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Abstract. In order to better exploit scarce radio spectrum resources,
the second generation of the Digital Video Broadcasting - Terrestrial
standard (DVB-T2) has been developed and is under adoption in many
countries, especially in Europe, for providing digital television services.
The switch from the first to the second generation of DVB-T will require
new operators to design their new networks and old operators to recon-
figure their existing networks to better adapt to the features and oppor-
tunities of the new services. In this work, we propose an optimization
model and a fast metaheuristic for the design of DVB-T2 networks.
The metaheuristic is based on combining a probabilistic variable fix-
ing procedure with an exact large neighborhood search and is developed
to tackle the unsatisfying performance of state-of-the-art optimization
solvers when adopted to solve realistic instances. Computational tests
on realistic instances show that our metaheuristic can find solutions of
much better quality than those identified by a state-of-the-art optimiza-
tion solver.
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1 Introduction

In recent times, digital telecommunications services provided through high-per-
formance mobile networks and high-speed cable-based internet networks have
become an essential part of our fast-moving everyday life and new techno-
logical paradigms like cloud and 5G are going to offer even more performing
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connectivity experiences (see e.g., [1–3]). Notwithstanding the great expansion
and diffusion of such new telecommunications services, the “dear old” television
broadcasting services still constitute an extremely important telecommunication
service that can easily reach the vast majority of the population and represents
a crucial voice in the telecom agenda of national governments.

Thanks to the switch from analogue to digital television technology, the tele-
vision market has known an increased competition between broadcasters that has
stimulated the enlargement of programme variety and led to an increased qual-
ity of services and interactivity. Among the available digital television standards,
the DVB-T (Digital Video Broadcasting – Terrestrial) [4] is the most widespread
standard in the world and since its introduction in 1995 has been adopted in
more than half of all world countries. Due to the need for better exploiting the
scarce radio spectrum resources and provide services of higher quality, since 2006
the DVB Project has undertaken research projects to develop a 2nd-generation
DVB, which is commonly called DVB-T2 [5]. DVB-T2 was standardized by the
European Telecommunications Standardisations Institute (ETSI) in 2009. In
Europe, since its first introduction in UK in 2010, it has been adopted by sev-
eral European broadcasters. The full upgrade from DVB to DVB-T2 will take
place in major European countries like Germany and Italy in the next few years.

A crucial benefit granted by the DVB-T2 is the increase in system capacity:
for the same usage of spectrum, DVB-T2 provides an increase of capacity of at
least 30% with respect to DVB-T, allowing the market entry of new broadcast-
ers or the launch of new innovative services. On the other hand, adopting and
implementing the new standard will translate into new costs for the broadcasters
and users, which will need new broadcasting equipment and receiving devices.

Given the need for new DVB-T2 operators to design their new networks and
for old DVB operators to reconfigure their existing networks to better adapt to
the features and opportunities of the new services, we study here the question
of developing an optimization model and algorithm for the design of DVB-T2
network. Specifically our contributions are:

1. We present a mixed integer linear programming problem for modelling funda-
mental decisions that must be taken in a DVB-T2 design problem (essentially,
configure the network transmitters so to maximize the number of users cov-
ered with services) and discuss a way to strengthen the mathematical model
through the insertion of additional valid inequalities. The model is based on
signal-to-interference quantities recommended to be used for coverage evalu-
ation by international regulatory bodies;

2. In order to fast solve the resulting challenging optimization problem, we pro-
pose a metaheuristic based on combining a probabilistic variable fixing pro-
cedure with an exact large neighborhood search. Our metaheuristic consti-
tutes a solution approach that places itself in between exact (i.e., guarantee-
ing convergence to an optimum) but slow optimization approaches for DVB
(e.g., [6–8]) and fast (bio-inspired) heuristics (e.g., [9–11]) which cannot pro-
vide guarantees about the quality of the produced solution: the metaheuristic
indeed runs fast but also exploits the valuable information associated with
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the linear relaxation of a strengthened formulation of the problem, using it to
guide a variable fixing procedure (this allows to derive a so-called optimality
gap that can measure the quality of the produced solution);

3. Computational experiments based on realistic DVB instances, showing that
our metaheurisitc can produce solutions of much higher quality than a state-
of-the-art optimization solver.

The remainder of this paper is organized as follows: in Sect. 2, we introduce
an optimization model for DVB-T2 network design; in Sect. 3, we present a
new metaheuristic to fast solve the design problem; in Sect. 4, we present our
hybrid metaheuristic and computational results. Finally, in Sect. 5, we derive
conclusions.

2 An Optimization Model for DVB-T2 Network Design

For modelling purposes, we can essentially describe a DVB-T2 network as a set
S of DVB Stations (DSs) that provide a broadcasting television service to a set
of customers located in a territory of interest. Following the recommendations of
major international and national regulatory bodies in the field of telecommunica-
tions (e.g., [12,13]), we discretize the territory into a raster of small elementary
squared areas of identical size: the point at the center of each area is called
testpoint (TP) and is assumed to be representative of all the points inside the
elementary area. We denote by T the set of all testpoints in the territory.

Each DS is characterized by a location (its geographical coordinates) and a
number of radio-electrical parameters (e.g., power emission, antenna diagram,
frequency channel). The DVB-T2 Network Design Problem (DND) consists in
choosing the location and setting the parameters of the DSs in order to maximize
an objective function that typically represents the total number of people in
testpoints covered with service.

As it is common in wireless network design problems, the optimization does
not aim at optimizing all the parameters of the DSs, but just focuses on a subset
of them. In the vast majority of studies, the two critical design decisions that are
included in the optimization models are: (1) setting the power emissions of the
transmitters providing the wireless telecommunication service (in our case the
DSs); (2) assigning testpoints covered with service to a deployed transmitter.
These are indeed two critical decisions that must be taken by a network admin-
istrator, as indicated in several real studies (e.g., in DVB [6–8,14], 5G [15–17],
in FTTx [18], in UMTS [19,20], in WiMAX [21,22], in WLANs [23,24] and in
other wireless network design problems such as [8,25–30]).

We now proceed to discuss how service coverage is assessed, focusing on
a generic TP t ∈ T : when t is covered with service (or shortly, served), the
service is provided by one single DS σ ∈ S, which acts as server of t. All the
remaining DSs, i.e. all s ∈ S\{σ}, act as interferers for t, reducing the quality
of wireless service obtained from the server σ. More formally, if we denote the
power emission of a DS s ∈ S by ps > 0, a TP t ∈ T is served by σ ∈ S when
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the ratio of the received service power and the sum of the received interfering
powers (so-called signal-to-interference ratio - SIR) is above a threshold δ > 0
[31,32]:

SIRtσ(p) =
atσ · pσ

N +
∑

s∈S\{σ} ats · ps

≥ δ. (1)

Here, the value of δ depends upon the desired quality of service and N > 0 is
the noise of the system. The received power that t gets from any DS s ∈ S is
expressed as the product of the power ps emitted by s and a factor ats ∈ [0, 1]
that is commonly called fading coefficient and expresses the power reduction
that a wireless signal undergoes when propagating from s to t [32].

The inequality (1) can be easily transformed into the following linear inequal-
ity, commonly called SIR inequality :

atσ · pσ − δ
∑

s∈S\{σ}

ats · ps ≥ δ · N. (2)

Since assessing service coverage constitutes a crucial issue when designing any
kind of wireless network, the SIR inequalities are at the basis of most mathemat-
ical optimization models adopted for wireless network design (see e.g., [22,29].
In order to model the two fundamentals decisions exposed above, namely setting
the power emissions of DSs and assigning served TPs to activated DSs, two kind
of decision variables are introduced:

– a continuous power variable ps ∈ [0, Pmax] that represents the power emission
of each DS s ∈ S;

– a binary service assignment variable xts ∈ {0, 1}, ∀t ∈ T, s ∈ S, which is set
equal to 1 if TP t ∈ T is served by DSs s ∈ S and equal to 0 otherwise.

Through these two kind of decision variables the problem of designing a DVB-T2
network can be cast as the following Mixed Integer Linear Programming problem
(DVB-MILP):

max
∑

t∈T

∑

s∈S

rt · xts (DVB − MILP)

atσ · pσ − δ
∑

s∈S\{σ}

ats · ps + M · (1 − xtσ) ≥ δ · N t ∈ T, σ ∈ S (3)

∑

s∈S

xts ≤ 1 t ∈ T (4)

0 ≤ ps ≤ Pmax s ∈ S

xts ∈ {0, 1} t ∈ T, s ∈ S.

The objective function pursues the maximization of the number of users covered
with service (for each TP t ∈ T , rt > 0 is the number of users located in t).
Constraint (3) constitutes a slightly modified version of the SIR inequality (2)
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and it is called SIR constraint : it includes a sufficiently large value M (so-
called, big-M coefficient) multiplied by (1 − xtσ) in order to activate/deactivate
the constraint: if xtσ = 1, then TP t is served by DS and the corresponding
SIR inequality must be satisfied; if instead xtsσ = 0, then the big-M coefficient
“activates” and makes the constraint satisfied for any valorization of the power
variables, thus actually making it redundant. Finally, constraints (4) impose that
each TP must be served by at most one DSs.

2.1 Strengthening the Formulation DVB-MILP

The formulation DVB-MILP represents a very natural way for modelling the
problem of designing a DVB network. However, it is known that the presence
of the big-M coefficients combined with the presence of the fading coefficients,
which may vary in a very wide range thus causing numerical instabilities, may
reduce the effectiveness of commercial state-of-the-art MILP solvers, as discussed
in [7,8,22,26,33].

With the aim of reducing these computational issues, we adopt a strength-
ening method proposed in [7,22]. The method is based on considering a dis-
cretization of the continuous power emissions of DSs, which follows the prac-
tice of networking professionals. To this end, the continuous power variable
ps of each DS s ∈ S is replaced by a non-negative integer power variable
p̄b ∈ P = {P1, . . . , P|P|}, with P1 = 0 (switched-off value), P|P| = Pmax and
Pl > Pl−1 > 0, for l = 2, . . . , |P|. This integer variable can be expressed as the
linear combination of the power values Pl and suitable binary variables: specifi-
cally, for each s ∈ S a binary power variable zsl is introduced and is equal to 1
if s emits at power Pl and 0 otherwise. Denoting by L the set of feasible power
levels, formally we have:

p̄s =
∑

l∈L

Plzsl

Such linear combination must be accompanied by the generalized upper bound
(GUB) constraints:

∑

l∈L

zsl ≤ 1,

expressing that each DS may emit at a single power level.
Using what introduced above, we can define the following SIR constraints

based on binary variables, which replaces their continuous form (3):

atσ ·

(

∑

l∈L

Pl zσl

)

− δ
∑

s∈S\{σ}

ats ·

(

∑

l∈L

Pl zsl

)

+M · (1−xtσ) ≥ δ ·Nt ∈ T, σ ∈ S

(5)
We denote by DVB-01 the resulting model based on binary power variables.

In order to operate the strengthening, we exploit the presence of the GUB
constraints to replace the SIR constraints (5) including the binary power vari-
ables with a set of GUB cover inequalities. For an exhaustive introduction to the
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concept of cover inequalities and to their GUB version, we refer to [34,35]. We
concisely recall here the main theoretical results about the well-known general
cover inequalities: a knapsack constraint

∑

j∈J ajxj ≤ b with aj , b ∈ R+ and
xj ∈ {0, 1}, ∀j ∈ J , can be replaced by its cover inequalities

∑

j∈C xj ≤ |C| − 1,
where C is a cover. A cover is a subset C ⊆ J such that the summation of the
coefficients aj with j ∈ C violates the knapsack constraint, i.e.

∑

j∈C aj > b.
The cover inequalities thus identify combinations of binary variables xj that
cannot be activated at the same time (we can activate at most |C| − 1 variables
in each cover C). The GUB cover inequalities represent a stronger version of the
simple cover inequalities, which are defined by exploiting the presence of GUB
constraints

∑

j∈K⊆J xj ≤ 1, which allows to set to 1 at most one variable in K.

Proceeding as in [7], we can define the general form of the GUB cover inequal-
ities (GCIs) needed to replace the binary SIR constraint (5):

xtσ +

λ
∑

l=1

zσl +

|Γ |
∑

i=1

|L|
∑

l=qi

zsl ≤ |Γ | + 1, (6)

with t ∈ T , λ ∈ L, Γ ⊆ S\{σ}, (q1, . . . , q|Γ |) ∈ LI(t, σ, λ, Γ ), with

LI(t, σ, λ, Γ ) ⊆ L|Γ | representing the subset of interfering levels of DSs in Γ that
deny the service coverage of t provided by the server σ, emitting with power level
λ. Intuitively, for given TP, server DS and subset of interfering DSs, a GCI is
defined by fixing the power of the server DS and defining a power setting of the
interfering DSs that deny the coverage of the considered TP.

By replacing the SIR constraints (5) with the GCIs (6) in the model DVB-
01, we obtain Power-Indexed model (DVB-PI) that has the big advantage of
eliminating the big-M and fading coefficients, thus greatly strengthening and
stabilizing the formulation [7]. On the other hand, DVB-PI presents an expo-
nential number of constraints that should be generated dynamically as in a
typical cutting plane method [34]: initially, the model just contains a subset of
GCIs (6) and then additional required GCIs are added by solving an auxiliary
separation problem (see [7] for a detailed discussion about the separation of GCIs
for Power-Indexed formulations).

In the metaheuristic that we propose in the next section to solve the DVB
network design problem, we limit our attention to the following subset of GCIs:

xtσ +

λ
∑

l=1

zσl +

|L|
∑

l=q

zsl ≤ 2, (7)

which are defined by considering a relaxed version of the SIR constraints (5)
obtained by breaking the SIR constraints containing multiple interfering DSs
into multiple single-interferer SIR constraints. Such single-interferer relaxation
comes from the observation that in real-world networks it is common to find
one interfering DS that is much stronger than all the other interefering DS and
thus service coverage just depends on the power emitted by it (see [7,22]). The
GCIs (7) of the relaxed SIR constraints can be added to DVB-MILP in order to
strengthen it.
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3 A Metaheuristic for DVB-T2 Network Design

DVB-MILP, as a mixed integer linear programming problem, can be solved in
principle by adopting a commercial optimization solver, such as IBM ILOG
CPLEX [36]. Nevertheless, even instances of DVB-MILP of moderate size may
result very challenging to be optimally solved even by a state-of-the-art solver
like CPLEX. This is especially due to the presence of the fading and big-M
coefficients in the SIR constraints.

In order to overcome such unsatisfying performance of commercial solvers,
we propose to adopt a metaheuristic that first executes a probabilistic fixing
procedure, guided by the solution of suitable linear relaxations of the design
problem, and then executes an MILP heuristic, based on an exact very large
neighborhood search. The probabilistic fixing is partially inspired by the algo-
rithm ANTS (Approximate Nondeterministic Tree Search) [37] an improved ant
colony algorithm that aims at exploiting the information about bounds avail-
able for the specific optimization problem. In particular, we follow the principle
of using suitable linear relaxations of the problem at hand, instead of generic
bounds, that has been originally proposed in the works [38–40] and extended in
further works such as [41].

Ant Colony Optimization (ACO) is a metaheuristic inspired by the behaviour
of ants, which has been initially proposed in [42] and then been object of
uncountable further studies and applications (e.g., [37,43–47] - see also [48,49]
for an overview). The essential pseudocode of an ACO algorithm (ACO-alg) is
presented in Algorithm 1.

Algorithm 1. General ACO Algorithm (ACO-alg)

1: while an arrest condition is not satisfied do

2: ant-based solution construction
3: pheromone trail update
4: end while

5: local search

In an ACO, a number of ants are defined and each ant iteratively builds a
feasible solution until an arrest condition, such as a time limit, is met. At every
iteration, the ant is in a state that corresponds to a partial solution for the
optimization problem and can execute a move to further complete the partial
solution. The move consists of fixing the value of a decision variable that is still
not fixed and such variable is probabilistically chosen, using a formula that mixes
an a-priori and an a-posteriori measure of fixing attractiveness. The a-priori
attractiveness measure is called pheromone trail value in an ACO-alg context and
is updated at the end of the construction phase: the updates aim at penalizing
variable fixing of bad quality and rewarding good quality fixing. When the arrest
condition is reached, it is common to execute a local search in order to bring the
current best solution to a locally optimal solution.
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In this work, we emphasize that we do not propose an ACO-alg, but we pro-
pose a metaheuristic that can be in some sense seen as a stronger and improved
version of the ANTS algorithm, based on the principles formalized in the works
[38–40], which heavily exploit the valuable information coming from suitable
linear relaxations of the problem. Specifically, in our case, the a-priori measure
is given by a strengthened linear relaxation of the problem (we use the model
DVB-01 strengthened by adding the inequalities (7)), while the a-posteriori mea-
sure is given by the linear relaxation of DVB-MILP including the partial fixing
of power variables. The essential structure of our algorithm can be thus stated
as in Algorithm 2.

Algorithm 2. General metaheuristic (META)

1: while a time limit is not reached do

2: linear relaxation-based probabilistic variable fixing
3: variable fixing measures update
4: end while

5: MILP improvement heuristic

We now describe in detail the new metaheuristic for DVB-T2 network design.

3.1 Feasible Solution Construction

Before describing how the solution construction work, we make some preliminary
considerations. The model DVB-01 employs 2 types of variables: (1) binary power
variables zbl; (2) binary service assignment variables xts. Once that the power
variables are fixed, it is easy to check which SIR constraints (5) are satisfied
and thus which service assignment variables xts can be set to 1 contributing to
increase the value of the objective function. As a consequence, in the solution
construction phase we can just limit the attention to power variables and we
introduce the concepts of power state.

Definition 1. Power state (PS): A power state represents the activation of a
subset of DSs on some power level l ∈ L and excludes that the same DS is
activated on two power levels. Formally: PS ⊆ S × L :� ∃(s1, l1), (s2, l2) ∈ PS :
s1 = s2.

We say that a power state PS is complete when it specifies the power configura-
tion of every DS in S (i.e., |PS| = |S|). Otherwise the PS is said partial and such
that |PS| < |S|. Furthermore, for a given power state PS, we denote by S(PS)
the subset of DSs whose power is fixed in PS (we call such DSs configured), i.e.
S(PS) = {s ∈ S : ∃(s, l) ∈ PS}.

In order to reach a complete power state, a sequence of partial power states
is defined. Specifically, the execution of a move brings from a partial power state
PSi to a new partial power state PSj such that:

PSj = PSi ∪ {(s, l)} with (s, l) ∈ S × L : s �∈ S(PSi).
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We remark that, by definition of power state, the added couple (s, l) may not
contain a DS whose power is already fixed in a previous power state. Every
move adds one new element to the partial solution. Once that the construction
phase ends, the value of the decision variables zsl is completely specified and,
as previously explained, we can deduce the value of the variables x, therefore
defining a complete feasible solution (x, z) for the model DVB-01.

Given a partial, the probability πsl of operating an additional move/fixing
(s, l) �∈ PS is established through the formula [37,39,40]:

πsl =
α τsl + (1 − α) ηsl

∑

(σλ) �∈PS α τσλ + (1 − α) ησλ

, (8)

which combines the a-priori attractiveness measure τsl with the a-posteriori
attractiveness measure ηsl through a coefficient α ∈ [0, 1]. In our case, τsl is given
by the optimal value of the linear relaxation DVB-01 including the strengthening
inequalities (7), while ηsl is the value of the linear relaxation of DVB-MILP with
included the variable fixing associated with the current partial power state.

At the end of a solution construction phase, we update the a-priori measures
τ on the basis of the quality of fixing, adopting a formula proposed in [18]
partially based on that originally proposed in ANTS [37]. To define the formula,
we first introduce the concept of optimality gap (OGap): given a feasible solution
of value V and a lower bound B that is available on the optimal value V ∗ of the
problem (note that it must hold B ≤ V ∗ ≤ V ): the OGap allows to evaluate the
quality of the feasible solution and is defined as OGap(V,B) = (V − B)/V . The
a-priori attractiveness measure that we use is:

τsl(h) = τsl(h − 1) +

Σ
∑

SOL=1

∆τSOL
sl

with ∆τSOL
sl = τsl(0) ·

(

OGap(V̄ , L) − OGap(VSOL, B)

OGap(V̄ , B)

)

(9)

where τsl(h) is the a-priori attractiveness of fixing (s, l) at fixing iteration h, B is
a lower bound for the optimal value of the problem (in our case we use as lower
bound the strengthened formulation DVB-01 with included the inequalities (7)),
VSOL is the value of the SOL-th feasible solution built in the last construction
cycle and V̄ is the (moving) average of the values of the Σ solutions produced
in the previous construction phase. ∆τSOL

sl is the reward/penalization factor for
a fixing and depends upon the initialization value τsl(0) of τ (in our case, based
upon the linear relaxation of DVB-01), combined with the relative variation in
the optimality gap that VSOL implies with respect to V̄ .

3.2 MILP Improvement Heuristic

Given a feasible solution defined in the construction phase, we operate a search
for better solutions by adopting an MILP heuristic that executes a very large
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neighborhood search exactly, by formulating the search as a mixed integer lin-
ear programming problem that is solved through an MILP solver [49]. More
formally, given a feasible solution (x̄, z̄) to the problem DVB-01, we define the
neighborhood by allowing to switch the binary value of at most U > 0 power
variables z̄ and allowing all the other variables to vary freely. Expressing such
condition can be done by introducing the following hamming distance constraint
to DVB-01:

∑

(s,l):z̄sl=0

zsl +
∑

(s,l):z̄sl=1

(1 − zsl) ≤ U

The modified problem is then solved through an MILP solver like CPLEX, run-
ning with a time limit.

3.3 The Complete Algorithm

The complete algorithm for solving the model DVB-01 is presented in
Algorithm 3. We base the algorithm on the execution of two nested loops: the
outer loop runs until a global time limit is reached and contains an inner loop
inside which has the task of building Σ feasible solutions. In more detail, the first
task of the algorithm is to solve the linear relaxation of DVB-01 strengthened by
(7) for the possible fixings of the power variables zsl, obtaining the correspond-
ing optimal value and using it to initialize the a-priori measure of attractiveness
τsl(0). This is followed by the definition of a solution (x∗, z∗) that represents
the best solution found during the execution of the algorithm. Each run of the
inner loop is aimed at deriving a complete power state that is then used as basis
to check which SIR constraints are satisfied. At the end of the inner loop, the
a-priori measures τ are updated according to formula (9), considering the qual-
ity of the produced solutions, and the global best solution (x∗, z∗) is updated,
if necessary. After having reached the global time limit, the MILP improvement
heuristic is executed with the aim of improving the best solution found (x∗, z∗).

4 Computational Tests

We tested the performance of our metaheuristic on 20 instances that refer to
realistic DVB regional networks potentially deployable in Italy. The network
represented in an instance is constituted by a set of DVB stations that broad-
cast the same telecommunication service in a synchronized way using the same
frequency in a given territory. Each station can emit at a power that lies in the
range [−40, 26] dBkW. The experiments were performed on a 2.70 GHz Windows
machine equipped with 8 GB of RAM and adopting IBM ILOG CPLEX 12.5
as MIP solver. The code implementing the optimization model and the solution
algorithm was written in C/C++ and interacts with CPLEX through Concert
Technology.

A global time limit of 3600 seconds was adopted for solving each instance. In
the case of the metaheuristic, the available time budget is distributed in this way:
the construction phase loop is associated with a time limit of 3000 s, whereas
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Algorithm 3. - Metaheuristic for DVB-01

1: compute the linear relaxation of DVB-01 for all zsl = 1 and initialize the values
τsl(0) with the corresponding optimal values

2: let (x∗, z∗) be the best feasible solution found
3: while a global time limit is not reached do

4: let (xB , zB) be the best solution found in the inner loop
5: for SOL := 1 to Σ do

6: build a complete power state PS
7: check the SIR constraints satisfied by PS
8: derive a feasible solution (x̄, z̄)
9: if the coverage granted by (x̄, z̄) is better than that of (xB , zB) then

10: update the best solution found (xB , zB) := (x̄, z̄)
11: end if

12: end for

13: update τ according to (9)
14: if the coverage granted by (xB , zB) is better than that of (x∗, z∗) then

15: update the best solution found (x∗, z∗) := (xB , zB)
16: end if

17: end while

18: run the MILP improvement heuristic for (x∗, z∗)
19: return (x∗, z∗)

the MILP-based improvement phase is associated with a time limit of 600 s. For
the metaheuristic parameter setting, we impose α = 0.5 (i.e., we balance the
a-priori and a-posteriori attractiveness measure) and Σ = 5. The results of the
computational tests are presented in Table 1, where: ID identifies the instance;
COV-CPLEX%, COV-Meta% (best) and COV-Meta% (avg) are the percentage
of population covered by the best solution found by CPLEX, by the best solution
found by the metaheuristic and by the metaheuris-tic on average within the time
limit, respectively; ∆COV% (best) and ∆COV%(avg) are the percentage increase
in population coverage that the metaheuristic grants with respect to CPLEX in
the best case and on average, respectively.

Concerning the results of the computational tests, it is clear that in all cases
the coverage granted by CPLEX is sensibly lower than that granted by the meta-
heuristic on average, lying in the range between 52 and 75% (in contrast, the
metaheuristic offers a coverage between 56 and 86%). The better performance
of the metaheuristic is more evident when looking at the best solutions found,
which offer a percentage coverage between 63 and almost 89%. The percent-
age increase in coverage is equal to 15.1% on average and, for the best cases,
increases to the very remarkable value of 21.8%. The performance of the meta-
heuristic is particularly good in the case of instances like I11 and I16, which
almost reach the remarkable coverage of 90%. We note that the improvement in
the value of solutions that we get are very significative, since in region-wide net-
work instances improving a solution even by a small percentage can lead to an
additional coverage of population of the order of thousands of people, thus being
practically very attractive for the planning of television service broadcasters.
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Table 1. Experimental results

ID COV-CPLEX% COV-Meta% ∆COV% COV-Meta% ∆COV%

(avg) (avg) (best) (best)

I1 53.3 61.0 14.5 63.2 18.6

I2 62.9 74.3 18.16 77.1 22.7

I3 57.4 69.3 20.8 73.5 28.2

I4 71.6 81.1 13.2 85.2 19.0

I5 66.5 78.6 18.2 83.8 26.1

I6 51.1 61.0 19.3 63.7 24.8

I7 54.1 60.4 11.6 63.2 19.5

I8 63.8 67.4 5.6 64.6 13.4

I9 68.2 79.3 16.3 72.3 20.3

I10 66.0 78.7 19.2 82.0 29.0

I11 74.4 83.0 11.5 85.1 17.8

I12 52.0 56.3 8.2 87.6 15.6

I13 60.6 69.0 13.8 60.1 19.4

I14 59.4 68.6 15.5 72.3 20.2

I15 56.8 70,3 23.7 71.3 27.8

I16 74.7 85.5 14.4 72.5 18.4

I17 67.3 80.2 19.2 88.4 27.0

I18 63.5 71.5 12.6 85.4 23.5

I19 64.8 75.6 16.6 82.1 26.8

I20 58.0 63.6 9.7 67.8 16.9

5 Conclusion and Future Work

In this paper, we have derived an optimization model for the design of digital
television broadcasting networks adopting the second generation of DVB-T stan-
dard, i.e. the DVB-T2. Since even a state-of-the-art optimization solver may have
difficulties in finding good quality solutions for real-sized instances, due to the
presence of complicating wireless coverage signal-to-interference constraints, we
have proposed a metaheuristic that combines a probabilistic variable fixing pro-
cedure with an exact large neighborhood search formulated as a Mixed Integer
Linear Programming problem. Computational tests on realistic instances show
that the metaheuristic is able to identify solutions that guarantee a much larger
service coverage than those identified by a state-of-the-art optimization solver.

As future work, we plan to further strengthen the performance of the solution
algorithm by considering the integration with other heuristic (specifically, cut-
ting plane methods exploiting conflicts between variables, similarly to [50], and
sequential heuristics as in [51])). Furthermore, we plan to consider variants of
the problem including multiple objectives, taking into account trade-off between
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user coverage and power consumption, in a way similar to [52]. Last but not least,
we plan to address the uncertainty of signal propagation and system capacity,
by adopting Multiband Robust Optimization [25,53] and robust cutting plane
methods [54].
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