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a b s t r a c t 

Next generation 5G networks will rely on virtualized Data Centers (vDC) to host virtualized network 

functions on commodity servers. Such Network Function Virtualization (NFV) will lead to significant sav- 

ings in terms of infrastructure cost and reduced management complexity. However, green strategies for 

networking and computing inside data centers, such as server consolidation or energy aware routing, 

should not negatively impact the quality and service level agreements expected from network operators. 

In this paper, we study how robust strategies that place virtual network functions (VNF) inside vDC im- 

pact the energy savings and the protection level against resource demand uncertainty. We propose novel 

optimization models that allow the minimization of the energy of the computing and network infras- 

tructure which is hosting a set of service chains that implement the VNFs. The model explicitly provides 

for robustness to unknown or imprecisely formulated resource demand variations, powers down unused 

routers, switch ports and servers, and calculates the energy optimal VNF placement and network em- 

bedding also considering latency constraints on the service chains. We propose both exact and heuristic 

methods. Our experiments were carried out using the virtualized Evolved Packet Core (vEPC), which al- 

lows us to quantitatively assess the trade-off between energy cost, robustness and the protection level of 

the solutions against demand uncertainty. Our heuristic is able to converge to a good solution in a very 

short time, in comparison to the exact solver, which is not able to output better results in a longer run 

as demonstrated by our numerical evaluation. We also study the degree of robustness of a solution for a 

given protection level and the cost of additional energy needed because of the usage of more computing 

and network elements. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

Telecom Service Providers are in the process of migrating ven-

dor specific hardware and software that implement their network

functions towards the Cloud. Virtualizing their infrastructure such

as load-balancers, firewalls or the whole Evolved Packet Core (EPC),

and deploying them in virtualized data centers (vDC) leads to the

concept of Network Function Virtualization (NFV) [1] , where Vir-

tualized Network Functions (VNFs) run inside Virtual Machines

(VMs) under the control of a hypervisor on commodity servers.

This will dramatically reduce the cost of the infrastructure and

simplify deployment of new services. By changing VM resources

dynamically (e.g. by adding more computing or memory resources,
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dding more VMs), the VNFs may be scaled according to the load,

hich significantly simplifies the VNF operation and management

nd drastically reduces costs of operation. Virtualization enables

esources consolidation, since more VMs may reside on the same

hysical server leading towards green strategies inside a data cen-

er. For example, server consolidation tries to migrate the VMs

owards the fewest possible number of servers and consequently

owers down unused ones to save energy. However, the more VMs

re hosted by the same physical machine, the higher the poten-

ial for contention for e.g. CPU and, thus, the possibility of Service

evel Agreement (SLA) violations. As VNFs are composed of a set of

NF Components (VNFC) that need to exchange data over the net-

ork under capacity and latency constraints, the networking plays

lso an important part. Deploying each VNFC on a different server

ay result in lower SLA violation due to CPU contention but will

ncrease the energy cost due to more active resources and addi-

ional traffic exchanged, leading to higher router and link utiliza-

ion, network contention and increased energy cost for the net-
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ork. By using Software Defined Networking, one can dynamically

djust the network topology and available capacity by powering

own unused switch ports or routers that are not needed to carry

 certain traffic volume [2] and re-route the flows to consume the

east amount of energy at a potential expense of higher latency. 

In order to save the most energy, reduce the electricity costs

nd the CO 2 footprint, it is evident to place the VNF components

n the smallest number of servers and adjust the network topol-

gy and capacity to match the demands of the VNFCs. Such de-

ign of the VNF placement and network embedding can be for-

ulated as a mathematical optimization problem, which pursues

he optimization of an objective function expressing the aim of the

ata center administrator, while respecting a set of feasibility con-

traints that express the technical constraints of the computing and

etwork infrastructure and the requirements of the users. Unfor-

unately, many parameters in such optimization problem are not

nown precisely when the problem is solved. For instance, it is

ard to predict how much CPU a VNF will require or how much

ata a VNF v i will send towards a VNF v j during its execution

ime. The presence of uncertain data in an optimization problem

an be very tricky: even small variations in the input parameters

f an optimization problem may have very bad effects, turning op-

imal solutions into solutions of bad quality and even turning fea-

ible solutions into infeasible ones that are thus useless in practice

3–5] . For example, if the CPU demands of a set of VNFCs allocated

n the same server require more CPU than the expected amount,

ontention for CPU may occur which may result in SLA violation

nd service degradation for the customer. 

The fundamental question that we address in this paper is

hether it is possible to place a set of VNF Components in a ro-

ust way inside a virtualized data center while trying to minimize

he energy consumption, given we do not know the input to the

roblem precisely. In particular, our main original contributions are

he following. We propose an original robust optimization model

hat jointly optimizes VNF placement and routing in virtual net-

orks and tackles variations in the resource demand of VNFCs. The

odel takes into account traffic demands and allows the specifica-

ion of latency constraints for VNF service chains. Our model im-

roves our recent work [6] , proposing a new purely binary linear

rogramming formulation which has reduced computational com-

lexity. Moreover, we propose a fast variable fixing heuristic that

xploits structural information coming from the linear relaxation

f the problem. The solution of the heuristic can be used to warm-

tart the solution process of the solver, accelerating the conver-

ence towards the optimum. We applied our heuristic to the vEPC

eployment and our numerical results demonstrate that it is able

o find a good solution in a very short time in comparison to the

xact solver, which is not able to output better results even in a

onger run, as demonstrated by our numerical evaluation. We also

tudy the degree of robustness of a solution for a given protection

evel and the cost of additional energy needed because of the us-

ge of more computing resources and network elements. 

The remainder of the paper is organized as follows. In Section 2 ,

e review the state of the art and point out the novelties of

ur work. Section 3 introduces our methodology. In Section 4 , we

resent a robust optimization approach that is based on the theory

f �-Robustness to cope with demand uncertainties for the green

NF placement and network embedding problem. Section 5 details

ur heuristic to solve the optimization problem fast. The computa-

ional results are presented in Section 6 and in Section 7 we derive

onclusions and point out ideas for future work. 

. Related work 

The need for adaptability and flexibility in the future network

rchitectures (e.g., 5G) paves the way for Network Function Virtu-
lization, a new concept that Telecom Service Providers are incre-

entally deploying to address their customers’ demands. The gains

n energy efficiency and flexibility enabled by virtualization have

ecently led the research community to study the VNF placement

roblem in depth. Authors in [7] define a generic VNF chain rout-

ng optimization problem and devise a MILP formulation. Larumbe

nd Sansò [8] proposes a dynamic optimization problem that can

e used as a meta-scheduler to place and re-place VMs in the right

loud data centers in real-time, considering costs, QoS, energy con-

umption, and CO 2 emissions. Authors in [9] consider traffic flows

ith deadlines and formulate a mathematical problem for map-

ing and scheduling flows to VNFs in the most energy efficient

ay. The proposed heuristic generates good results in reasonable

ime. Zheng et al. [10] presents a novel solution to the VM consol-

dated placement problem that uses the biogeography-based opti-

ization technique to optimize the VM placement, thus minimiz-

ng both the resource wastage and the power consumption at the

ame time. 

In [11] , the authors present an optimization model for the em-

edding of Virtual Mobile Core Networks. In their formulation la-

ency is nicely modelled as a combination of processing, packet

ueuing and propagation delay, where the first two variables de-

end on the traffic utilization of the node the VNF is placed on,

hile the last one is a function of the path length. Authors show

umerical results of the model on a real network topology. Bari

t al. [12] presents an Integer Linear Programming (ILP) model

or VNF orchestration. The problem consists in finding the num-

er of necessary VNFs and allocating them in order to minimize

he total network related cost and the resources fragmentation.

n order to solve larger instances, the authors propose a dynamic

rogramming-based heuristic. 

However, common to all these works is the assumption that in-

ut data is known precisely. As recently highlighted in [13] , con-

entional optimization models hardly take into account uncertain-

ies in the spatial distribution of demands, temporal variations of

ssociated traffic flow properties, or the changes that arise in the

nderlying network topology. Consequently, ignoring uncertainty 

n input data can lead to solutions which are suboptimal or even

nfeasible [3,4,14] . Authors in [15] show how the emerging area of

obust optimization can advance the network planning by a more

ccurate mathematical description of the demand uncertainty. This

oncept is applied in [16] , where the VM consolidation problem is

odeled as a robust MILP and the resource requirements of the

Ms are allowed to variate between specific bounds. The price of

he robustness is quantified in terms of energy saving against re-

ource requirement violations. However, the robustness in the net-

ork and VNF service chains is not studied there. 

Robust Optimization has been considered in [17] for virtual net-

ork embedding (VNE), namely the problem where a virtual net-

ork must be mapped to a physical network substrate. The ob-

ective is to maximize the revenue that comes from the embed-

ing of virtual nodes and links with a constraint on the capacity

udget. In order to solve large instances, the authors propose a

wo-phase heuristic based on �-robustness to deal with capacity

equests variability. Again, they do not model service chains and

esource demands for VNF components. 

Regarding the joint robust VNF placement and network em-

edding, there has not been much work. Recently, Marotta and

assler [6] proposes a joint robust placement and network em-

edding problem assuming that resource demands of VNF compo-

ents are not known precisely. They model the problem using a

et of service chains that are embedded into a network graph and

onsider the latency for service chains, link capacities of the net-

ork and CPU, memory and disc capacities of the computing in-

rastructure as constraints. They apply the theory of �-Robustness

o cope with demand uncertainties for individual VNF components
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Table 1 

Model parameters and decision variables. 

Input parameters 

G ( N, L ) network graph ( N, L are the set of nodes and links, 

respectively) 

S set of servers 

V set of VNFCs 

C set of service chains 

R set of resources 

n ( s ) is the network node to which server s is connected to 

a rs is the amount of resource r available at server s 

a vr is the amount of resource r requested by VNFC v 

P n is the static power consumption of node n 

P ij is the static power consumption of link ( i, j ) 

P min 
s , P max 

s are the idle and maximum power consumption of 

server s 

b v 1 , v 2 is the traffic demand between v 1 and v 2 
b ij is the bandwidth of the link ( i, j ) 

l ij is the latency of the link ( i, j ) 

l v 1 , v 2 
C 

is the maximum latency tolerable by ( v 1 , v 2 ) of service 

chain C 

Decision variables: 

x vs is 1 if VNFC v is allocated to server s , 0 otherwise 

y s is 1 if server s is active, 0 otherwise 

z n is 1 if node n is active, 0 otherwise 

f v 1 , v 2 
i j 

is 1 if the traffic demand b v 1 , v 2 is forwarded on link ( i, 

j ) 

g ij is 1 if the link ( i, j ) is used for transmitting any traffic 
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and study the exact solutions which may be computationally very

expensive to obtain. In this paper, we improve [6] by proposing

a new purely binary linear programming formulation which has

reduced computational complexity. Moreover, we propose a fast

variable fixing heuristic suitable for online optimization that ex-

ploits structural information coming from the linear relaxation of

the problem. 

3. Methodology 

In this paper we investigate whether it is possible to place a

set of service chains in a robust way inside a virtualized data cen-

ter while trying to minimize the energy consumption. The pro-

posed robust optimization model jointly optimizes VNF placement

and routing in virtual networks and tackles variations in the re-

source demand of VNFCs. First, the purely binary linear optimiza-

tion model is introduced in Section 4.1 , where a set of VNFCs have

to be allocated into the available servers, each of which is con-

nected to different routers in the network. In this first model, we

assume perfect knowledge of the amount of resources available at

each server, of the amount of resources requested by each VNFC,

of the power consumption of each router, of the traffic demands

between the VNFCs, of the bandwidth of each link and of its max-

imum latency. 

Motivated by the natural uncertainty of traffic conditions in

telecommunication networks, we take a step further and propose

a modification on the first model which takes into account the

variability of the resource requests of VNFs (see Section 4.2 ). The

robust version of the problem, which follows the theory of �-

Robustness, is presented in Section 4.3 . However, the solution to

this problem may require significant computational resources and

time, thus making it not suitable for online optimization, especially

when the problem size grows (i.e., large network). 

Thus, as a third step, a fast variable fixing heuristic that ex-

ploits structural information coming from the linear relaxation of

the problem is also proposed and presented in Section 5 . The so-

lution of the heuristic can be used to warm-start the solution pro-

cess of the solver, accelerating the convergence towards the opti-

mum. Through the proposed heuristic, the VNFCs can be placed

inside a virtualized data center in a robust way, thus guarantee-

ing that the solution remains feasible disregarding the variability

in the resource demands. 

4. Problem formulation 

In this paper, we focus on an optimization problem that we call

Power Efficient VNF Placement and Flow Routing (Eff-VNF), which is

defined as follows. We consider a set S of servers, each of which

characterized by a peculiar linear power profile and a maximum

amount of available resources (e.g., individual CPU, memory and

disc capacities, denoted as CPU, RAM, DISC - we also denote the set

of such different type of resources by R ). We model the network

topology by a graph G ( N, L ), where N is the set of network nodes

and L is the set of links. Each link � ∈ L corresponds to a pair ( i, j )

with i, j ∈ N : i � = j . For each server s ∈ S , we denote by n ( s ) ∈ N

the network node to which s is connected to. V is the set of VNFCs

we intend to place on the hardware resources of the VNI. C is a

family of sets representing the set of service chains. Each C ∈ C is

an ordered subset of V × V that represent the sequence of VNFCs

included in a service chain. Every C contains couples ( v 1 , v 2 ) with

v 1 , v 2 ∈ V and is associated with its own demands and latency

bounds. 

The objective of the problem Eff-VNF is to find the optimal al-

location of all the service chains on the physical servers and, conse-

quently, the flow routing for all the traffic demands, so that the total

power consumption is minimized, while satisfying the constraints on
he server resources (CPU, RAM, DISC) and link capacities, as well as

he latency bounds for each service chain. 

Fig. 1 illustrates the problem where we have in total seven

ervers ( s 1 until s 7 ), each one with its own power profile (each

erver s has its own idle power P min 
s and maximum power con-

umption P max 
s ) and individual CPU, memory and disc capacities.

n the example given, server s i has installed a 1 i CPU, a 2 i RAM and

 3 i DISC. Each server is connected to an unique router (for exam-

le, s 1 is connected to n 1 ). Each link has a dedicated capacity and

atency (for example, the latency for the link between n 1 and n 2 
s denoted as l 12 - we omit bandwidth from Fig. 1 to maintain

eadability). The servers, their capacities, together with the net-

ork nodes and links with their capacities form the NFV Infras-

ructure in terms of Computing Power, Storage and Network. In our

xample, we should embed into this NFV Infrastructure three ser-

ice chains (denoted as c 1 , c 2 and c 3 ), each one with their own

atency bounds. In total, we have three different VNFCs ( v 1 , v 2 and

 3 ) and we assume that the traffic source for c 1 is the Sender S 1 ,

hich is connected to router n 2 and injects a certain volume of

raffic into the service chain towards v 1 . v 1 processes the packets

for which it needs CPU, memory and disc) and forwards the pro-

essed traffic (which may have a different volume than the one

njected) towards VNFC v 2 , which again processes it and forwards

 certain volume to the destination D 1 that is connected to router

 2 . Note that Fig. 1 assumes additional source/sink nodes where

raffic for a service chain is created/terminated, which are not ex-

licitly mentioned in our model but they could be introduced by

dding network nodes. The figure depicts an exemplary VNF place-

ent and network embedding into the physical substrate network.

or example, the VNFC v 1 would be placed onto server s 3 , v 3 onto

erver s 4 and so on. Servers hosting no VNFC would be powered

own (e.g., s 1 , s 2 or s 5 ) together with all the nodes not carrying

ny traffic (e.g., only n 1 in this case). 

.1. Binary optimization model 

In Table 1 all the parameters and the decision variable of the

ptimization problem (Eff-VNF) are explained. 

The power consumption of each server s ∈ S is linearly in-

reasing according to the CPU utilization (given by the sum of the
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Fig. 1. The joint VNF placement and network embedding problem. 
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PU demands of the VNFCs allocated to the server) in the range

 P min 
s , P max 

s ] . The idle power consumption of each activated node n

 N is P n , whereas the power consumption of an activated link ( i,

 ) ∈ L is P ij . Each server s has an amount a rs of available resource r ;

nstead a vr is the amount of resource r requested by VNFC v . The

andwidth requested for the data transfer of VNFC couple ( v 1 , v 2 )

s b v 1 , v 2 . b ij is the bandwidth of link ( i, j ) and l ij is the latency of

ink ( i, j ). We denote by l 
v 1 , v 2 
C 

the maximum latency allowed for

ach service chain C ∈ C and couple ( v 1 , v 2 ) ∈ C . 

The complete Binary Linear Programming problem that we de-

ne to model the problem (Eff-VNF) and that we denote by the

cronym BLP is presented in Table 2 . 

The VNFC-server allocation variables x vs ∈ {0, 1}, ∀ v ∈ V, s ∈ S

re equal to 1 if VNFC v is allocated to server s and 0 otherwise.

he server activation variable y s ∈ {0, 1}, ∀ s ∈ S is 1 if server s

s active and is 0 otherwise (then the server is powered off). The

ctivation of a network node is represented through the decision

ariables z n ∈ {0, 1}, ∀ n ∈ N . If all ports of a network node are not

arrying traffic, then the node is powered down. If a single port is

arrying traffic through a given link, then the node is activated and

owered on. A link activation variable g ij ∈ {0, 1}, ∀ ( i, j ) ∈ L is equal

o 1 if link ( i, j ) is used for carrying traffic and 0 otherwise. In the

roposed model, we consider single-path transmissions (i.e., traffic

xchanged between two network entities cannot be sent on multi-

le parallel paths) modelled through an unsplittable flow problem

see [5,18] for an introduction to splittable and unsplittable flow

oncepts): for this reason, the variables f 
v 1 , v 2 
i j 

∈ { 0 , 1 } , ∀ ( i, j ) ∈ L ,

(v 1 , v 2 ) ∈ 

⋃ 

C∈{C} C are binary and a generic variable f 
v 1 , v 2 
i j 

equals 1

f the entire traffic sent from v 1 to v 2 is routed on link ( i, j ) and is

 otherwise. 

The objective of the model, expressed in (1) , is to minimize the

otal power consumption in the VNI. This latter can be expressed

s the sum of three terms: the first summation is the power con-

umption due to the usage of resources in all servers in S , obtained

s the sum of the minimum power associated with the activation

f a server plus the linearly increasing power consumption due to

he usage of the CPU of a server, induced by the demands of the

NFCs allocated to that server; the second summation takes into

e  
ccount the power consumption of the activated network nodes;

he last summation expresses the power consumption of the acti-

ated links. 

Constraints (2) express that each VNFC v must be allocated into

xactly one server. Constraints (3) link the activation of a server

nd the allocation of a VNFC to it: if no VNFC is allocated to a

erver, then the server is not activated. Constraints (4) introduce

 further linking between the activation of a server and the allo-

ation variables: if some VNFC is allocated to a server, then the

erver must be activated. In (5) , the resource capacity of a server

s defined: given all the VNFCs allocated on the server, the total

sed resources must not exceed the available ones. The flow model

aken into account does not use the continuous flow variables: in-

tead the flow conservation constraint (6) relies on binary variables

xpressing the unsplittable nature of flows. The left-hand-side in-

ludes two summations that express the flow balance of a node n

or the data sent for a couple ( v 1 , v 2 ) of a service chain, consider-

ng the incoming flow over links ( n, i ) and the outgoing flow over

inks ( i, n ). The right-hand-side includes a summation over all the

ervers that are connected to node n . Its value depends on the al-

ocation of the VNFCs v 1 , v 2 to servers: if v 1 , v 2 are not allocated

o any of the servers connected to n , then the summation is equal

o 0 and the node is just a transition node with null flow conser-

ation balance for ( v 1 , v 2 ); if only one of v 1 , v 2 is allocated to a

erver connected to n , then the summation is either equal to b v 1 , v 2 

r −b v 1 , v 2 and the node n is either a source or a sink for couple

 v 1 , v 2 ), respectively; finally, if both v 1 , v 2 are allocated to servers

onnected to n , then n is again associated with a null flow bal-

nce. We then need the capacity constraints for the bandwidth, in-

luding the flow conservation variables (7) . These constraints also

odel the fact that if any f 
v 1 , v 2 
i j 

is equal to 1 and thus some traffic

s sent over ( i, j ), then the link activation variable w ij must be equal

o 1. The constraints (8) and (9) link the boolean status of link ac-

ivation variables to the status of the node activation variables: if a

ink is used, then its end-nodes must be activated; if a node is not

ctivated, then a link ending in it cannot be used. Furthermore, the

onstraints (10) and (11) link the boolean status of flow variables

o the status of the node activation variables: if a flow variables is

qual to 1, then the end-nodes of the corresponding link must ac-
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Table 2 

The binary liner programming model BLP for problem (Eff-VNF). 

min 
∑ 

s ∈ S 
[
P min 

s · y s + (P max 
s − P min 

s ) · 1 
a rs 

· ∑ 

v ∈ V a v r · x v s 
]

(1) 

+ 

∑ 

n ∈ N P n · z n + 

∑ 

(i, j) ∈ L P i j · g i j r = CPU ∑ 

s ∈ S x v s = 1 v ∈ V (2) 

y s ≤
∑ 

v ∈ V x v s s ∈ S (3) 

x v s ≤ y s s ∈ S, v ∈ V (4) 

∑ 

v ∈ V a v r · x v s ≤ a rs · y s s ∈ S, r ∈ R (5) 

∑ 

(n,i ) ∈ L b 
v 1 , v 2 · f v 1 , v 2 

ni 
− ∑ 

(i,n ) ∈ L b 
v 1 , v 2 · f v 1 , v 2 

in 
= ∑ 

s ∈ S: n (s )= n b 
v 1 , v 2 · (x v 1 s − x v 2 s ) n ∈ N, (v 1 , v 2 ) ∈ 

⋃ 

C∈C C (6) 

∑ 

(v 1 , v 2 ) ∈ 
⋃ 

C∈C C 
b v 1 , v 2 · f v 1 , v 2 

i j 
≤ b i j · g i j (i, j) ∈ L (7) 

g i j ≤ z i (i, j) ∈ L (8) 

g i j ≤ z j (i, j) ∈ L (9) 

f v 1 , v 2 
i j 

≤ z i (i, j) ∈ L, (v 1 , v 2 ) ∈ 
⋃ 

C∈C (10) 

f v 1 , v 2 
i j 

≤ z j (i, j) ∈ L, (v 1 , v 2 ) ∈ 
⋃ 

C∈C (11) 

∑ 

(i, j) ∈ L l i j · f v 1 , v 2 
i j 

≤ l v 1 , v 2 
C 

C ∈ C, (v 1 , v 2 ) ∈ C (12) 

x v s ∈ { 0 , 1 } , y s ∈ { 0 , 1 } , z n ∈ { 0 , 1 } , f v 1 , v 2 i, j 
∈ { 0 , 1 } , g i, j ∈ { 0 , 1 } 
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tivated; if a node is not activated, then a link ending in it cannot

be used and thus the corresponding flow variables are forced to

be equal to 0. Finally, constraints (12) express the latency require-

ment for a service chain: for each chain C and couple ( v 1 , v 2 ) of C ,

(12) impose that the summation of the latency over links used for

sending data from v 1 to v 2 must respect the latency limit l 
v 1 , v 2 
C 

. 

4.2. Resource request uncertainty and robust optimization 

Uncertainty of traffic conditions is naturally present in telecom-

munications network design, since the future behaviour of users is

generally not known precisely in advance [15] . In the case of our

optimization problem (Eff-VNF), we address in particular the un-

certainty of resource requests of VNFs: the amount of resources

requested by each VNF can just be estimated and these estimates

can (deeply) differ from the actual amount requested in the future.

We thus assume that the amount a vr is uncertain for each VNFC

v and resource r , i.e. the value of a vr is not known exactly when

(Eff-VNF) is solved. To better clarify the concept of resource request

uncertainty, we model data uncertainty through �-Robustness [4] ,

a cardinality-constrained interval deviation model . According to this

model, we assume that for each uncertain a vr we know a so-called

nominal value ā v r and the maximum deviation �a vr ≥ 0, from it.

We therefore assume that the (unknown) actual value a vr lies in

the interval: a v r ∈ [ ̄a v r − �a v r , ā v r + �a v r ] . 

In our direct experience with several real-world problems re-

lated to the design of telecommunication networks (e.g., [5,15,19] ),

we have observed that professionals often identify the nominal

values of uncertain quantities with the value of forecast networks

conditions (e.g., an expected value derived from historical data),

whereas the deviation �a vr is identified as the maximum devia-
ion from the forecast considered relevant by the network designer,

gain using historical data as reference. 

As we sketched in the introduction, dealing with data uncer-

ainty in optimization problems is a very delicate issue: as it is

ell-known from sensitivity analysis, also small variations of the

nput data may fully compromise the optimality and feasibility of

roduced solutions. The feasibility issue is particularly dangerous,

ecause, due to uncertainty, we risk to produce solutions that will

e completely useless in practice. For a detailed discussion on the

ssues associated with data uncertainty in optimization, we refer

he reader to [3,14] . As a consequence, we cannot afford to neglect

esource request uncertainty and thus risk that our design solu-

ion will turn out to be infeasible or of bad quality when imple-

ented. We have therefore decided to tackle data uncertainty by

dopting a Robust Optimization (RO) approach. RO is a methodol-

gy for dealing with data uncertainty that has received a lot of at-

ention and has been highly appreciated in recent time w.r.t. more

raditional methodologies like Stochastic Programming, especially

hanks to its accessibility and computational tractability. We refer

he reader to [3,14] for an exhaustive introduction to RO and for

 discussion about its determinant advantages over Stochastic Pro-

ramming. 

RO is based on two major facts: 1) the decision maker must de-

ne an uncertainty set , which identifies the deviations in the nom-

nal value of data against which the decision maker wants to get

rotection; 2) protection against deviations specified by the uncer-

ainty set is guaranteed under the form of hard constraints that cut

ff all the feasible solutions that may become infeasible for some

eviations included in the uncertainty set. More formally, we sup-

ose that we are given a generic binary linear program: 

 = min c ′ x with x ∈ F = { Ax ≥ b, x ∈ { 0 , 1 } n } 



A. Marotta et al. / Computer Networks 125 (2017) 64–75 69 

a  

t  

f  

o  

c  

o  

a  

l

v

 

f  

A  

p  

i  

n  

t  

i  

p  

d  

r  

l  

t  

n  

e  

a  

h  

a  

i  

c  

p

 

d  

t  

s  

a  

u

4

 

d  

t∑

 

a  

F  

o  

a∑
 

w  

w  

c  

w

 

o  

t  

+  

c  

t  

f  

t  

p

D

I  

c  

s  

a  

t  

≤  

i  

t  

T  

n  

t  

c  

t  

l  

t

 

c  

t

·  

[  

i  

D  

w

D

0

W  

g  

i

m

S  

s  

D  

e  

o  

v

v

v

nd that the coefficient matrix A is uncertain, i.e. we do not know

he exact value of its entries. However, we are able to identify a

amily A of coefficient matrices that represent possible realizations

f the uncertain matrix A , i.e. A ∈ A . This family represents the un-

ertainty set of the robust problem. Then we can produce a robust

ptimal solution , i.e. a solution that is protected against data devi-

tions, by considering the robust counterpart of the original prob-

em: 

 

R = min c ′ x with x ∈ R = { ̃  A x ≥ b, ∀ ̃

 A ∈ A , x ∈ { 0 , 1 } n } 
A solution in the feasible set R of the robust counterpart is

easible for all the coefficient matrices in the uncertainty set A .

s a consequence, R is a subset of the feasible set of the original

roblem, i.e. R ⊆ F . The choice of the coefficient matrices included

n A should reflect the risk aversion of the decision maker. We

ote that such definition of robust counterpart can be extended

o any mixed-integer linear program that involves continuous and

nteger decision variables. Imposing protection according to an RO

aradigm leads to the so-called price of robustness [4,19] : this is a

eterioration in the optimal value of the robust counterpart with

espect to the optimal value of the original deterministic prob-

em (i.e., v R ≤ v ), which is caused by the presence of the addi-

ional hard constraints imposing robustness. The price of robust-

ess is a consequence of restricting the feasible set to the ( in gen-

ral smaller ) set of robust solutions. Such price reflects the char-

cteristics of the uncertainty set: uncertainty sets associated with

igher risk aversion consider more severe and unlikely deviations

nd lead to higher protection but also higher price of robustness;

n contrast, uncertainty sets expressing risky attitudes tend to not

onsider unlikely deviations, offering less protection and a reduced

rice of robustness. 

We note that in practice it is really unlikely that all coefficients

eviate to their worst possible value at the same time, so one of

he aims of “smart” RO models is to define appropriate uncertainty

ets that result not too conservative, while guaranteeing a reason-

ble protection. In the next paragraph, we describe the model of

ncertainty that we adopt. 

.3. Adopting �-robust optimization 

In problem (Eff-VNF), the constraints containing the uncertain

ata are those expressing the capacity of a server s ∈ S for each

ype of resource r ∈ R : 

 

v ∈ V 
ā v r · x v s ≤ a rs · y s (13) 

This is a deterministic version of the constraint that takes into

ccount only the nominal value of each uncertain coefficient a vr .

or each VNFC v and resource r , we can write the uncertain version

f the constraint taking into account resource request uncertainty

s: 
 

v ∈ V 
ā v r · x v s + DEV rs (�, x ) ≤ a rs · y s (14)

hich is the constraint (13) with the additional term DEV rs ( �, x ),

hich represents the worst deviation that the left-hand-side of the

onstraint may experience under �-ROB for an allocation vector x ,

hen at most � coefficients deviate from their nominal value ā v r . 

Before giving a precise characterization of DEV rs ( �, x ) as the

ptimal value of a suitable optimization problem, we notice that

he worst deviation that the nominal value ā v r may experience is

�a v r : the most positive deviation indeed entails the highest in-

rease in a resource request of a VNFC v and thus brings towards

he violation of the capacity constraint (13) . Under these premises,

or a fixed allocation vector x , the value DEV rs ( �, x ) corresponds
o the optimal value of the following binary linear programming

roblem: 

EV rs (�, x ) = max 
∑ 

v ∈ V 
( �a v r · x v s ) · y rs v 

∑ 

v ∈ V 
y rs v ≤ �

y rs v ∈ { 0 , 1 } v ∈ V . 

n this problem, 1) a binary variable y rsv is equal to 1 if, in the

apacity constraint corresponding to the resource-server couple ( r,

 ), the resource request coefficient deviates from its nominal value

nd experiences the worst deviation �a vr · x vs , whereas it is equal

o 0 otherwise; 2) the single constraint imposes an upper bound 0

� ≤ | V | on the number of fading coefficients which may deviate

n the considered constraint; 3) the objective function maximizes

he deviation from the nominal value for the allocation vector x .

he parameter � controls the robustness of the model: for � = 0

o coefficient is allowed to deviate and the model equals the de-

erministic one neglecting data uncertainty. As the value of � in-

reases, the total deviation increases, until for � = | V | we reach

he highest possible total deviation, when all coefficients are al-

owed to deviate simultaneously and the solution protects against

his fact. 

We note that the robust version of the constraints (13) in-

luding the terms DEV rs ( �, x ) actually includes inner maximiza-

ion problems which in turn contain the products of variables x vs 

y rsv . Constraints (14) are thus non-linear. However, as proved in

4] , such non-linearities can be linearized according to the follow-

ng procedure. First, we note that for a fixed vector x , the value

EV rs ( �, x ) is equal to the optimal value of its linear relaxation ,

here the integrality requirements on variables y rsv are dropped: 

EV rs (�, x ) = max 
∑ 

v ∈ V 
( �a v r · x v s ) · y rs v (DEV-primal) (15) 

∑ 

v ∈ V 
y rs v ≤ � (16) 

 ≤ y rs v ≤ 1 v ∈ V . (17) 

e can then define the dual problem of the previous linear pro-

ram, introducing the dual variables v rs , w rsv for v ∈ V correspond-

ng to the constraints (16) and (17) , respectively: 

in � · v rs + 

∑ 

v ∈ V 
w rs v (DEV-dual) 

v rs + w rs v ≥ �a v r · x v s v ∈ V 

v rs ≥ 0 

w rs v ≥ 0 v ∈ V . 

ince the problem DEV-primal is feasible and bounded, on the ba-

is of strong duality we can conclude that also its dual problem

EV-dual is feasible and bounded and their optimal values are

qual. We can then substitute each (non-linear) uncertain version

f (14) with the following family of linear constraints and decision

ariables obtained from DEV-dual [4] : 

∑ 

v ∈ V 
ā v r · x v s + 

( 

� · v rs + 

∑ 

v ∈ V 
w rs v 

) 

≤ a rs · y s (18) 

 rs + w rs v ≥ �a v r · x v s v ∈ V (19) 

 rs ≥ 0 (20) 
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Algorithm 1 - Warm-start heuristic. 

1: FIXED := ∅ //initialization of the subset of fixed variables 

2: Solve ROB-BLP rel and get its optimal solution ( ̄x , ̄y , ̄z , f̄ , ̄g , ̄v , w̄ ) 

3: for s = 1 to | S| do 

4: NF := 0 //number of fixed variables 

5: Sort the values x̄ non-increasingly and let � = 1 , ..., | V | be 

the corresponding sorted indices v ∈ V 

6: for � = 1 to | V | do 

7: if x RELAX 
�s ≥ 1 − ε and NF ≤ UB then 

8: set x v s = 1 

9: FIXED := FIXED ∪ (v , s ) 
10: N F := N F + 1 

11: else 

12: break 

13: end if 

14: end for 

15: end for 

16: Define ROB-BLP F IX by adding the fixing constraints x v s = 1 , 

∀ (v , s ) ∈ F IXED to ROB-BLP 

17: Solve ROB-BLP F IX (with time limit) 

18: Use the best solution found for ROB-BLP F IX as warm-start solu- 

tion for solving ROB-BLP with CPLEX 
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b  
w rs v ≥ 0 v ∈ V . (21)

The robust version of the optimization problem BLP, which we

denote by ROB-BLP, is thus obtained by replacing the non-robust

capacity constraints (5) of BLP with the robust constraints and

variables (18) –(21) . 

We remark that the increase in the dimension of the problem

caused by the additional variables and constraints used in the du-

alization approach is not excessive: the linear robust formulation is

indeed compact , i.e. its size is polynomial in the size of the input. 

5. A fast fixing heuristic 

The robust version of problem (Eff-VNF) is a binary linear pro-

gramming model and, at least in principle, can be solved by us-

ing any commercial optimization solver, such as IBM ILOG CPLEX.

However, the problem can be very hard to solve even for an ad-

vanced state-of-the-art solver like CPLEX when the size of the in-

stances increase: the solver may have difficulties in identifying fea-

sible solutions of good quality in a reasonable amount of time and

can show a really slow convergence to an optimum. In this case,

in order to enhance the performance of the solver, we can profit

from integrating the solver with an efficient warm-start heuristic,

which provides an initial feasible solution of good quality used to

“warm-start” the solver and accelerate the convergence to an opti-

mal solution. 

The warm-start heuristic that we propose to adopt in this paper

is based on two major phases: 

• the execution of a deterministic variable fixing procedure , which

exploits information coming from the linear relaxation of the

problem. Variable fixing is a procedure according to which a

subset of decision variables of the problem has their value fixed

a-priori on the basis of some criteria: given all the decision

variables VAR i ∈ {0, 1}, i ∈ I of a problem, variable fixing identi-

fies two disjoint subset of variables with indices I FIXto 0 , I FIXto 1 ⊆I :

I F IXto0 ∩ I F IXto1 = ∅ and the value of decision variables is fixed

as follows: VAR i = 0 for i ∈ I FIXto 0 and VAR i = 1 for i ∈ I FIXto 1 .

The fixed variables are thus not anymore part of the decision

process and we face a subproblem of the original optimization

problem that is in general easier to solve; 

• the solution of a smaller version of the original binary linear

program, including the fixing of variables operated in the first

phase. This phase exploits the power of a state-of-the-art MIP

solver that, though not being able to solve the entire original

problem efficiently and quickly, can instead fast provide solu-

tion of high quality to appropriate subproblems. 

The complete algorithm of the heuristic is presented in

Algorithm 1 . Here, we rely on the following notation: 1) ROB-BLP

is the robust problem containing only binary variables; 2) ROB-

BLP rel is the linear relaxation of the robust problem, i.e. the problem

where the binary variables become continuous and can assume

any value in the interval [0, 1]); 3) ROB-BLP FIX is a subproblem of

the robust problem that includes additional constraints fixing the

value of a subset of variables (we must not decide anymore the

value of these variables). 

The heuristic first provides for solving the linear relax-

ation ROB-BLP rel , obtaining an optimal solution denoted by

( ̄x , ̄y , ̄z , f̄ , ̄g , ̄v , w̄ ) (we remark that this solution may have fractional

values). The optimal solution is used as basis for fixing the val-

ues of a subset of decision variables in the original binary problem

ROB-BLP, thus obtaining the problem ROB-BLP FIX . Our fixing strat-

egy essentially consists in defining ROB-BLP FIX by a-priori setting

to 1 the value of variables whose value in ( ̄x , ̄y , ̄z , f̄ , ̄g , ̄v , w̄ ) is suf-

ficiently close to 1. The rationale of this strategy is that if the value
f a variable is sufficiently close to 1 in the optimal solution of the

inear relaxation, we have a pretty good indication that in a good

easible solution of the original problem ROB-BLP we should fix the

ecision variable to that value. Note that, in contrast to the general

xing rule previously presented, we do not consider the fixing of

ariables to the value 0. 

More formally, we focus on the following fixing rule, which

nly involve the VNFC-server allocation decision variables x vs . Let

¯ be the value of the VNFC-server allocation decision variables in

he optimal solution ( ̄x , ̄y , ̄z , f̄ , ̄g , ̄v , w̄ ) of the linear relaxation ROB-

LP rel , then the rule is: 

f x̄ v s ≥ 1 − ε then set x̄ v s = 1 

here 0 < ε < 1 is a parameter that must be chosen. 

Let FIXED be the set of couples ( v, s ) that satisfy the previous

xing rule. After having established the set FIXED, we define and

olve the subproblem ROB-BLP FIX obtained by adding to ROB-BLP

he constraints: 

 v s = 1 (v , s ) ∈ F IX ED 

ROB-BLP FIX is a more-constrained version of the original robust

roblem, where the value of the variables x vs with ( v, s ) ∈ FIXED

s set and is not anymore part of the decision process. ROB-BLP FIX 

hus actually constitutes a subproblem that can be solved faster to

ptimality (smaller feasible solution set to explore for the solver).

t is solved by means of the solver CPLEX. We stress that a fea-

ible solution for the subproblem ROB-BLP FIX is also feasible for

he complete problem ROB-BLP. We use the best solution found

or ROB-BLP FIX within the time limit by CPLEX as starting solution

or solving the original problem ROB-BLP, thus supporting a warm-

tart for CPLEX. 

We note that we just consider the fixing of the VNFC-server al-

ocation decision variables x vs since they are particularly important

n the decision process and when we impose x v s = 1 for some cou-

le ( v, s ), from constraint (2) we know that we can impose at the

ame time x v σ = 0 for any server σ ∈ S such that σ � = s , thus im-

ediately determining the value of many other relevant variables. 

A very important thing to remark is that we should not fix the

alue of too many variables x vs to 1, since this may reduce the pos-

ibility of finding good quality solutions when solving ROB-BLP FIX 

the problem would be too constrained). So we impose an upper

ound UB > 0 on the number of variables x vs that can be fixed to
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 for each server s . The aim of this is to not assign too many VN-

Cs to the same server s , leading to a potential overbooking of that

erver. Specifically, for each s ∈ S , we sort the variables x̄ v s from

he highest to the lowest value and then, we fix to 1 the UB > 0

ariables with highest value x̄ v s ≥ 1 − ε. 

. Numerical evaluation 

We performed a numerical evaluation focusing on an important

se-case for VNF, namely the Evolved Packet Core (EPC), which

epresents the cornerstone of next generation mobile networks.

ach component belonging to this VNF has a particular task and

an be run on a stand-alone VM. The EPC architecture distin-

uishes between user data - user plane (UP), and signalling traf-

c - control plane (CP). Typically, both have different latency con-

traints. We considered different configurations for the EPC, which

re determined by the actual load. The traffic which the virtualized

PC is able to process can be expressed in terms of the number of

vents generated by the users attached to the base stations during

 time frame of one hour (ev/h). This metric was used to dimen-

ion the VNF and, therefore, the number of each component type

Base Station, Mobility Management Entity, etc.) belonging to the

PC, by applying the dimensioning rules from [20] . 

In our evaluation, we considered uncertainty on the CPU de-

ands requested by each VNFC. Typically, such maximum demand

eviation can be obtained from workload traces by analyzing his-

orical data or by workload prediction mechanisms. For example,

sing collaborative filtering modeling and prediction, authors in

21] were able to predict diverse workload throughput values with

ow training overhead and within approximately 30% of the correct

gure. Consequently, we assume that the components may have

 CPU utilization varying at maximum 30% from the nominal de-

ands in the worst case. In the evaluation, we consider the pro-

ection against the deviation of a given number of VNFCs, by using

 protection factor ( �). The solution is protected from the devia-

ion of a maximum number � of uncertain parameters, each one

pecifying the CPU demand of a given VNFC. The service chains

re composed of VNFCs that belong to a particular communication

ath both for the CP and the UP. 

.1. Comparison between full model and fast fixing (FF) heuristic 

First, we were interested to compare our heuristic against the

ptimal solution provided by CPLEX through the standard branch-

nd-cut algorithm. The problem we are facing is very hard to solve

n the exact way, even by considering very small instances, as also

hown in our previous work [6] . Therefore, the evaluation was

onducted by considering three different hard time limits (short,

edium and large), with the aim of finding out if the heuristic is

ble to output comparable or even better results, in comparison to

he optimal solver for a given time limit. The choice of the inter-

als was based on the fact that such problems need to be solved

n a very short time, when dealing with TOs’ decision making pro-

esses: 

• short - 200 s; 

• medium - 600 s; 

• large - 2500 s. 

For the heuristic, we used both the short and the medium time

ntervals, while CPLEX original model was run with the medium

nd large time limits. Since the heuristic is composed of different

hases, we split the available time between the phase where we

olve the problem ROB-BLP FIX , that includes the additional fixing

f variables, and the phase where we solve ROB-BLP with warm-

tart, where we try to improve the solution found solving ROB-

LP FIX (specifically, for the short interval we set 150 s for solving
OB-BLP FIX and 50 s for solving ROB-BLP with warm-start, whereas

nd for the medium interval we set 400 s and 200 s). This is be-

ause most of our experiments showed that the first phase stage

f the heuristic finds a very good solution that is hard to improve

ven in longer runs by the warm start stage. As shown in Fig. 2 , we

ompare the energy efficiency of the FF heuristic with the CPLEX

olver for increasing problem sizes, defined in number of events

er hour, ranging from 1.3 millions up to 3.1 millions, with a step

ize of 30 0,0 0 0 events. We compare the objective function (total

ower consumption of both network and computing infrastructure)

f the resulting VNF placement and network embedding. For the

ake of brevity, we only show the results for three different pro-

ection factors ( �= 0, 2, 6). As displayed in Fig. 2 , we consider

wo different runs of the heuristic (short and medium) and two

or the original CPLEX model (medium and long). In the first three

ases (up to 1.6M events) the results are almost comparable for

ll the � values, while for the other configurations there are some

ifferences. In particular when � = 0 , meaning that we are con-

idering no protection at all, the heuristic with the medium hard

ime limit (600 s) shows very similar results to the original model

olved in the long run (2500 s), and in two configurations it is able

o achieve even better results. This is because CPLEX was not able

o find the optimal solution within the given time limit, but our FF

euristic found a better one due to the fixing rules that limit the

roblem size. 

Starting from the configuration characterized by a load of 2.2M

vents, the total power consumption considerably increases. This is

ue to the activation of several links and network nodes that are

eeded to accommodate the traffic and the higher number of com-

onents needed to implement the service chains. If at maximum

wo components ( � = 2 ) are allowed to deviate from their nominal

emand, the results show the same trend and the heuristic with

he medium time limit is performing similarly to the CPLEX model

olved in the long run. What is interesting to observe is that, when

is increasing (e.g equal to 6), the heuristic with the short and

edium time limit is achieving almost the same results and they

utput even better results in around 75% of the considered con-

gurations, especially when the number of events is considerably

igh. Despite the significant larger amount of time allowed for the

ptimal solver, the heuristic still provides excellent solution quali-

ies as depicted, even in the short run. These results are encourag-

ng and show that our heuristic is able to achieve very good results

n short time for scenarios with high number of events if the allo-

ation needs to be protected more. 

.2. Solution quality 

Finally, we investigated the solution quality of our heuristic and

he original CPLEX model, in terms of robustness and additional

ost for protecting against uncertainty for a given �. To this end,

e solved the problem for a given � using our heuristic (short

un), and the original CPLEX model (medium run). By considering

he output of the VNFC allocation to the physical servers and the

outing path, we created 10.0 0 0 different instances of our prob-

em in the following. For each instance, if a VNFC requires a vr units

f CPU, we allowed to deviate randomly its demand in the range

 ̄a v r − �a v r , ā v r + �a v r ]. After updating the CPU utilization on each

erver according to the random values calculated within the given

ounds, we checked the resource budget constraint and computed

he number of constraint violations due to the uncertainty. Two

erformance indicators are considered: the robustness degree and

he price of robustness . The former is computed as: 

obustness = 1 − # v iolations 
(22) 
# runs 
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Fig. 2. CPLEX - FF heuristic comparison. 
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The price of robustness is computed, for a given �, as the increase

in the objective function (i.e., the total power consumption) com-

pared to the best value achieved when no protection is applied

( � = 0 ): 

price (�= x ) = 

total _ power (�= x ) − total _ power (�=0) 

total _ power (�=0) 

(23)

Fig. 3 shows the robustness degree (in blue) and the price of ro-

bustness (in red) as the protection factor increases for three dif-

ferent configurations of the vEPC. In the case of � = 0 , we do not

protect against uncertainty and thus no additional resources are

needed. Consequently, the degree and price of robustness are zero

as the objective function (i.e., the total power consumption) is the

minimum possible. When � increases, the objective function in-

creases because the solution requires more energy due to the acti-

vation of more resources needed to protect the allocation from the

demand deviations. What is interesting to observe is that the short

run of our heuristic offers the same or even better robustness (e.g.

� = 3 and ev/h = 2.8M) in comparison to the original CPLEX model

by showing a lower price, in almost all the cases. Our experiments

show that the heuristic converges in a very short time to solutions
haracterized by a high quality in terms of additional price for a

iven degree of protection. Selecting a proper � is up to the deci-

ion maker because it allows the trade-off between the additional

rice to pay and the desired level of robustness. An upper bound

or constraint violation probability can be calculated as in [4] . If a

iven NFVI operator wants to protect its VNF more from demand

eviations, it would select a larger � at the expense of higher costs

o run the infrastructure. A more opportunistic operator would se-

ect a lower value leading to a potential higher constraint violation

robability, which may lead to increased resource contention and

ltimately also to SLA violations at the benefit of significant cost

avings. 

. Conclusions and future work 

Network Function Virtualization will be a key cornerstone for

G network infrastructure. In Network Function Virtualization, a

et of network functions are virtualized and run on commodity

ervers inside virtual datacenters. In such a setup, it is crucial to

ptimize the deployment and operation of the Virtual Network

unctions to be both energy efficient for controlling the opera-
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Fig. 3. Degree and price of robustness. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 
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d  
ional costs as well as robust to cope with fluctuations or imprecise

nowledge in resource demands for VNFCs. 

In this paper, we tackled the problem of designing a power ef-

cient Virtual Network Function placement and network embed-

ing. The methodology followed here is made up of three steps.

irst, an exact formulation using binary programming has been de-

eloped, which places a set of VNF Components inside a virtual-

zed data center while trying to minimize the energy consump-

ion. Second, the theory of �-Robustness has been applied and a

obust version of the problem has been proposed, where input to

he problem is not known precisely but rather resource demands

re allowed to deviate within bounds; the robust algorithm has re-

uced computational complexity compared to our previous work

6] . Third, a fast variable fixing heuristic that exploits structural in-

ormation coming from the linear relaxation of the problem has

een developed, aiming at solving the robust model faster. Our ro-

ust model and heuristic can tradeoff energy efficiency and robust-

ess under uncertainty constraints. 

We compared the heuristic against the optimal solution pro-

ided by CPLEX, by imposing a hard time limit for solving in both

pproaches. We showed that our heuristic achieves better results

ith respect to the state-of-the-art branch-and-bound algorithm

t  
erformed by CPLEX in reasonable time and is therefore suited for

nline optimization. Also, we investigated the solution qualities of

ur heuristic in terms of robustness and additional cost for pro-

ecting against uncertainty for a given �. We found that the cost

or achieving a given robustness degree has a stable trend for all �

 0, while the degree of robustness increases with �, as expected.

There are several interesting aspects to be tackled for future

ork. First, having better knowledge of the distribution of the un-

ertainty in the form of a more accurate description would allow

s to calculate more precise solutions for the given input parame-

ers using the theory of Multiband Robust Optimization (e.g., [19] ).

lso, different heuristic solutions could be explored that would al-

ow faster computation of solutions using e.g. global first fit based

pproaches that need to be modified to cope with the uncertainty

f the input data. Finally, we intend to integrate our online algo-

ithm into open source cloud platforms such as OpenStack with

he Watcher framework or NFV platforms such as OpenBaton. 
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