
A Hybrid MIP-based Heuristic for the
Optimal Design of DVB-T2 Networks

Fabio D’Andreagiovanni1,2

1National Centre for Scientific

Research (CNRS), France

Email: d.andreagiovanni@hds.utc.fr

Hicham Lakhlef 2

2Heudiasyc UMR 7253, Sorbonne Universités,
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Abstract—Due to the ongoing introduction of the second gen-
eration of the Digital Video Broadcasting - Terrestrial standard
(DVB-T2), television broadcasters that are already active and
new broadcasters entering in the business will be required to
(re)design their networks. This is generating a new interest for
effective and efficient DVB optimization software tools. In this
work, we propose a new fast hybrid heuristic for the design of
DVB-T2 networks. The heuristic combines a genetic algorithm,
adopted to efficiently explore the solution space of power emis-
sions of DVB stations, with a (very) large neighborhood search
formulated as a Mixed Integer Programming (MIP) problem
solved exactly. Computational tests on realistic instances show
that the new hybrid heuristic is able to identify solutions granting
much higher user coverage than those identified by a state-of-
the-art optimization solver.

I. INTRODUCTION

Though the impressive evolution that telecommunications

services have experienced in the last years, television broad-

casting remains a fundamental service that is able to easily

reach most of the population of a country and that is of high

repute among national governments. A fundamental step in

the evolution of the television technology has been represented

by the switch from analogue to digital transmissions, which

has allowed to increase the quality and the range of services.

Among all the digital television technologies, the DVB-T

Standard (Digital Video Broadcasting Terrestrial) [26] is the

most popular and is adopted in the majority of world countries.

The need for improving the efficiency of the standard in

terms of exploitation of the radio spectrum has led to the

development of a 2nd-generation DVB, which is commonly

called DVB-T2 [27] and that was officially released by ETSI

- the European Telecommunications Standardisations Institute

- in 2009. The switch from DVB-T to DVB-T2 is currently

ongoing in several European countries and is considered very

important by the European Commission, since it will allow

to increase the capacity of the television system of at least

30%, thus favouring more broadcasting companies to enter the

market and enhance competition and media pluralism (see also

[28]). The new broadcasting companies will be active through

new networks that will require to be designed. At the same

time, incumbent broadcasting companies will have to redesign

their network in order to take into account the new features

of the DVB-T2 and the interactions with the new deployed

networks.

In this work, we address the question of developing a

mathematical optimization algorithm in order to solve the

challenging mathematical optimization models adopted for

DVB-T2 networks. Specifically, our contributions are:

1) we discuss how to derive an optimization model to

represent the problem of designing a DVB network, in

particular modelling the power configuration of DVB

stations and the association of users to a serving sta-

tion. The model corresponds to a Mixed Integer Linear

Programming (MILP) problem and employs signal-to-

interference quantities recommended to be used for

coverage evaluation by international regulatory bodies.

After having introduced the model, we discuss its nu-

merical drawbacks;

2) we define a new hybrid heuristic algorithm for solving

the MILP problem associated with the design of DVB

networks. In particular, we combine a Genetic Algo-
rithm (GA) with a Mixed Integer Linear Programming

heuristic. The aim of the GA algorithm is to efficiently

explore the set of discrete power solution space that

can be assigned to the DVB stations, whereas the aim

of the MILP heuristic is to improve the best solution

found by the GA algorithm, by executing a very large

neighborhood search exactly (i.e., formulating the search

through a MILP model that is solved through an MILP

solver - see [6]).

We note that (nature-inspired and genetic) heuristics

have been widely adopted to solve different versions

of wireless network design problems. Referring to the

case of GAs, we cite the case of: [11], which considers

the transmitter location problem; [31], which considers

the service assigment problem; [14], which considers

the frequency assignment problem; [52], which con-

siders power assignment problem; [15], which jointly

considers power, frequency and modulation assignment

for WiMAX networks. However, to the of our best

knowledge, no hybrid algorithm combining GA and MIP

heuristics has been yet developed to solve the DVB
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network design problem, in particular with the aim of

tackling the numerical difficulties associated with the

MILP model (see the next section).

More precisely, our hybrid algorithm is located be-

tween exact optimization algorithms and (bio-inspired)

heuristics for DVB: exact algorithms, such as [17], [22],

[45], theoretically guarantee convergence to an optimal

solution, but, at the same time, they tend to present

a slow convergence that is not suitable for tackling

very large realistic instances; heuristics, such as [4],

[15], [37], [40] are instead fast but cannot provide

guarantees about the quality of the produced solution.

In contrast, a hybrid heuristic like the one we present

here runs fast, but also exploits the valuable information

coming from (strengthened) linear relaxations of the

problem, allowing to better guide the fixing of variables

in the exact MILP search and also to derive a so-

called optimality gap that can measure the quality of

the produced solution. To the best of our knowledge,

the only work that makes use of a hybrid metaheuristic

for DVB design is [23], where an algorithm inspired by

ant colony optimization strengthened through polyhedral

considerations is developed. However, in contrast to the

algorithm that we present here, the algorithm of [23]

is not specifically developed to tackle the numerical

difficulties of wireless network design and considers an

approximated model for DVB network design problem

where only one serving signal is considered for each

user, instead of the composition of useful signals actu-

ally supported by the DVB-T Standard - see the next

section for more details;

3) we present the results of computational tests based on

realistic DVB instances, indicating that the new hybrid

algorithm is able to return solutions of much higher

quality than a state-of-the-art commercial optimization

software.

The remainder of this paper is organized as follows: in

Section II, we introduce an optimization model for DVB-

T2 network design; in Sections III and IV, we present the

new hybrid algorithm and the computational tests, respectively.

Finally, in Section V, we derive conclusions.

II. DVB-T2 NETWORK DESIGN

In order to derive a mathematical optimization model, a

DVB-T2 network can be described as a set of DVB trans-

mitting stations S that broadcast a signal associated with a

television service to users located in a target territory. Each

station is associated with a geographical location and a num-

ber of parameters (e.g., power emission, modulation scheme,

frequency channel), which define its radio-electrical configu-

ration. In accordance with recommendations and requirements

for DVB network design released by major international and

national regulatory bodies (e.g., [1], [9]), we decompose the

target territory into a grid of elementary (small) squares, called

testpoints (TPs). Each TP can be seen as a kind of “superuser”

that is located at the center of the square and is representative

of all the users located in the square. The set of all TPs is

denoted by T .

The general Wireless Network Design Problem (WND) (see

e.g., [16], [22], [36], [50]) can be described as the optimization

problem consisting of establishing the location and the config-

uration of each transmitter in a telecommunication network in

order to optimize an objective function, typically representing

the profit of the operation or the coverage of users, while

guaranteeing a desired level of quality of service. Though in

principle all the parameters of a transmitter can be simultane-

ously optimized and be considered as decision variables of a

WND, all works considering the WND focus their attention

on just a subset of the parameters. In particular, most of

the works consider only the setting of the power emission

of each transmitter together with establishing the transmitter

that serves each user (user-serving transmitter association).

Indeed, these constitute two crucial questions to be considered

when designing networks, as indicated and taken explicitly or

implicitly into account in several (real) studies (e.g., in DVB

[28], [22], [42], [45], 5G [10], [33], [43], [44], [51], in FTTx

[18], [48], in Mesh Networks [25], [32], in UMTS [2], [3],

in WiMAX [5], [16], in WLANs [20], [19], [29] and in other

wireless network design problems such as [7], [8], [17], [34],

[36], [39], [38], [50], [54]).

Optimizing the power emission of transmitter and the user-

trasnmitter association leads to the so-called Scheduling and
Power Assignment Problem (SPAP), a version of the WND that

is known to be NP-hard [45]. In a hierarchy of WND problems

identified in [16], [45], [46], the SPAP plays a crucial role. In

order to model the SPAP for DVB-T2 network design, we

introduce two typologies of decision variables, namely:

• a continuous power variable ps ∈ [0, Pmax] representing

the power emission for each transmitter s ∈ S;

• a binary service assignment variable xts ∈ {0, 1} defined

in the following way:

xts =

{
1 if s ∈ S is the serving station of TP t ∈ T
0 otherwise

for each TP t ∈ T and station s ∈ S.

Concerning the evaluation of the quality of service, we can first

note that each TP t ∈ T receives signals from all the stations

s ∈ S and the power Pt(s) that t gets from s is proportional

to the power ps emitted by s by a factor ats ∈ [0, 1] (i.e.,

Pt(s) = ats · ps). The factor ats is indicated by the name of

fading coefficient and represents the reduction in power that a

signal experiences while propagating from s to t [49].

In canonical wireless networks, if we focus on a specific

frequency channel, each user/testpoint receives signals from

all the stations, but the service is provided by the signal of

one single station, chosen as server of the user, while all

the other stations emit signals that interfere with the serving

station, thus reducing the quality of service. In contrast, the

DVB-T(2) standard adopts Orthogonal Frequency Division

Multiplexing (OFDM) and this allows to treat as useful signals

received by distinct stations transmitting on the same channel

(we recall indeed that in a DVB-T(2) network, the stations
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are broadcasting the same information and the signal of each

station reaches a testpoint at different time - see [41], [45] for

more details). Specifically, a user/testpoint must decide where

to position a time window for signal detection: all the signals

received within the time window are useful and strengthen

the quality of service, whereas all the signals received outside

the time window are interfering and deteriorate the quality of

service.

Notwithstanding the fact that a time window could be

placed in a theoretically unlimited number of positions on

the time axis, it is common to let start the time window in

correspondence with the instant in which a signal is received

from a station. As a consequence, for each testpoint, we

assume that the number of possible time windows is equal

to the number of stations in the network. Given a a tespoint

t ∈ T , if the detection time window of t starts when the signal

of station s ∈ S is received, we say that s is the serving station
(or server) of t.

For a given TP t ∈ T and serving station s ∈ S of t, we

denote by U(s, t) ⊆ S the subset of useful stations for t and by

I(s, t) ⊆ S the subset of interfering stations. We remark that

such two subsets constitute a partition of the set of stations,

i.e. S = U(s, t) ∪ I(s, t) and U(s, t) ∩ I(s, t) = ∅. Once that

the subsets of useful and interfering signals are established,

we say that TP t is served by station s if the ratio of the sum

of the useful powers to the sum of the interfering powers (the

Signal-to-Interference Ratio - SIR) is above a threshold δ > 0,

whose value depends on the wanted quality of service [41],

[49]:

SIRts(p) =

∑
σ∈U(s,t) atσ · pσ

N +
∑

σ∈I(s,t) atσ · pσ
≥ δ . (1)

Here, N > 0 represents the noise of the system. Serving a

TP t generates a revenue rt (in the case of DVB-T networks,

we set rt equal to the number of users located in a testpoint).

Through simple operations of linear algebra, we can rewrite

the SIR (1) as the following inequality, which we call SIR

inequality:∑
σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ ≥ δ ·N . (2)

Since part of the decision process consists of deciding which

is the serving station of a TP, for each TP t ∈ T we have to

consider one SIR inequality (2) for each potential server s ∈ S.

This implies that we actually face the following disjunctive

constraint, including one SIR inequality for each potential

server:

∨
s∈S

⎛
⎝ ∑

σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ ≥ δ ·N
⎞
⎠ . (3)

By following a well-known approach in Mixed Integer

Programming (see e.g., [47], [22]), this disjunctive constraint

can be expressed as a family of linear constraints, by relying

on the introduction of a sufficiently large positive value

M , commonly known by the name of big-M coefficient. To

this end, besides the big-M coefficient, we also employ the

binary service assignment decision variable xts, introducing

the following constraint for each potential server s ∈ S:∑
σ∈U(s,t)

atσ ·pσ−δ
∑

σ∈I(s,t)

atσ ·pσ+M(1−xts) ≥ δ·N . (4)

It is easy to check that if xts = 1, then the big-M term

disappears and the SIR inequality corresponding with TP t
served by station s must be satisfied. If instead xts = 0, then

the big-M activates and the inequality is satisfied by any val-

orization of the power variables pσ , thus becoming redundant.

The inequality (4), which we call SIR constraint, constitutes

the core of any wireless network design problem including

service quality under the form of a signal-to-interference ratio.

On the basis of the system elements and notation introduced

above, we can define the problem of designing a DVB network

as follows.

Definition 1 (The DVB Network Design Problem - DVB-
ND): Given a set of stations S, a set of TPs T , the fading

coefficients ats ∀t ∈ T, s ∈ T , the testpoint population rt
∀t ∈ T , the maximum power emission Pmax of each station,

the system noise N and the SIR threshold δ, the DVB Network

Design Problem consists of establishing the power emission of

each station s ∈ S and the serving station of each TP t ∈ T ,

so that the TP population covered with service is maximized,

while the corresponding SIR constraints are satisfied, each TP

is served by at most one station and the power limits of the

stations are respected.

The DVB-ND problem can be modelled through the fol-

lowing Mixed Integer Linear Programming problem, which

we denote by the acronym DVB-MILP:

max
∑
t∈T

∑
s∈S

rt · xts (DVB-MILP)

∑
σ∈U(s,t)

atσ · pσ − δ
∑

σ∈I(s,t)

atσ · pσ+

+M(1− xts) ≥ δ ·N t ∈ T, s ∈ S
(5)∑

s∈S

xts ≤ 1 t ∈ T (6)

0 ≤ ps ≤ Pmax s ∈ S

xts ∈ {0, 1} t ∈ T, s ∈ S .

Here, the objective function models the target of maximizing

the number of users covered with service, expressed as the

summation of the population of served TPs. The constraints

(5) are the SIR constraints, whereas the constraints (6) model

that each TP can be served by at most one station.

In what follows, for algorithmic purposes, we consider a

purely binary version of DVB-MILP including discrete power

values. To this end, we introduce a set P = {P1, . . . , P|P|}
of feasible power values on which a DVB station may emit

and we replace each continuous power variable with the

linear combination of 0-1 power level activation variables

zsl ∈ {0, 1} and the power values, namely ps is replaced with
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∑|P|
l=1 Pl · zsl. A generic variable zsl is equal to 1 if s emits

at power level Pl and 0 otherwise. Additionally, each station

must be activated on a single power level, so we must also

include the constraint
∑|P|

l=1 zsl = 1 for each station s.

A. Discussing the strength of the DVB-MILP model

The optimization model DVB-MILP constitutes a very

natural way to model the DVB-ND problem by directly

including the SIR constraints. Such direct inclusion has been

largely adopted in literature for nay different types of WND

problems (see, for example, [16], [22], [36], [50]). However,

this generates the following difficulties:

• the fading coefficients may vary in a (very) wide range

and thus define (very) ill-conditioned coefficient matrices

that make the solution process unstable from a numerical

point of view;

• the big-M coefficients are known to lead to “mathemati-

cally weak” formulations associated with bounds of low

quality, which greatly reduce the effectiveness of state-

of-the-art optimization solvers [13];

• the resulting coverage plans are often unreliable and may

contain errors (see e.g., [8], [22], [34]), that is, if we

post-process solutions returned by solvers like IBM ILOG

CPLEX [12] it is very likely to find SIR constraints

that are actually not satisfied by the computed power

assignment (for a more technical discussion about why

this happens due to the floating-point arithmetic adopted

in commercial optimization solver, we refer the reader to

[21])

.

In practice, models based on SIR constraints like DVB-

MILP can be solved to optimality only in the case of instances

of small size. In contrast, as the size of instances increases,

the identification of feasible solutions may constitute a very

difficult task, even for state-of-the-art commercial optimization

solvers like CPLEX. Though these drawbacks are well-known,

it is interesting to note that just a relatively small part of the

wide literature devoted to WND has tried to overcome them

(see [16], [22] for a review). In the next section, we proceed

to introduce a fast hybrid heuristic that is able to take into

account such numerical difficulties.

III. A HYBRID HEURISTIC FOR THE DVB-MILP

In order to develop an effective and efficient algorithm

for solving DVB-MILP, we combine a construction phase

based on a Genetic Algorithm (GA) with an improvement

phase consisting of an MIP heuristic. The GA phase adapts

algorithmic consideration made in [15].

Genetic algorithms are widely-known bio-inspired heuristic

algorithms originally developed for solving combinatorial op-

timization problems. Specifically, they take inspiration from

the evolution process of a population of individuals (for an

exhaustive introduction to theory and applications of GAs, we

refer the reader to [30], [35], [53]). Essentially speaking, a

GA maintains a population of individuals and each individual

corresponds to a feasible solution of the considered optimiza-

tion problem. The value that the decision variables assume

in a solution is encoded in the so-called chromosome of an

individual. The genetic strength of an individual is assessed

through the adoption of a fitness function that measures the

quality of the solution associated with the chromosome. In

a typical GA, there is an initial population that evolves

iteratively through individual crossover, mutation and death

mechanisms that mimic natural selection and evolution. More

in detail, the general structure of the GA that we consider is

depicted in Algorithm 1.

Algorithm 1 General Genetic Algorithm (GA-alg)

1: Creation of the initial population

2: while an arrest condition is not satisfied do
3: Selection of individuals who generate the offspring

4: Generation of the offspring by crossover

5: Mutation of part of the population

6: Death of part of the population

7: end while
8: Improving MIP Heuristic

We now proceed to discuss in detail the features of all the

steps of the algorithm.

A. Characteristics of the population

1) Representation of the individuals: The central decision

that we encode in the chromosome of an individual is the

power setting of the DVB stations. In our algorithmic setting,

the chromosome of an individual thus corresponds to a power

vector p of size |S|. The generic position s ∈ {1, 2, . . . , |S|}
in the chromosome stores the discrete power level ps ∈ P
emitted by station s ∈ S.

Once that a power vector/chromosome is defined, we still

have to decide how to select the server for a TP (i.e., deciding

the value of the service assignment variables xts, in order

to compute the associated coverage). In order to do this, for

each TP t ∈ T and server s ∈ S, we compute the value of the

signal-to-interference ratio SIRts(p) using the power vector

p and the distinction between useful and interfering signals

induced by the server s. Let us denote now by Σ(t, p) ⊆
S the subset of serving stations that can guarantee service

coverage to TP t for power p by satisfying the corresponding

SIR inequality, i.e.:

Σ(t, p) = {s ∈ S : SIRts(p) ≥ δ}
If Σ(t, p) is not empty, we choose as server σ of t, the station

σ ∈ Σ(t, p) associated with the highest SIR value SIRts(p).
Then, looking at the service assignment variables, we set

xtσ = 1 and xts = 0 ∀s ∈ S \ {σ}.
2) Fitness function: Since our objective is to maximize the

population covered with service, it is natural to adopt a fitness

function COV (p) that computes the coverage granted by an

individual as a function of the power vector/chromosome p.

Specifically, COV (p) is obtained as the summation of the

population of TPs whose SIR constraints are satisfied by p,
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with servers established according to the rules defined in the

previous subsection.

3) Initial population: We define the initial population by

including power vectors where a single station is activated and,

for each station, we define one power vector for each discrete

power level except the null one. Formally, for each s ∈ S, the

initial population POP contains the following vectors:

(0, 0, . . . , ps = P2 , . . . , 0, 0)

(0, 0, . . . , ps = P3 , . . . , 0, 0)

...

(0, 0, . . . , ps = P|P| , . . . , 0, 0)

thus including |S| · (|P| − 1) initial individuals in total.

B. Evolution of the population

1) Selection: The selection of individuals whose chromo-

somes are combined in order to create the new generation

of individuals takes place through a tournament selection.

Specifically, given the current population POP of individuals,

we first create k > 0 subgroups by randomly selecting 
α·|P |�
individuals from POP , with α ∈ (0, 1). Then we select a

number m < 
α·|P |� of individuals presenting the best fitness

value in each group. Such individuals are those employed to

give birth to the new generation through crossover.

2) Crossover, mutation and death: The individuals that

have been selected in the previous step are paired in a random

way with the aim of forming 
k · m/2� couples. Every

couple then generates two offspring by means of chromosome

crossover. Specifically, given a couple of individuals (the

parents) associated with power vectors p1, p2, the crossover

operation mixes the power levels in the same position of p1, p2

to generate two offspring with power vectors p3, p4 of possibly

higher fitness value.

To evaluate the effect of a crossover operation, we introduce

the measure ΔCOV(p, ps = Pl) ∈ Z to denote the variation

in the number of covered users induced by changing the

power value ps in position s of a power vector p to a

value Pl ∈ P , while maintaining all the other power values

unchanged. By using this measure, we adopt the following

crossover operation, which attempts at making p3 the best

individual in the offspring. At the beginning of the crossover,

p3 and p4 have all elements equal to 0. Then, by following

an increasing order of the index s from 1 to |S|, each value

0 inherits the power value of one of the two parents in the

same position. More in detail, let us assume to focus on

the crossover procedure for a position σ ∈ {1, . . . , |S|}: for

values of s ∈ {1, . . . , |S|} such that s < σ, the crossover

has been operated and thus the vectors p3, p4 include power

levels inherited by the parents p1, p2; in contrast, positions

corresponding to values s ≥ σ have not yet been processed

and are thus still equal to 0.

In order to establish the inheritance of power values of p3

and p4 from their parents p1 and p2, we adopt the following

rules:

p3s =

{
p1s if ΔCOV(p3, p3s = p1s) ≥ ΔCOV(p3, p3s = p2s)
p2s otherwise

p4s =

{
p1s if ΔCOV(p3, p3s = p1s) < ΔCOV(p3, p3s = p2s)
p2s otherwise

which guarantee that the new power vector p3 inherits the

power levels that grant the best variation in coverage ΔCOV .

Besides crossover operations, we include the possibility

to vary the values of power vectors by mutation, since this

favours a better exploration of the solution space and helps to

avoid to get trapped in locally optimal solutions. To this end, at

every iteration, we randomly choose a number of individuals


γ · |POP |� with 0 < γ < 1. Then, still by random selection,

|P| power levels corresponding with different frequencies are

reduced to the immediately lower power level allowed in

P . This mutation operation attempts at creating individuals

that grant the same coverage at lower power emission, thus

reducing interference effects of a station.

Finally, after having executed crossover and mutation, the

weakest individuals die and are removed from POP . Specif-

ically, we choose to select and remove the 2 · 
k · m/2�
individuals presenting the worst values of the fitness function.

We remark that, due to the specific number of individuals

generated and removed from POP at every iteration, the size of

the population is maintained constant throughout the execution

of the algorithm.

C. MIP improvement heuristic

Given the best feasible solution identified in the GA con-

struction phase as starting point, we try to find feasible solu-

tions of higher value through an MIP heuristic corresponding

to operating a very large neighborhood search in an exact
way, namely formulating the search as a MILP problem that

is solved through a state-of-the-art MILP solver [6]. The

rationale beyond this heuristic is that, while a state-of-the-art

solver like IBM ILOG CPLEX can have difficulties in finding

good quality solutions for the complete design problem, it

can instead fast provide good quality solutions to subproblems

obtained by fixing the value of a consistent number of decision

variables.

Specifically, we adopt a modified Relaxation Induced Neigh-
borhood Search (RINS) (see [24] for a complete and formal

definition of this algorithm). Also in this heuristic, we adopt

a power-indexed version of DVB-MILP, where the continuous

power variables are replaced by binary variables representing

the activation of a station on a discrete power level. Let (p̄, x̄)
be a feasible solution of the problem and let (pTLR, xTLR) be

an optimal solution of the linear relaxation, strengthened by

the cuts found by CPLEX in the root node of the branch-and-

bound tree. Furthermore, let (p̄, x̄)j , (p
TLR, xTLR)j denote

the j-th component of the vectors.

The modified RINS algorithm that we adopt and that we

denote by (mod-RINS) consists of solving a subproblem where
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we set the value of decision variables whose value in (p̄, x̄)
and (pTLR, xTLR) differs of at most a positive quantity ρ < 1,

in accordance to the following rules:

(p̄, ȳ)j = 0 ∧ (pTLR, xTLR) ≤ ρ =⇒ (p, x)j = 0

(p̄, ȳ)j = 1 ∧ (pTLR, xTLR) ≥ 1− ρ =⇒ (p, x)j = 1

.

The resulting problem is then passed to the state-of-the-art

solver, which solves it with a time limit.

IV. COMPUTATIONAL TESTS

In order to test the performance of the new algorithm, we

considered 15 instances based on regional DVB network data

from Italy. Each instance corresponds to a single-frequency

DVB network and includes stations emitting power in the

range [−40, 26] dBkW. The computational tests have been

conducted on a Windows-based notebook with 2.70 GHz and

8 GB of RAM. The optimization solver IBM ILOG CPLEX

12.5 was employed as MIP solver. The code implementing the

optimization model and the solution algorithm was written in

C/C++, adopting IBM ILOG CPLEX Concert Technology to

interface with CPLEX.

When solving a DVB-MILP instance through CPLEX, a

time limit of 3600 seconds was imposed. In the case of the

new algorithm, the genetic construction phase runs with a time

limit of 3000 seconds and the improvement MIP phase based

on mod-RINS runs with a time limit of 600 seconds. The

parameters of the algorithm were set as follows: for each

tournament selection we define k = 10 groups that include

a fraction α = 0.1 of the population POP ; the m = 10
individuals with the highest fitness of each group are selected

for crossover; following the creation of new individuals, a

fraction γ = 0.2 of the population is subject to mutation.

In RINS, we impose ρ = 0.1.

In Table 1, we present the results of the computational

tests. ID is the identifier of the instances. COV-CPLEX% is

the percentage of population covered by the best solution

found by the optimizer CPLEX within the time limit. COV-
GMIP% (best) and COV-GMIP% (avg) are the percentages of

population covered on average and in the best case by our

new hybrid algorithm, which we denote by GMIP, within the

time limit. Finally, ΔCOV% (best) and ΔCOV%(avg) denote

the percentage coverage increase, on average and in the best

case, that GENMIP is able to grant with respect to CPLEX.

Looking at the results, it is evident that the performance

of GMIP is much better than that of CPLEX, granting a

percentage increase in coverage that on average is equal to

22% and in the best cases can range from 25 to 52%. Such

improvements are really satisfying and remarkable, consid-

ering that, in instances corresponding to regions, even small

increases in coverage can translate into thousands of additional

users getting the service. We believe that the problem results

so challenging for CPLEX due in particular to the composition

of multiple useful and interfering signals that is present in the

SIR constraints.

TABLE I
COMPUTATIONAL RESULTS

ID
COV- COV-GMIP% ΔCOV% COV-GMIP% ΔCOV%

CPLEX% (avg) (avg) (best) (best)

I1 48.6 63.5 30.6 67.5 38.8
I2 55.3 71.1 28.5 73.8 33.4
I3 54.7 64.6 18.0 73.7 34.7
I4 49.2 63.9 29.8 66.2 34.5
I5 50.0 59.7 19.4 69.1 38.2
I6 56.4 66.4 17.7 75.2 33.3
I7 53.9 65.0 20.5 74.9 38.9
I8 62.4 68.0 8.9 78.0 25.0
I9 55.5 72.3 30.2 80.6 45.2
I10 46.3 59.4 28.2 67.4 45.5
I11 57.2 65.2 13.9 73.3 28.1
I12 57.7 68.6 18.8 75.8 31.3
I13 51.4 72.8 41.6 78.2 52.1
I14 62.5 76.9 23.0 79.4 27.0
I15 58.8 65.4 11.2 77.6 31.9

V. CONCLUSION AND FUTURE WORK

The optimal design of television broadcasting networks

based on the DVB-T(2) standard is a challenging task, which

can prove difficult even for a state-of-the-art optimization

solver. In order to tackle the unsatisfying performance of

commercial solvers, we presented a new hybrid algorithm for

DVB network design, based on combining a genetic algorithm

with an exact large neighborhood search formulated as a

Mixed Integer Linear Programming problem. Computational

tests on realistic instances show that the new hybrid algorithm

can find solutions of much better quality than those computed

by a commercial solver, thanks to a more efficient exploration

of the power emission solution space. As future work, we

intend to further enhance the performance of the hybrid algo-

rithm, considering in particular a better integration with valid

inequalities from Power-Indexed formulations [22]. Moreover,

it would be also interesting to investigate the adoption of

hyperheuristics for finding more effective tuning of the various

parameters of the hybrid algorithm.
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Wireless Local Area Networks by Multiband Robust Optimization”.
Electronic Notes in Discrete Mathematics 64, 225-234, 2018.

[21] F. D’Andreagiovanni, A. Gleixner, “Towards an accurate solution of
wireless network design problems”. In: Combinatorial Optimization - 4th
International Symposium, ISCO 2016, Spriner Lecture Notes in Computer
Science vol. 9849, 135-147, 2016.

[22] F. D’Andreagiovanni, C. Mannino, A. Sassano, “GUB Covers and
Power-Indexed Formulations for Wireless Network Design”. Management
Science 59 (1), 142-156, 2013,

[23] F. D’Andreagiovanni, A. Nardin, “A Fast Metaheuristic for the Design
of DVB-T2 Networks”. In: Sim K., Kaufmann P. (eds) Applications
of Evolutionary Computation. Lecture Notes in Computer Science, vol.
10784, 141-155, 2018.

[24] E. Danna, E. Rothberg, C. Le Pape, “Exploring relaxation induced
neighborhoods to improve MIP solutions”. Math. Progr. 102, 71-90, 2005.

[25] P. Dely, F. D’Andreagiovanni, A. Kassler, “Fair optimization of mesh-
connected WLAN hotspots”. Wirel. Commun. Mob. Com. 15, 924–946,
2015.

[26] DVB Project: DVB-T. https://www.dvb.org/standards/dvb-t. Retrieved
01.04.2018.

[27] DVB Project: DVB-T2. https://www.dvb.org/standards/dvb-t2. Retrieved
01.04.2018.

[28] European Broadcasting Union, “Frequency and Network Planning As-
pects of DVB-T2”, 2014. https://tech.ebu.ch/docs/tech/tech3348.pdf. Re-
trieved 01.04.2018.
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