with low optimality gaps in a short amount of
ime. We  believe that many of the best solutions found are actually
ptimal, so a future objective will be to characterize appropri-
te families of valid inequalities for the problem, in the attempt
o close the gaps and thus possibly prove the optimality of the
ound solutions. Furthermore, the excellent computational perfor-

ance suggest the possibility of using the heuristic, conveniently

dapted, for other applications and in more general settings, where,
or example, the paths of each commodity are not predetermined.

e expect our hybrid primal heuristic to perform well even in such
ifferent contexts.
1.36E+08 20.1 5.40E+09 98.0
3.02E+08 19.8 * *
9.84E+08 19.8 * *
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Appendix A. Proofs of the Statements of Section 3

A.1. Proof of Proposition 1

Statement: Let xtcp := 0, dtcp := 0 and �te := ∞ for t = 0. There exists
an optimal solution x of MP-CNDP-LP such that:

dt−1
c xt−1

cp ≤ dtc x
t
cp ∀ c ∈ C, p ∈ Pc, t ∈ T

Proof. We prove the statement by induction, considering two
consecutive time periods t − 1 and t with t = {1, 2, . . .,  |T|}. As
basis step, we  note that relation (4) trivially holds for t = 1 by def-
inition of xtcp := 0, dtcp := 0 for t = 0. As inductive step, suppose
that relation (4) holds for t ≤ |T| − 1. We  will show that it holds
also for t ≤ |T| period. Suppose that relation (4) does not hold for
t = |T|, i.e., ∃ c∗ ∈ C, p∗ ∈ Pc∗ : dt−1

c∗ x
t−1
c∗p∗ > dtc∗x

t
c∗p∗ for some commod-

ity and its corresponding path when t = T. Without loss of generality,
we assume that there exists unique c∗ ∈ C, p∗ ∈ Pc∗ that does not
respect relation (4) for period |T|, as the argument we use below
can be applied iteratively to any number of such deviating inequal-
ities. Moreover, suppose that p* ∈ Pc is a shortest path in edge
cost for c*. Let 
 = dt−1

c∗ x
t−1
c∗p∗ − dtc∗x

t
c∗p∗ be the residual flow. For

simplicity we  assume that 
 is routed over a single path as the

argument similarly holds when it splits over several paths. Given
our assumption, it is easy to see that 
 will be routed on another
path p′ ∈ Pc∗ and that the objective function value will gain at most∑

e∈E:e∈p′�te
 ≥
∑

e∈E:e∈p∗�te
.  When p′ is another shortest path,
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e get an equality and we see that xt−1
c∗p∗dt−1

c∗ ≤ xtcp∗dtc∗ gives an
quivalent optimal solution in terms of the objective function value,
therwise we  have a contradiction. Suppose p* in xtc∗p∗ is not a short-

st path in edge cost for c*. If
∑

e∈E:e∈p∗�te ≤
∑

e∈E:e∈p′�te then the

ame argument as above applies. If
∑

e∈E:e∈p∗�te >
∑

e∈E:e∈p′�te then

he solution gains at most
∑

e∈E:e∈p∗�te
 −
∑

e∈E:e∈p′�te
 > 0. If

his is the case, we can reroute 
 in period |T| − 1 from p* to p′.
hen we have xt−1

c∗p∗dt−1
c∗ = xtc∗p∗dtc∗ in period T, when in the devi-

ting inequality xt−2
c∗p∗dt−2

c∗ ≤ xtc∗p∗dtc∗ holds. Then this new solution
ains at most

∑
e∈E:e∈p∗�

t−1
e 
 −

∑
e∈E:e∈p′�

t−1
e 
 ≥

∑
e∈E:e∈p∗�te
 −

e∈E:e∈p′�te
 by the non-increasing cost per unit of capacity. The

ame argument holds when xt−2
c∗p∗dt−2

c∗ > xtc∗p∗dtc∗ . �

.2. Proof of Theorem 1

Statement: Consider problem MP-CNDP-LP, namely the linear
elaxation of MP-CNDP-IP, and let p∗

c ∈ Pc be a shortest path in edge
ength for each commodity c ∈ C. An optimal solution of MP-CNDP-
P can be defined by routing in each time period t ∈ T the entire flow
f each commodity c ∈ C on the shortest path p∗

c and by installing on
ach edge of p∗

c the exact capacity needed to route the traffic flow
ct.

roof. Before proceeding to the proof, we recall that in MP-CNDP-
P the capacity variables lose their integrality constraint and thus
he capacity installation on each edge in each period will exactly
qual the flow. It is well known that the result stated in the the-
rem holds for one single period (see [1]) and we  propose a proof
f the result, extending below the reasoning to the case with mul-
iple periods. Consider then a single-period problem (in this case,
he t apex is thus equal to 1 for all the involved quantities) and a
ommodity c ∈ C. Suppose that x1

cp = k with 0 < k ≤ 1 is a non-zero
ariable in the optimal solution of the problem for some p ∈ Pc.
ence the contribution to the objective function is

∑
e∈E:e∈p�

1
e d

1
c k.

et p′ be a shortest path for c. Then
∑

e∈E:e∈p′�1
e d

1
c (x1

cp′ + k) ≤
e∈E:e∈p′�1

e d
1
c x

1
cp′ +

∑
e∈E:e∈p�

1
e d

1
c x

1
cp. Thus the theorem holds for

he single period case. Assume now that the theorem holds for
T| − 1 periods. We  will show that it holds for |T| periods. By
roposition 1, we may  assume that xt−1

cp d
t−1
c ≤ xtcpd

t
c for all c ∈ C,

 ∈ Pc, t ∈ T in an optimal solution of MP-CNDP-LP with |T| periods.
et OPT(|T | − 1) denote the optimal objective function value for
T| − 1 periods according to the induction hypothesis. Also, let
PTt denote the contribution of the optimal solution of the MP-
NDP-LP for |T| periods to the objective function in period t. Then

t∈TOPTt =
∑

t∈T\|T|OPTt + OPT|T|. Suppose
∑

t∈T\|T|OPTt is deter-
ined by, for each commodity, the same shortest path in edge cost

or each period up to |T| − 1. Hence OPT(|T | − 1) =
∑

t∈T\|T |OPTt .
sing a similar argument as in the single period case, it is easy

o see that the increase in demand for each commodity in period
T| will be routed in the shortest paths that were used in the pre-
ious periods. For this case, let OPT |T | denote the contribution of
he optimal solution of MP-CNDP-LP to the objective function in
eriod |T|. Suppose

∑
t∈T\|T|OPTt is not determined by, for each

ommodity, the same shortest path in edge cost for each period
p to |T| − 1. Then it is clear that OPT(|T | − 1) ≤

∑
t∈T\|T |OPTt and

PT(|T |) ≤ OPT |T |. Hence OPT(|T | − 1) + OPT(|T |) ≤
∑

t∈T\|T |OPTt +
PT |T |. �
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