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Abstract—We consider the problem of clustering N users into
K groups such that users in the same group are assigned a
common service profile over M commodities. The profile of
each group k sets for each commodity m the maximum of
the service quality that users in the k-th group are willing to
pay. The objective is to find the clustering that maximizes the
total service user quality, which corresponds to the revenue of
the service provider. This Service Profile Optimization Problem
(SPOP) emerges in various applications, as for example the bit-
loading in Hybrid Fiber Coax data distribution systems. We
propose a Mixed Integer Linear Programming (MILP) model
for the problem, that allows to use state-of-the-art MILP solvers
as the core tool in an original powerful heuristic. We show
complexity and performance gains with respect to previously
proposed methods and a direct application of a state of the art
MILP solver.

Index Terms—User Service Profile, Clustering, Mixed Integer
Linear Programming.

I. PROBLEM DEFINITION AND MOTIVATION

Consider M commodities and N users. Each user
n ∈ {1, . . . , N} is characterized by a vector bn =
(b1,n, . . . , bM,n)T, such that bm,n is the maximum price that
he/she is ready to pay for buying the commodity m ∈
{1, . . . ,M} (we call such price willingness to pay and we
will refer to it by the acronym WTP). 1 However, users
cannot buy each commodity at the price that they want.
Instead, the commodities are offered in packages (user service
profiles), specifying the possible pricing options. In particular,
we define K user service profiles c1, . . . , cK , where ck =
(c1,k, . . . , cM,k)T, and where cm,k is the price of commodity
m in user profile k. A profile k is admissible for user n
if cm,k ≤ bm,n for all m ∈ {1, . . . ,M}, i.e., if the user
can afford all the commodities in the price specified by the
profile. We assume that each user n will choose the admissible
profile ck that maximizes the total (affordable) price, since this
corresponds to the best service that he/she can afford. Under
this “greedy user” assumption, the goal of the service provider
is to design K user service profiles such that the total price
over all profiles and user is maximized.

Letting C = [c1, . . . , cK ] ∈ RM×K+ denote the matrix
of user service profiles, and {S1, . . . ,SK} denote a partition
of the user set such that Sk is the set of users that choose

1Notice that bm,n indicates the absolute WTP, not the price per unit
quantity. For example, one may assume that all commodities have the same
unit cost, and therefore bm,n reflects the quantity of commodity m that user
n wishes to buy.

profile k, the user service profile design aims at maximizing
the function:

f(C, {S1, . . . ,SK}) =
K∑
k=1

|Sk|1Tck, (1)

subject to ck ≤ bn (the inequality is intended component-
wise), for all n ∈ Sk, where the maximization is over C (the
prices) and the partition {S1, . . . ,SK} (the clusters of users
allocated to the profiles). We refer to this optimization problem
as the Service Profile Optimization Problem (SPOP).

We are not aware of when and in what context the above
clustering problem was proposed for the first time. To our
knowledge, it arises in the optimization of a recently defined
standard for cable digital transmission called DOCSIS 3.1 for
Hybrid Fiber Coax (HFC) systems (see [1], [2]). In particular,
the downstream transmission from the fiber termination box
(e.g., in the basement of an apartment building) to the cable
modems in the user homes is characterized by different
cable transfer functions. DOCSIS 3.1 make use of OFDM
modulation with constant power allocation and bit-loading,
such that the size of the QAM constellations used on the
different subcarriers is matched to the subcarrier- and user-
specific SNR.

In this application, M represents the number of subcarriers
in the OFDM modulation, bn is the bit-loading that user n
can support, and ck is a bit-loading profile that the system
can transmit. Following [1], [2], we have bm,n = log(1 +
α|Hm,n|2/σ2

m,n), where α = P0/Γ, P0 denotes the frequency-
flat transmit power spectral density, Γ is an empirical “gap to
capacity” factor, and Hm,n is the channel transfer function
for user n on subcarrier m. Since for each bit-loading profile
the system must perform buffering and packetization of the
downstream data in order to match the data packets to the
physical layer coded modulation format. Since the number of
user N is potentially very large, in order to simplify these
data formatting operations the number of allowed bit-loading
profiles K is limited.
Other application examples.
1) Consider the LTE Media Broadcast/Multicast Service
(MBMS), where multiple base stations send the same multicast
data stream to a large number of users using the same
frequency channel (single-frequency network) [3]. Due to
multipath, distance-dependent pathloss and shadowing, users
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may have very different frequency-selective channels and
received average SNR. In this case, it may be convenient
to define K user classes, characterized by their bit-loading
profiles, such that the overall multicast aggregate received rate
is maximized. Users in class Sk should be able to decode the
(multicast) data packets transmitted with bit-loading profile
ck with aggregate multicast rate |Sk|1Tck bits per OFDM
symbol, such that the system spectral efficiency is given
by f(C, {S1, . . . ,SK})/(KM) bit/s/Hz, where again f(·) is
given by (1).
2) Consider a telecommunication service provider offering
service “packages” including a certain amount of different
services, such as wireless and wired voice, text messages, LTE
high-rate data, on-demand video streaming, wired internet, TV,
and so on. After a customer survey, the provider knows how
much each customer is ready to pay for each given service.
However, offering a personalized contract tailored individually
to each customer would be impractical for a number of reasons
(e.g., advertizing, accounting). Hence, the provider wishes to
create K � N packages in order to maximize its revenues.
This is obviously exactly the problem described before.
Our contribution.
1) We introduce a new alternative mathematical optimization
model for the SPOP considered in [1], [2]. Our model has the
desirable property of being linear, in contrast to that intro-
duced in [1], [2]. More specifically, we formulate the SPOP
as a Mixed Integer Linear Programming (MILP) problem.
2) Since SPOP is challenging and is hard to solve even when
applying state-of-the-art solvers like IBM ILOG CPLEX [5]
to the MILP formulation, we propose a new fast solution
algorithm. Our approach is centered on a fast heuristic that
first builds an initial solution through a procedure inspired by
a k-means algorithm [9] and then improves the initial feasible
point through a sequence of Very-Large Neighborhood Search
(VLNS) (e.g., [4]). A distinctive feature of our algorithm is that
the neighborhood search is performed optimally and exactly
by formulating itself as a lower-dimensional MILP problem.
3) We present computational experiments over a set of realistic
instances of the SPOP that refer to a wireless network with
MBMS and that show the superior performance of the new
algorithm with respect to the one proposed in [2].

II. MILP FORMULATION FOR THE SPOP

In [1], the SPOP is formulated by introducing the assign-
ment matrix Y with elements:

yk,n =

{
1 if user n is assigned to profile k
0 otherwise

∀ k, n

representing the assignment of users to profiles. Then, the
SPOP is written as the Non-linear Binary Program [1]:

max 1TCY1 (2a)
s.t. 0 ≤ CY ≤ B (componentwise) (2b)

YT1 = 1 (2c)

Y ∈ {0, 1}K×N (2d)

This formulation is a Non-Linear Mixed Integer Programming
(Non-LinMIP) problem with non-linearities both in the objec-
tive function and in the constraints. Modeling the SPOP as a
MILP yields a crucial advantage: it allows to exploit state-of-
the-art MILP solvers, which are dramatically more advanced
that Non-LinMIP solvers and can be used as tools (or “build-
ing blocks”) for developing faster and more computationally
efficient solutions algorithms. We first eliminate the non-linear
constraints by the so-called “big-M” method (e.g., [6]). This
yields the equivalent problem:

max
K∑
k=1

(
M∑
m=1

cm,k

)(
N∑
n=1

yk,n

)
(3a)

s.t. cm,k ≤ bm,n +Bm,n (1− yk,n) ∀ k,m, n (3b)
K∑
k=1

yk,n = 1 ∀ n (3c)

cm,k ≥ 0 ∀ m, k (3d)
yk,n ∈ {0, 1} ∀ k, n (3e)

where the objective function (3a) is simply the “exploded”
version of the matrix form (2a), and we have replaced the
non-linear constraints (2b) with the linear constraints (3b). The
new constraints are obtained by recalling the following fact:
if a user n is assigned to profile k, then the price cm,k that
profile k assigns to commodity m must not exceed the WTP
of user n (i.e., cm,k ≤ bm,n); if instead n is not assigned to k,
then this inequality needs not be enforced. Hence, equivalence
of (2) and (3) follows by imposing Bm,n ≥ bmax

m − bm,n with
bmax
m = maxn bm,n.

Next, we tackle the non-linearity in the objective function
by introducing additional variables and constraints [8]. Specif-
ically, we replace each product cm,k yk,n with one continuous
variable vn,k,m such that:

vn,k,m ≥ 0 (4a)
vn,k,m ≤ bmax

m yk,n (4b)
vn,k,m ≤ cm,k (4c)
vn,k,m ≥ cm,k − bmax

m (1− yk,n) (4d)

where we have used the fact that 0 ≤ cm,k ≤ bmax
m for each

m, k, by the definition of bmax
m . These four linear inequalities

can replace the non-linear product cm,k yk,n since:

• if yk,n = 0, then (4a) and (4b) implies vn,k,m = 0;
additionally, (4c) becomes 0 ≤ cm,k and (4d) becomes
0 ≥ cm,k − bmax

m , which are both satisfied recalling that
0 ≤ cm,k ≤ bmax

m for each m, k;
• if yk,n = 1, (4a) and (4b) imply 0 ≤ vn,k,m ≤ bmax

m ,
which is correct since by (4c) and (4d) we have vn,k,m =
cm,k and 0 ≤ cm,k ≤ bmax

m .

Finally, the sought MILP formulation of the original SPOP is
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given by:

max
N∑
n=1

K∑
k=1

M∑
m=1

vn,k,m (SPOP-MILP)

s.t. cm,k ≤ bm,n +Bm,n (1− yk,n) ∀ k,m, n
K∑
k=1

yk,n = 1 ∀ n

cm,k ≥ 0 ∀ m, k

yk,n ∈ {0, 1} ∀ k, n

vn,k,m ≥ 0 ∀ k,m, n

vn,k,m ≤ bmax
m yk,n ∀ k,m, n

vn,k,m ≤ cm,k ∀ k,m, n

vn,k,m ≥ cm,k − bmax
m (1− yk,n) ∀ k,m, n

III. A LOW COMPLEXITY MILP-HEURISTIC METHOD

We assess the performance of our algorithm and the quality
of its results by comparing with a heuristic approach proposed
in [1]. Specifically, we refer to the algorithm called CoPA
(Clustering for Profile Assignment), which present two main
phases: 1) an “initialization” phase, where an initial feasible
solution is built by randomly assigning one single user to
each profile and then completing the solution by assigning
the remaining users to the profiles according to a greedy
procedure; 2) an improvement phase called “group assignment
update”, which tries to find better solutions by executing a
sequence of “swap-based” local searches, where it is evaluated
the effect of swapping one user from one profile to another
(for a detailed description of CoPA, we refer the reader to [1]).

The proposed alternative heuristic is also based on an
initialization phase and an improvement phase, but it differs
from that of [1] in the following features: 1) our initialization
is a non-random assignment which take into account the users’
WTP {bm,n}; 2) our improvement phase performs a very-large
neighborhood search, which considers a much larger space of
feasible solutions, thus increasing the probability of finding a
better solution. Additionally, this neighborhood search is done
exactly, using a state of the art MILP solver as a building
block.

A. Initial feasible solution

To build an initial feasible solution, we propose an algorithm
that is partially inspired by k-means algorithms [9], commonly
used for clustering problems. As first step, we introduce the
sum WTPs Σbn =

∑M
m=1 bm,n for evaluating the overall

level of service that each user n can afford: the idea is that
users of “better quality” have a higher sum WTP and that
users of “similar quality” have close sum WTP and should
be put in the same profile. In what follows, we assume
without loss of generality that users n = 1, . . . , N are sorted
in non-decreasing order of Σbn, i.e. Σbn ≤ Σbn+1 for
n = 1, . . . , N − 1 (to have this, it is sufficient to sort the
users according to their values Σbn). Hence, the sum WTP
range is [Σb1,ΣbN ] and we identify K (= no. of profiles)

equidistant points βk over this range. To this end, we define
the step ∆Σb = (ΣbN −Σb1)/(K − 1) and the generic point
βk ∈ [Σb1,ΣbN ] is equal to βk = Σb1 + (k − 1)∆Σb,
for k = 1, . . . ,K. We use the points βk as reference for
building a complete assignment of users to profiles, according
to the procedure presented in Algorithm 1. This provides: 1) a
reference user for each profile k, defined as the closest user to
the reference point βk; 2) assigning each non-reference user
to the closest reference user with respect to the usual squared
Euclidean distance in RM . The initial feasible assignment
corresponds to a specific choice of the decision matrix Y of
SPOP-MILP. It should be noted that, as evident from (1), for
given profile assignment sets S1, . . . ,SK , the SPOP objective
function is trivially maximized with respect to C by letting
cm,k = minn∈Sk bm,n. Therefore, in the following we describe
the solution only in terms of the assignment sets S1, . . . ,SK
or, equivalently, of the decision matrix Y. Also, with a slight
abuse of notation, we denote the SPOP objective function in
(1) simply as f(Y).

The construction of the first feasible solution is followed
by the execution of a random Swap-Improve heuristic with
time limit τ > 0. This is a simple yet effective improvement
heuristic based on randomly choosing a user n, assigned to a
profile k(n), and a profile k 6= k(n) and then evaluating the
effects of moving n from profile k(n) to k. If this improves
the objective function, the change of profile for n (swap) is
adopted.

Algorithm 1 DEFINING AN INITIAL FEASIBLE SOLUTION

1: Define N = {1, . . . , N}, Sk = ∅, ∀k = {1, . . . ,K}
2: for k = 1 to K do
3: n̄ = arg minn∈N {|βk − Σbn|}
4: Let Ref(k) := n̄ be the reference user of profile k
5: Sk := Sk ∪ {n̄}
6: N := N\{n̄}
7: end for
8: while N 6= ∅ do
9: Select n̄ ∈ N

10: k̄ = arg mink∈{1,...,K} DIST (n̄, Ref(k))
11: Sk̄ := Sk̄ ∪ {n̄}
12: N := N\{n̄}
13: end while
14: execute Swap-Improve with time limit τ > 0
15: return Sk, ∀k = {1, . . . ,K}

B. Improving solutions by an exact large variable neighbor-
hood search

In order to improve a feasible solution returned by Algorithm
1, we rely on an MILP heuristic based on a the execution of a
very-large variable neighborhood search, which combines the
mechanisms of large [4] and variable neighborhood search
[10]. A distinctive feature of our heuristic is to formulate the
neighborhood search as an exact MILP search: the exploration
of the neighborhood is formulated as a MILP problem that is
exactly solved by a state-of-the-art MILP solver.
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Specifically, given a feasible solution to the problem iden-
tified by the corresponding user-profile assignment matrix Y,
we consider the neighborhood constituted by all the feasible
solutions that can be obtained by modifying at most δ compo-
nents of Y. This can be expressed by a version of SPOP-MILP
where we impose the additional Hamming distance constraint:∑

(k,n): ȳk,n=0

yk,n +
∑

(k,n): ȳk,n=1

(1− yk,n) ≤ δ (5)

which counts the number of elements that can change value
in Y with respect to a reference assignment matrix Ȳ.

Additionally, we exploit the valuable information that comes
from the linear relaxation of SPOP-MILP, obtained by relax-
ing the integrality constraint on Y (i.e., by replacing yk,n ∈
{0, 1} with yk,n ∈ [0, 1]. This yields a Linear Program (LP)
denoted in the following by SPOP-LP. The optimal solution of
SPOP-LP can be obtained with very low complexity and can
be exploited to refine the neighborhood of solutions. As well-
known from the theory of Linear Programming, the optimal
solution of SPOP-LP may provide useful information about
how to get a good quality feasible solution of the original
problem [7]. In particular, let YLR be an optimal solution of
SPOP-LP and let ε > 0 be a small value (in our experiments,
we adopt ε = 0.1). If yLPk,n ≤ ε (resp., yLPk,n ≥ 1 − ε) and
ȳk,n = 0 (resp., ȳk,n = 1), we have a reasonably good
indication that yk,n = 0 (resp., yk,n = 1) is a good choice
of the new assignment variable yk,n (see [7] for a detailed
discussion about this argument). In our specific case, we adopt
such procedure just for variables that are “sufficiently” close
to 1, so if yLPk,n ≥ 1−ε and ȳk,n = 1, we impose yk,n = 1. We
remark that this choice of the value of Y constitutes a variant
of the heuristic presented in [7].

To summarize, given a feasible solution Ȳ, the MILP solver
explores a neighborhood of feasible assignment matrices Y
such that:

1) they are within a distance δ from Ȳ, expressed by the
constraint (5);

2) they have fixed components according to the choice
based on YLP , Ȳ as described above.

The exploration of such neighborhood is performed efficiently
and exactly by the state-of-the-art MILP solver CPLEX, used
as a building block. This problem is denoted as SPOP-
MILP(YLP , Ȳ, δ, ε) in the following. We stress that we apply
a time limit for solving SPOP-MILP(YLP , Ȳ, δ, ε), since
CPLEX can typically find good quality solutions for problems
of reduced size in small amount of time, but it may require a
large time to certify that a feasible solution is optimal (closing
the so-called optimality gap). The proposed search heuristic,
referred to as MILP-VNS, is summarized in Algorithm 2.

Given an incumbent solution Ȳ, we repeatedly solve SPOP-
MILP(YLP , Ȳ, δ, ε) until a global time limit is reached. In
each run of solution of SPOP-MILP(YLP , Ȳ, δ, ε), we impose
a “local” time limit for solving the single problem. If a better
solution is found, the incumbent solution Ȳ is updated and
the distance δ is reset to its initial value δ0. If instead the

“local” time limit is reached without finding a better solution,
we enlarge the neighborhood by increasing the distance limit
by a step ∆δ > 0 (i.e., we impose δ := δ + ∆δ) and start a
new exact search until the global time limit is reached. The
steps of MILP-VNS are detailed in Algorithm 2.

Algorithm 2 MILP-VNS
1: INPUT: an incumbent feasible solution Ȳ, an optimal

solution of the linear relaxation YLP , values δ0,∆δ, ε
2: set δ := δ0

3: while a global time limit is not reached do
4: solve SPOP-MILP(YLP , Ȳ, δ, ε) with time limit τ >

0 and let Y? be the best feasible solution found
5: if f(Y?) > f(Ȳ) then
6: update the incumbent solution Ȳ := Y?

7: δ := δ0

8: else
9: δ := δ + ∆δ

10: end if
11: end while
12: return Ȳ

IV. COMPUTATIONAL RESULTS

We tested the performance of our algorithm on 20 instances
based on realistic data of an LTE Media Broadcast/Multicast
Service wireless system, including 32 subcarriers and 100
users. The channel instances are generated according to a
standard wireless channel model, typical of a medium-size
cell in a urban environment, with the following parameters:
bandwidth 20 MHz, delay spread 0.5 µs, base station trans-
mit power (normalized to the power spectral density at the
receivers) SNR0 = 30 dBm, users uniformly distributed over
a disk of radius 500 m, with pathloss law χ/(1 + (d/d0)α),
with pathloss exponent α = 3.5, 3 dB loss distance d0 = 50m,
and long-normal shadowing χ with variance 6 dB.

According to the terminology and notation of this paper,
the subcarriers correspond to commodities and thus M = 32,
and for the users we have N = 100. We ran the experiments
on a 2.70 GHz Windows machine with 8 GB of RAM and
using the solver IBM ILOG CPLEX 12.5. The code was
written in C/C++ and interfaced with CPLEX through Concert
Technology.

The global time limit for heuristic execution is of 900
seconds. In the case of our heuristic, defining the first feasible
solutions can be made instantaneously and we devote 60
seconds to run the Swap-Improve procedure of Algorithm 1.
The best feasible solution found is then passed to Algorithm 2,
where the time limit τ for solving SPOP-MILP(YLP , Ȳ, δ, ε)
is set equal to 240 seconds. Additionally, we set δ0 = 0.95 N
and ∆δ = 0.05 N .

The computational results are presented in Table I, where,
for each instance identified by its ID, we report the number K
of possible profiles, the value CoPA-Heu f(Y?) of the best
solution found by the benchmark heuristic “CoPA” proposed
in [1], the value MILP-Heu f(Y?) of the best solution found
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TABLE I
COMPUTATIONAL RESULTS

ID K CoPA-Heu MILP-Heu ∆f(Y?)% CPLEX ∆f(Y?)%
f(Y?) f(Y?) MILP-COPA f(Y?) MILP-CPLEX

U1 5 2650.56 2958.17 + 11.60 1566.55 + 88.83
U2 5 2342.89 2588.76 + 10.49 1499.36 + 72.65
U3 5 2882.86 3001.00 + 4.09 1528.07 + 96.39
U4 5 3014.84 3133.52 + 3.93 2447.30 + 28.03
U5 5 3058.30 3236.27 + 5.81 2073.96 + 56.04
U6 5 2621.84 2758.89 + 5.22 1663.03 + 65.89
U7 5 2792.22 2924.99 + 4.75 2049.53 + 42.71
U8 5 3327.23 3469.73 + 4.28 2504.16 + 38.55
U9 5 2927.71 3158.48 + 7.88 2281.11 + 38.46
U10 5 3250.59 3341.51 + 2.79 2390.72 + 39.77
U11 10 3783.00 4010.87 + 6.02 1870.25 + 114.45
U12 10 3362.92 3527.83 + 4.90 1613.54 + 118.63
U13 10 3777.96 3947.21 + 4.47 1943.35 + 103.11
U14 10 4265.47 4568.62 + 7.10 2243.94 + 103.59
U15 10 4143.96 4248.72 + 2.52 2032.02 + 109.08
U16 10 3565.47 3742.74 + 4.97 2042.60 + 83.23
U17 10 4005.39 4060.98 + 1.38 2108.30 + 92.61
U18 10 4602.62 4761.59 + 3.45 2305.11 + 106.56
U19 10 4605.21 4663.63 + 1.26 1803.91 + 158.52
U20 10 3272.1 3430.23 + 4.83 2010.96 + 70.57

by our new heuristic, the percentage gain ∆f(Y?)% MILP-
CoPA of our method over COPA. Additionally, CPLEX f(Y?)
yields the value of the best solution found by direct use of
CPLEX to solve the complete SPOP-MILP, and ∆f(Y?)%
MILP-CPLEX shows the percentage gain of our method over
CPLEX. We notice that the proposed SPOP-MILP method
yields very significant gains with respect to the direct appli-
cation of CPLEX and consistently better solutions than those
provided by CoPA. We consider these results indicative of the
fact that the construction and exploration phase of our heuristic
are promising and deserve further investigations to be refined
and strengthened.

We conclude this section by providing a qualitative and
visually appealing snapshot of the clustering operated by our
algorithm. For a given realization of N = 100 LTE frequency
selective channels with M = 32 subcarriers, Fig. 1 shows the
channel transfer functions in the frequency domain grouped by
colors. each color corresponds to one of the K = 5 clusters,
and the thick curves correspond to the user service profile for
each group.

V. CONCLUSION

We considered the unconventional clustering problem of
partitioning a user population into subsets assigned to service
profiles, such that the users must be clustered taking into
account their willingness to pay for each commodity in the
profile. The problem arises in bit-loading in digital transmis-
sion systems over coaxial cables, but we believe that it has
more applications, some of which have been discussed briefly
in this paper. We derived a linear optimization model for
this problem (precisely a MILP model), which tackles the
non-linearities of the immediate direct problem formulation
proposed in literature and allows to exploit the power of
state-of-the-art MILP solvers. Additionally, we proposed a
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Fig. 1. Example of user grouping and user service profiles.

new heuristic that is based on the exact exploration of sub-
regions of the solution space (neighborhood search) through
the solution of smaller versions of the underlying MILP,
obtained by introducing additional constraints. Computational
tests on realistic instances motivated by wireless multicast over
a family of frequency selective channels show that our new
heuristic can fast provide solutions of better quality w.r.t. a
benchmark heuristic proposed in literature, with significantly
faster convergence time.
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