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A B S T R A C T

Network Function Virtualization (NFV) has attracted a lot of attention in the telecommunication field because it
allows to virtualize core-business network functions on top of a NFV Infrastructure. Typically, virtual network
functions (VNFs) can be represented as chains of Virtual Machines (VMs) or containers that exchange network
traffic which are deployed inside datacenters on commodity hardware. In order to achieve cost efficiency,
network operators aim at minimizing the power consumption of their NFV infrastructure. This can be achieved
by using the minimum set of physical servers and networking equipment that are able to provide the quality of
service required by the virtual functions in terms of computing, memory, disk and network related parameters.
However, it is very difficult to predict precisely the resource demands required by the VNFs to execute their
tasks. In this work, we apply the theory of robust optimization to deal with such parameter uncertainty. We
model the problem of robust VNF placement and network embedding under resource demand uncertainty and
network latency constraints using robust mixed integer optimization techniques. For online optimization, we
develop fast solution heuristics. By using the virtualized Evolved Packet Core as use case, we perform a
comprehensive evaluation in terms of performance, solution time and complexity and show that our heuristic
can calculate robust solutions for large instances under one second.

1. Introduction

Recently, Service Providers are migrating vendor specific hardware
and software that implement their network functions towards the
Cloud. In Network Function Virtualization (NFV) (Chiosi et al., 2015),
Virtualized Network Functions (VNFs) run inside Virtual Machines
(VMs) or containers on commodity servers. NFV is expected to lead to
significantly reduced CAPEX and OPEX due to the elasticity and
scalability of the cloud paradigm, which significantly simplifies the
VNF operation and management. Virtualization inside modern data
centers enables resources consolidation, leading towards green strate-
gies to manage both compute and network infrastructure where VNFs
are hosted.

Important tools are server consolidation strategies that migrate
VMs/containers towards the fewest number of servers and power down
unused ones to save energy. As VNFs are composed of a set of VNF
Components (VNFC) that need to exchange data over the network
under capacity and latency constraints, the networking plays also an
important part. By using Software Defined Networking (SDN), one can
dynamically adjust the network topology and available capacity by

powering down unused switch ports or routers that are not needed to
carry a certain traffic volume (Heller et al., 2010), thus consuming the
least amount of energy at a potential expense of higher latency. Green
strategies try to place the VNF components onto the fewest amount of
servers and to adjust the network topology and capacity by powering
down unused switches and ports to match the demands of the VNFCs.
Such design of the VNF placement and virtual network embedding can
be formulated as a mathematical optimization problem, and efficient
heuristics can be designed to quickly solve the problem.

In classical mathematical optimization, it is assumed that all data
involved in an optimization problem are known exactly when the
problem is solved. However, this assumption does not hold in most
real-world problems, in which data are often uncertain, i.e. not known
with precision when the problem is solved. As an example, one can
think about the unpredictable fluctuations in the traffic generated by
users in telecommunication networks (see, e.g., Bauschert et al., 2014;
D'Andreagiovanni et al., 2015). The decision maker could solve the
problem simply using an estimate of these uncertain data. However,
this could have potentially bad effects, as minimum variations in the
input data may impact the optimality and the feasibility of the solution
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(see Bertsimas et al., 2011; Ben-Tal et al., 2009; Büsing and
D'Andreagiovanni, 2012 for a thorough discussion). Solutions that
neglect data uncertainty may turn out to be infeasible and thus useless
in practice. Therefore, it is crucial to include data uncertainty in the
optimization model. Recently, robust optimization (RO) has been
proposed in the optimization community as a methodology for dealing
with data uncertainty. It essentially consists in taking into account data
uncertainty under the form of additional constraints included in the
model to cut off solutions that may turn infeasible or suboptimal, if
variations in the input data occur (Bertsimas et al., 2011). The
application of robustness allows to achieve a trade-off between protec-
tion from parameter deviations, which may lead to Service Level
Agreement (SLA) violations (e.g. in terms of CPU utilization of the
virtual components or network latency), and the well-discussed price of
robustness (Bauschert et al., 2014; Ben-Tal et al., 2009; Bertsimas and
Price, 2004; Bertsimas and Thiele, 2006) due to higher cost (e.g. energy
consumption) required to protect from parameter deviations (Zola and
Kassler, 2016). In Marotta and Kassler (2016), we proposed a model
for Robust Green VNF placement based on RO, which balances the
power consumption of the Virtual Network Infrastructure (VNI)
deployment and the protection from resource demand deviations of
the individual virtual network functions. However, the model is too
complex to solve for online optimization and does not account for
traffic load induced latency at intermediate switches but rather
assumes a fixed link latency.

In this paper, to the best of our knowledge we are the first to
present a fast heuristic to solve the problem of Robust Green VNF
placement and network embedding with the aim of reducing the overall
power consumption of the NFV Infrastructure, while considering
latency constraints for the service chains and data uncertainty in terms
of VNF resource demands. Our heuristic iteratively solves three
subsequent problems to deploy all the VNFs in a robust way. The first
problem (step 1) deals with the allocation of each VNF component by
minimizing the servers' power consumption and the total network
traffic matrix that VNFCs inject. We propose both exact and heuristic
approaches. In step 2, the allocation is made robust by using a fast
greedy heuristic, which calculates both the set of migrations required to
protect the placement from resource demand deviations and the
updated traffic matrix. In step 3, we solve the splittable flow routing
problem with latency constraints. We model the queueing delay that
VNFCs may experience as a function of the link capacity and the
processing load which can be modelled through an M/M/K/1 queueing
system (Joshi et al., 2015). We perform a comprehensive evaluation in
terms of performance, solution time and complexity using the virtua-
lized Evolved Packet Core and we show that we can calculate robust
solutions for large instance sizes in less than a second. The reminder of
the paper is structured as follows. The related work is discussed in
Section 2. In Section 3, the problem is formulated, while the heuristic is
illustrated in Section 4. Section 5 presents and discusses the numerical
results. Finally, Section 6 concludes the paper and draws attention to
future work.

2. Related work

Conventional resource allocation aims at efficiently allocating comput-
ing and storage resources, with little effort on ensuring the network
performance of the ongoing services. Recently, new approaches have been
proposed that abstract the services in the form of virtual infrastructures
for resource allocation. Consequently, the VNF placement has received a
lot of attention in recent years. The resource allocation problem for virtual
infrastructures is tackled in Yu et al. (2015). The proposed approach
extends the rounding technique used for the traditional VNE problem,
while minimizing mapping conflicts introduced by the virtual infrastruc-
ture embedding problem. In Baumgartner et al. (2015), an optimization
model is presented to solve the resource allocation of network service
chains, by taking into account network latency as a combination of

processing, packet queuing and propagation delay. The resource allocation
problem for wireless virtual networks is formulated in Hsu and Gan
(2015), and a heuristic algorithm based on the Bottom-Left algorithm is
developed. As shown, the resource utilization is increased with spectrum
aggregation. An Integer Linear Programming (ILP) model is formulated in
Bari et al. for allocating VNFs in order to minimize the total network
related cost and the resources fragmentation. Basta et al. (2014) tackles
the VNFs placement problem with the aim of minimizing the total
network load overhead, by considering the data plane delay and the
control plane overhead. In Yousaf et al. (2015), two constraint-based
heuristics are applied for the deployment of a virtualized Evolved Packet
Core and the results are shown in terms of average number of used CPU
cores and aggregate throughput.

Besides resource-efficient virtual network (VN) mapping or cost-
efficient VN mapping, another important issue in cloud-based data
centers is the amount of power or energy that is consumed.
Consequently, a lot of research effort has focused on energy-aware
(green) strategies. Energy-aware VNE is considered in Jia et al. (2016).
The authors propose an efficient heuristic to assign virtual nodes to
appropriate substrate nodes based on priority, where existing activated
nodes have higher priority for hosting newly arrived virtual nodes. By
employing mixed-integer programming, Sun et al. (2015) proposes a
power-efficient resource provisioning technique in cloud-based data
centers, while complying with SLAs. As their optimization problem is
NP-hard, the authors also propose a heuristic to efficiently solve it.
Authors in Giroire et al. (2014) propose an optimization method to
minimize energy consumption for a backbone network while respecting
capacity constraints on links and rule space constraints on routers. An
exact ILP formulation is presented first and an efficient greedy heuristic
algorithm is introduced.

To the best of our knowledge, none of the above works deal with the
uncertainty on the input data to their optimization models or heuristics
(e.g., users requests, power consumption, CPU demand, etc.).
However, it is well known that the solution of an optimization problem
often exhibits high sensitivity to the input data perturbations.
Consequently, ignoring uncertainty in input data can lead to solutions
which are suboptimal or even infeasible (Ben-Tal et al., 2009;
Bertsimas and Thiele, 2006) when used in reality. On the other hand,
the theory of robust optimization has been applied already successfully
in other areas to cope with parameter uncertainty. A robust cloud
resource provisioning algorithm is proposed in Chaisiri et al. (2010),
where the over-provisioning and under-provisioning costs are mini-
mized and various types of uncertainty are considered. The numerical
study shows that the solution obtained from their algorithm achieves
robustness. An original robust cutting-plane algorithm is proposed in
D'Andreagiovanni (2014) to address the uncertain nature of the
jamming problem in wireless networks. A robust optimization ap-
proach for the VNE problem is investigated in Coniglio et al. (2015),
which is based on a robust MILP formulation using the Γ − robustness
model. They also propose a MILP-based two-phase heuristic but do not
consider latency constraints or compute demands of the VNFs. In our
previous work (Marotta and Kassler, 2016), the problem of the robust
green VNF placement was addressed. This work proposes a heuristic
that solves the problem also for big instances of the VNI, thus making
our proposal suitable for online optimization. In addition to Marotta
and Kassler (2016), we now consider latency constraints on service
chains in the problem formulation. The heuristic then calculates
network paths between the servers hosting the communicating VNF
components that have the required capacity and satisfy those latency
constraints while considering both the propagation and queueing
induced latency.

3. Problem formulation

We consider the VNI as the set of hardware resources (compute and
network infrastructure) hosting a certain number of VNFs inside a virtualized
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data center. Each VNF is composed of service chains, which are a group of
VNFCs with a set of traffic demands and a maximum tolerable latency. In
particular, the traffic demands specify how much traffic the first component
in a service chain sends to the second one, which forwards it after some
processing to the third one and so on. The latency of a service chain is the
sum of the experienced delays on the used paths, on which all the demands
of the service chain are forwarded and includes the propagation latency and
the latency due to queueing. We take into account a set J of servers and a
network graphG N E( , ), where N represents the set of network nodes and E
denotes the links among them. Given the family of service chains, which are
defined as a specific number of traffic demands between couples of a subset
V V⊂ of VNFCs, the objective of the problem is to allocate all the VNFCs on
the servers and to find the network routes that satisfy the traffic demands
while minimizing the VNI overall power consumption, given the latency,
resource and bandwidth capacity budgets. A compact expression of the
objective function is f P P P= = +VNI servers switches

Regarding the power model for the compute infrastructure, we
assume that the CPU of a server is the most power consuming part
(Panda et al., 2010) and use a simple model as in Lim et al. (2009);
Pedram and Hwang (2010). Each server j has an idle power consump-
tion Pidle j, and a maximum power consumption Pmax j, . In between, the
power consumption follows a linear model dependent on the CPU
utilization (due to the allocated virtual components). For the switch
power consumption, we consider two components as in Boru et al.
(2015): a static component due to the chassis and the line cards, and a
dynamic one dependent on the powered-on ports operating at a specific
rate and characterized by a total utilization. For example, Heller et al.
(2010) provides an overview on the power consumption of three
different 48-port switch models. For a specific switch, they show that
the power consumption is 151 W when the switch is idle and all the
ports are powered down, while it increases to 184 W when all the ports
are enabled and to 195 W when all the ports serve traffic at 1 Gbps. As
the traffic-dependent power component is very small compared to the
power consumption due to the static components and powered on
ports, in this work we neglect the former as in Heller et al. (2010).

4. A fast heuristic for Green and Robust VNF Placement
(GRVP)

In order to cope with data uncertainty, in this work we follow the
concept of Γ-Robustness (Bertsimas and Thiele, 2006), which allows
taking into account an uncertainty budget, namely a maximum number
of variables that may be affected by parameter deviation. This allows us
to trade-off between the protection level against parameter deviations
and the cost of the robust solution, which is usually higher than the one
obtained in the deterministic case. Nevertheless, solving directly a
robust optimization model (Marotta and Kassler, 2016) by using an
exact solver, such as IBM ILOG CPLEX (Cplex, 2017), may require a
very long time (see also the discussion for two distinct robust network
design problems in D'Andreagiovanni et al., 2015; D'Andreagiovanni
and Nardin, 2015), especially if the problem needs to be solved for a
large set of Γ values. Consequently, we develop a fast heuristic, which
we call Green Robust VNFs Placement (GRVP), to solve the
formulated problem by dividing it into three sub-steps, namely the
VNFCs Placement, the Robust Heuristic and the Latency Constrained
Flow Routing, see Fig. 1.

We briefly explain each step of the GRVP heuristic in the following.
Fig. 2 illustrates the overall problem, which is to embed a set of service
chains with uncertain resource demands into a given compute and
network infrastructure.

1. The first step allocates the VNFCs belonging to the different service
chains to a group of servers, each one having a different energy
profile. When allocating each component, the objective is to obtain a
balance between the minimum servers' power consumption and the
total traffic injected into the network. This is the traffic exchanged by

a VNFC m1 and VNFC m2, considering that they are allocated to
different servers associated to two different network nodes. As can
be seen from Fig. 2, such total traffic demand would be all the traffic
sent from all the servers sending towards their access switches (sum
of green, red and violet demands). Would all VNFCs be allocated to
the same server, then such demand would be zero. The allocation
obtained in this step guarantees no protection from deviations in
terms of resource demands of each VNFC, since the average resource
demand values are taken into account in this step (i.e., assuming the
resource demand is fixed and known precisely). Two outputs are
obtained from this first step: the VNFC allocation scheme (e.g.
VNFC1 is allocated to server 3, VNFC3 is allocated to server 4 and
VNFC2 is allocated to server 6) and the total network flow demands
between each node (e.g. VNFC1 is injecting green and violet traffic,
etc.). To solve this step, two methods are proposed: a classical
optimization model based on Mixed Integer Linear Programming
(MILP) and a fast First Fit Clustering Allocation (FFCA) online
heuristic.

2. The second step is a greedy heuristic to make the placement immune
from a certain number (Γ) of deviating parameters, namely the
resource demands of the VNFCs allocated on each server. For
example, if server 3 could host VNFC1 at average demand -but not
with the maximum demand specified- while server 5 could host the
maximum demand of VNFC1, then VNFC1 would migrate from
server 3 to server 5. The heuristic tries to migrate away as few
VNFCs as possible from those servers in which the remaining free-
resource level is not sufficient to accommodate up to Γ components
with a maximum deviation on their nominal resource demand. For
more than one VNFCs allocated to a server, one needs to consider all
possible combinations or the worst case. For example, let us assume
1. a server j with a total CPU of 1.0 (each 0.1 stands for 1 virtual

core);
2. two VNFCs m1 and m2 allocated on j, respectively demanding for

0.4 and 0.5 units of CPU;
3. a protection factor, Γ, equal to 2;
4. a maximum deviation in the CPU demands by the components

which account for 30% of the actual demand (Δ = 30%r );
then the CPU demands of m1 and m2 may deviate up to 0.52 and
0.65, respectively. Consequently, if both VNFCs at the same time
deviate, server j can not accommodate both VNFCs any longer (i.e.,
the total CPU demand is higher than the available CPU at server j).
Thus, we need to migrate away one VNFC (and possibly power on
another server to host this VNFC) in order to make our placement
robust against the demand variations. On the other hand, if we
assume Γ = 1 (i.e., we want to protect against the deviation of only
one VNFC demand), we still need to migrate away one VNFC,
because in the worst case VNFC m2 may deviate up to 0.65 CPU
units while we assume no deviation for m1 consuming 0.4, thus the
total demand is again higher than the available CPU at server j. The
output of the second step will be a set of migrations that are
necessary in order to ensure an allocation which is immune to a
maximum number Γ of parameter deviations. Moreover, this step
also updates the traffic matrix.1

3. Once the VNFCs are placed in a robust way in step two, we use the
updated traffic flow matrix for routing the traffic between the servers
where VNFCs have been placed in the previous step. Here, we only
need to consider flows that inject traffic into the network (we do not
need to route flows between VNFCs allocated on the same host). In
order to compute the routing for the traffic flows, we develop a
splittable and latency constrained flow routing model. The aim is to
find the minimum power consumption in the network when

1 Note that we do not perform real live migration of VNFCs at this stage. Rather, the
migrations are virtual ones in order to create a robust placement out of a placement that
may not be robust after the first step. Only after all the steps are finalized, we have
calculated our placement that will be enforced by the NFV orchestrator.
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determining the routing decision for each demand belonging to a
specific service chain. To this end, we need to guarantee that the sum
of the delays suffered by each demand on the possible paths is not
greater than the one tolerated by the service chain. To clarify,
suppose we have one service chain (sc1) with three VNFCs and the
following list of demands (dem) and latency (lat, expressed in ms):
1. sc m m m= { , , }1 1 2 3
2. dem m m m m= {( , , 10), ( , , 20)}1 2 2 3
3. lat sc= {( , 50)}1
If the demand between m1 and m2 (i.e., 10) is sent on the path 1-2,
with a total latency of 9 ms, and the second demand between m2 and
m3 (i.e., 20) is forwarded on the path {2-3, 3-4} with a total latency
of 21ms, the total suffered latency for the service chain will be 30ms
(which is less than 50 ms, namely the maximum tolerable latency for
the service chain sc1).

4.1. Step 1: initial VNFCs placement

We consider a set of VNFs V to allocate on the set of servers J,
which offer a set of resources I: the VNFs are associated with a set C of
service chains involving a set M of VNFCs. Each VNFC m M∈ can be
run on a single VM or container and we denote by ri m, its request for
resource i I∈ . Each server j J∈ is connected to one single node of the
network, denoted by n j N( ) ∈ and can provide a maximum amount ai j,
of each resource i I∈ . Given this basic notation, we present all the
parameters and the decision variables involved in the optimization
model to solve the initial VNF placement in Table 1.

The Mixed Integer Linear Programming model in Table 2 allocates all
the VNFCs to the physical servers to minimize (1): 1) the sum of the final
servers' power consumption, normalized to the total power consumption;
and 2) the traffic to be injected into the network, normalized to the total
traffic demand (tot_dem, which is the sum of all the traffic demands

demm m,1 2). As the problem is a multi-objective optimization problem, we
normalize each single objective component to obtain values between 0
and 1 which we then multiply with a weight, set to 0.5. This is because we
want to find a good balance between minimizing both the total server's
power consumption and the total network flow. A non-active server (yj=0)
has a 0 power consumption; on the contrary, the power consumption is
linearly increasing with the CPU utilization Table 3. The latter is
computed as the sum of the CPU units requested by each VNFC allocated
to the server, normalized to the total available resource amount (3).

Constraint (4) expresses that each VNFC must be allocated to
exactly one server. Constraints (5) and (6) express that a server is active
when at least one VNFC is allocated to it, otherwise it is inactive.
Moreover, (7) ensures that the total amount of resources available at
each server is not exceeded. (8) defines the (binary) variable aln m, ,
which is equal to 1 if VNFC m is allocated to some server connected to
node n, otherwise it is 0. Constraints (9)–(11) link the binary variables
aln m,1 1, aln m,2 2 to the binary variable zn n

m m
,
,

1 2
1 2, determining if the traffic has

to be routed from node n1 to node n2, depending on how the VNFCs
m m,1 2 are allocated with respect to n1, n2. If either aln m,1 1 or aln m,2 2 is
equal to 0, then no traffic related to VNFCs m m,1 2 is sent from node n1
to node n2 and thus the variable zn n

m m
,
,

1 2
1 2 is forced to 0. This also holds if

both the decision variables are equal to 0. In contrast, when both aln m,1 1
and aln m,2 2 are equal to 1, then the right hand side of (11) is equal to 1
and this forces zn n

m m
,
,

1 2
1 2 to be equal to 1, expressing the fact that the

amount of traffic from m1 to m2 has to be sent from node n1 to n2.
Finally, in (12), given the demands and their directions, the traffic
between any two nodes n1 and n2 is computed.

Fig. 1. GRVP heuristic.

Fig. 2. VNF embedding problem into network and compute infrastructure.

Table 1
Initial VNF placement model parameters.

Input
parameters:

ai j, Amount of resource i I∈ available at server j J∈
ri m, Amount of resource i I∈ requested by VNFC m M∈
P jidle, Idle power consumption of server j

P jmax, Maximum power consumption of server j

demm m1, 2 Amount of traffic to be sent from VNFC m1 to m2,

For each m m M m m, ∈ : ≠1 2 1 2
n(j) Network node in N to which the server j J∈ is connected

Decision
variables:

xj m, Is equal to 1 if m M∈ is allocated to j J∈ and 0
otherwise

yj Is equal to 1 if server j J∈ is active, 0 otherwise

aln m, Is equal to 1 if m is associated to network node n, 0
otherwise

pj Is the power consumption of server j J∈
zn n

m m
1, 2
1, 2 Is 1 if the traffic from m1 to m2 is sent from node n1 to n2

m m M m m n n n n∀ , ∈ : ≠ , ∀ , : ≠1 2 1 2 1 2 1 2, 0 otherwise
trafn n1, 2 Is the total traffic between the node n1 and

n2 n n n n∀ , : =1 2 1 2
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Algorithm 1. First Fit Clustering Allocation (FFCA).

1: Input: sc, servers
2: Output: allocation
3: order clustered servers in decreasing order of available
resources
4: for each service chain c C∈ do
5: for each VNFC m belonging to c do
6: first_fit_allocate(servers, m)
7: end for
8: end for

The first phase, which places the VNFCs in an energy/network
efficient way, is modelled as an MILP and calculates the optimal
placement. However, the runtime for large instances may be prohibi-
tive due to its complexity. In order to speed up the first phase, we
alternatively propose a First Fit Clustering Allocation (FFCA)
heuristic (Algorithm 1), based on a simple policy. The heuristic iterates
through all servers and checks, if they are connected to a specific
network node. The nodes are taken into account according to their
position in the network, meaning that the node with id 0 is considered
first. The outcome is a set of clustered servers per each network node,
which are then ordered in a decreasing fashion of the available amount
of considered resource. The heuristic tries to allocate all the compo-
nents of a specific service chain to the servers connected to the same
network node, with the aim of reducing the amount of traffic to inject
into the network. Algorithm 1 includes two nested loops over the
service chains and the VNCFs and has a complexity of O C M(| ∥ |),
where by M we denote the overall set of virtual network function
components and by C we denote the overall set of service chains.

4.2. A greedy heuristic for robust VNFCs placement

The placement obtained in the first phase does not take into account
resource demand variations for the VNFCs, as it only considers the average
resource demands when performing the initial placement decisions.
Consequently, the resulting placement may lead to possible SLA violations
that may occur if a certain number of VNFCs in some service chains have
actual resource requirements that deviate from their expected demand to
the maximum. In Marotta and Kassler (2016), we proposed an optimiza-
tion model in which the resource requirement of each VNFC is not known
precisely, but may vary within a well-defined interval. We specified a
maximum allowed deviation from the mean resource demand which may
lie within a symmetrically distributed range with an upper and lower
bound. In more details, we assume that a specific VNFC m requires an
expected nominal amount ri m, of resource i (e.g. memory or CPU)
associated with a symmetric maximum deviation, r ≥ 0̂i m, . Hence the actual
resource demand may vary within the interval r r r r[ − , + ]̂ ̂i m i m i m i m, , , , . Based
on the theory of robust optimization (Bertsimas et al., 2011), we protect
now the allocation by allowing a maximum number of components, given
by Γ, to deviate from the expected demand at the same time. Consequently,
after phase 1 some servers may have a resource utilization that is not
protected against demand deviations. Therefore, this step tries to move
away VNFCs from such servers in order to make room for potential
demand deviations for a given protection level. Γ denotes the so-called
uncertainty budget of the problem, which is based on the assumption that
uncertain coefficients in different constraints are not correlated and on the
observation that it is unlikely that all the coefficients may deviate to their
worst possible value at the same time. The pseudo-code of our heuristic
which tries to migrate away as few VNFCs as possible from a server that
may run into potential contention, given the uncertainty budget Γ, is shown
in Algorithm 2. In particular, we define the maximum deviation of each
parameter ri m, as a percentage (ω%) of the nominal value (r =̂i m

ω r
,

·
100

i m, ).

Table 2
Initial (non-robust) VNFCs placement model.

∑f
P

P totdem
min = 1

2
· + 1

2
·
∑ traf

j J

j

j

n n N n n n n

∈ max,

, ∈ : ≠ ,1 2 1 2 1 2

(1)

s t. . (2)

P P y P P
r x

a
j J i I i CPU= · + ( − )·

∑ ·
∀ ∈ , ∈ : =j j j j j

m M i m j m

i j
idle, max, idle,

∈ , ,

,

(3)

∑ x m M= 1 ∀ ∈
j J

j m
∈

,
(4)

∑y x j J≤ ∀ ∈j
m M

j m
∈

,
(5)

y x j J m M≥ ∀ ∈ , ∈j j m, (6)

∑ r x a y j J i I· ≤ · ∀ ∈ , ∈
m M

i m j m i j j
∈

, , ,
(7)

∑al x n N m M= ∀ ∈ , ∈n m
j J n j n

j m,
∈ : ( )=

,
(8)

z al m m M m m n n n n≤ ∀ , ∈ : ≠ , ∀ , : ≠n n
m m

n m,
,

, 1 2 1 2 1 2 1 21 2
1 2

1 1 (9)

z al m m M m m n n n n≤ ∀ , ∈ : ≠ , ∀ , : ≠n n
m m

n m,
,

, 1 2 1 2 1 2 1 21 2
1 2

2 2 (10)

z al al m m M m m n n n n≥ + − 1 ∀ , ∈ : ≠ , ∀ , : ≠n n
m m

n m n m,
,

, , 1 2 1 2 1 2 1 21 2
1 2

1 1 2 2

(11)

∑traf z n n n n= dem · ∀ , : ≠n n
m m M m m

m m n n
m m

,
, ∈ : ≠

, ,
,

1 2 1 21 2
1 2 1 2

1 2 1 2
1 2

(12)

Table 3
Latency constrained flow routing model parameters.

Input parameters:
Ps n, Is the static power consumption of node n

demm m1, 2 Is the traffic demand with value dem from VNFC s to d

e src dst pw lat cap. ( , , , , ) Are the source, destination, power, latency and
capacity of link e

pathp e, Is 1 if link e belongs to the possible path p

scc m, Is 1 if the component m belongs to the service chain c

latc Is the maximum tolerable latency for service chain c

Decision variables:
yn Is 1 if the node n is active, 0 otherwise
Pn Is the power consumption of the node n
fe
dem Is the flow demand dem on the link e

he
dem Is 1 if the link e is carrying the demand dem

He Is 1 if the link e is used for any traffic
Fe Is the total traffic on link e
loadn e, Is the load of the node n considering its outgoing link e

delqun e, Is the queueing delay of n considering the buffer on the
outgoing link e

dellinke Is the total delay of link e
latsube d, Is the suffered delay by the demand dem on the link e

pathlatp d, Is the total delay suffered by demand dem on the
possible path p
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The algorithm accepts as input the lists of VNFCs, the idle and active
servers after the initial placement, the traffic demands matrix, the
uncertainty budget and the maximum relative deviation ω. It calculates
the (virtual) migrations list and the updated traffic matrix after the
(virtual) migrations are applied. The heuristic checks each active server:
for each server and its allocated VNFCs obtained from step 1, we compute
the amount of resources that are needed to deal with a certain number Γ
of components deviating at the maximum from their nominal demand. If
the number of allocated VNFCs is less than the uncertainty budget Γ, all
the VNFCs must be considered in the computation, otherwise they are
ordered in a decreasing fashion and the first Γ are taken into account
(lines 4–6). If, for the examined server, there is not enough spare
resources in order to account for the deviating VNFCs to their maximum
value, then the algorithm tries to free the required amount of resources by
migrating some VNFCs to other possible physical machines. The VNFCs
to migrate are selected according to the following policy. First, we order
the allocated VNFCs in terms of decreasing amount of traffic to exchange
with other components on different servers. If there are more VNFCs with
the same amount of traffic to choose from, the one with the resource
demand closer to the gap to free on the server is selected (lines 7–11). The
for cycle (line 13) tries to find an already active server to migrate the
chosen component to, by verifying if the allocation is possible and by
assuring at the same time the protection from the total deviation
(Algorithm 3). If the (virtual) migration is successful, then the current
server is stored, otherwise the search is carried out among the idle servers
and a new server needs to be powered on (lines 13–27). If a server is

eventually found, the (virtual) migration is performed and the allocation,
together with the traffic matrix, is updated, accordingly. The source host is
checked again: if the migration has freed enough space to cope with the
uncertainty budget, then it is added to the protected servers list; if this
condition does not hold, the next iteration of the while cycle tries to
migrate a different VNFC (lines 28–36).

Algorithm 3. Allocate and protect.

1: Input: m, s, Γ, ω
2: Output: possible
3: get the allocated vms on s
4: total_res=0, possible=False
5: if vms.size() Γ≤ then
6: stop=vms.size()
7: else
8: stop=Γ
9: end if
10: for m=1:stop do
11: total_res=total_res +(r r+ ̂i m i m, , )
12: end for
13: if s.max_avail_res totalres≥ then
14: possible=True
15: end if
16: return possible
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The complexity of Algorithm 2 is determined by the three nested
loops (defined in lines 4, 7 and 13) involving twice the set of servers
and the set of virtual machines. The algorithm thus has a complexity of
O J VM(| | | |)2 , where by VM we denote the overall set of virtual machines
(each virtual machine hosts one VNFC in our assumption) and by J the
set of servers. The complexity of the Algorithm 3 is instead determined

by the presence of a single loop over the VNCFs and the complexity is
thus O VM(| |), where by VM we denote the overall set of virtual
machines.

Note that our strategy to make the placement robust by migrating
away VNFCs from servers where there is a potential resource conten-
tion is quite conservative. This is because in our heuristic, the Γ-
protection is ensured per each active server. This is in contrast to an
exact Robust MILP formulation, which is more opportunistic in
considering all possible combinations at the expense of a significant
longer runtime, which is not suitable for optimization. Hence, our
algorithm is expected to calculate solutions very fast that provide a very
good protection at the expense of higher energy cost than the
theoretical optimal solution.

4.3. Latency constrained flow routing

Once the final allocation for each VNFC has been found and
safeguarded from possible resource demand deviations, the last step
consists in finding the routing paths for the traffic demands among the
VNFCs allocated on different hosts. As the goal is minimizing the
energy consumption, we try to power down as many switches and
switch ports as possible and route the traffic along those paths that
have enough capacity, while fulfilling the latency requirements of the
service chains. Differently from the optimization model in Marotta and
Kassler (2016), we assume that each flow demand can be routed on
splittable paths2 and the link delay is not a static input parameter of the
problem. Instead, each network link is characterized by a latency that is
computed as the sum of the propagation delay (fixed input parameter
depending on the length of the link itself) and a queuing delay
(depending on the processing load due to the traffic sent over the
link). The processing delay can be considered as an average queuing
delay, dependent on the incoming traffic rate, the configuration of the
buffer size and the link capacity. Each queue is characterized by a delay
that can be modelled according to the M/M/1/K queuing system. We
apply the same procedure as in Dobrijevic et al. (2014) and approx-
imate the queueing induced latency using piecewise linearization.

The optimization model defining the Latency Constrained Flow
Routing is shown in Table 4. The objective is to minimize the total
power consumption due to all the active network devices and ports as
in (13). The power consumption of a switch is zero if it is not used (all
of its ports are idle). This is the case in which all the VMs belonging to
the service chains, which are exchanging traffic among them, are
allocated to servers packed in the same rack. Since we are considering
each rack connected to a network switch, this allocation scheme causes
all the traffic to be internal to the racks and, as a consequence, no
packet will be sent to the upper layer switch. Thus, for the model the
switches will be inactive; otherwise, if there is traffic flowing from one
rack to another, the interested switches will be active and their
consumption will be computed as the sum of a static idle power and
the consumption of the active ports (15). In (16), the flow conservation
constraint is expressed: given a node n and a traffic demand dem, if the
source component is allocated to n and the destination is associated to
another node, the sum of the incoming flows and the exiting ones is
equal to the demand itself. The difference is equal to the opposite of the
demand if the source component is not allocated to n, whereas the
destination of the traffic is hosted on n. If n is just a transit node, the
difference is zero.

The flow on a given link should be less or equal to the demand itself,
if the link is used to carry that traffic (17). If the demand on a specific
link is zero, that link should not be active for the demand and the port
can be powered off (18). The total amount of traffic on a link is just the
sum of all the demands forwarded on it and it should not be greater

Table 4
Latency constrained flow routing model.

Flow routing model

∑ Pmin
n N

n
∈ (13)

s t. . (14)

∑P P y H e pw n= · + · . ∀n s n n
e e s n

e,
: . = (15)

∑ ∑f f
d dem al al

d dem al al
n d

− =
. if = 1& = 0

− . if = 0& = 1
0 otherwise ∀ , ∀e e d n

e
d

e e s n
e
d

n d s n d d

n d s n d d
: . = : . =

, . , .

, . , .

⎧
⎨⎪
⎩⎪ (16)

f h d dem e d≤ · . ∀ ,e
d

e
d

(17)

h f e d≤ ∀ ,e
d

e
d

(18)

∑F f e= ∀e
d

e
d

(19)

F e cap H e≤ . · ∀e e (20)

load
f

e cap
e e s n

n d
=

∑
.

∀ : . =

0 otherwise ∀ ,
n e

d e
d

,

⎧
⎨⎪
⎩⎪ (21)

α β load delqu y M e n+ · ≤ + (1 − )· ∀ ,i i n e n e n, , 1 (22)

delqu M y e n≤ · ∀ ,n e n, 1 (23)

dellink e lat delqu e= . + ∀e e s e. , (24)

latsub dellink e d≤ ∀ ,e d e, (25)

latsub M h e d≤ · ∀ ,e d e d, 2 , (26)

latsub dellink M h e d− ≥ − ·(1 − ) ∀ ,e d e e d, 2 , (27)

∑pathlat latsub path p d= · ∀ ,p d
e

e d p e, , ,
(28)

∑ pathlat lat c≤ ∀
p d sc sc

p d c
, :( · )=1

,
c d s c d d, . , . (29)

∑y H n≤ ∀n
e e s n e d n

e
: . = : . = (30)

y H n e≥ ∀ , ∀ : e. s = n ∥ e. d = nn e (31)

2We argue that by using multipath transport layer and SDN, such splittable paths can
be enforced.
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than the link capacity (19)–(20). The load of each network node buffer
is computed per outgoing link: if n is the source node of the link e, then
its load is computed as the sum of the demands forwarded through it,
normalized to the total capacity of the link; otherwise it is set to zero
(21). The constraint (22) expresses the piecewise linearisation of the
node queuing delay according to the coefficients αi and βi, which are
obtained through the linear interpolation of the curve from Dobrijevic
et al. (2014). The node queuing delay is set to zero when the node is not
active (23). The total delay of link e can be computed as the sum of the
latency of link e and the node queuing delay (24).

The delay a traffic demand can suffer on a link e can be expressed as
delay h dellink= ·e d e d e, , . The problem of this equation is that it requires
the product of two decision variables: the first one indicating that the
link is actually used for routing the demand and the total delay of the
link, given by the sum of the propagation latency and the queuing delay
of its source node. That equation can be linearised by introducing
another decision variable latsube d, and the constraints (25)–(26)–(27),
where M2 is an upper bound to the latency suffered by a demand on a
link. The latency suffered by the traffic demand on a possible path is
given by the sum of the delays on each link composing the considered
path (28). For each service chain c we need to ensure that the sum of
the delays suffered by each demand, belonging to c, on each used
possible path is not greater than the maximum tolerable one, latc (29).
Finally, the constraints (30) and (31) assure that a switch is active if
and only if at least one of its ports is active, otherwise it is considered as
idle. We note that if a solution is not found in the last step, the heuristic
is not able to modify the allocation in order to guarantee a feasible
solution; this is instead left as future work.

5. Experimental results

5.1. Evaluation setup

In the numerical evaluation, we consider the deployment of a virtual
Evolved Packet Core (vEPC) network inside a VNF Infrastructure. By
considering the control plane (CP) load in terms of events per hour, we
use (Yousaf et al., 2015) to compute the number of instances required per
each type of VNFC that are needed to sustain the estimated hourly traffic
bundle. In particular, we take into account different configurations for the
number of VNFCs, a maximum allowed deviation from resource demands
of 40% from their nominal value, and a protection factor (Γ) ranging from
0 (no protection) up to a maximum value. Our physical network topology,
where the service chains need to be embedded, is organised in three
layers: each rack has a single bidirectional link to the upper switch, while
the switches in the second layer are connected in a full mesh with the ones
in the top layer. For the sake of simplicity, all the links have a capacity of
1 Gbps and a latency randomly selected between 1, 2 and 3 ms.

As our model is to the best of our knowledge the first one to
consider robustness for latency aware Green VNF placement and
network embedding, we cannot compare it directly against related
work. Instead, we provide a comprehensive evaluation in terms of
performance, solution time and degree and price of robustness.

5.2. Evaluation of step 1 - FFCA heuristic

In Fig. 3, we plot the energy consumption (left) and the network
flows (right) using the placement model from Table 2 when solved by
CPLEX (Cplex, 2017) using the well known branch-and-cut algorithm.
We compare those values with the ones obtained by the FFCA heuristic
(Algorithm 1). On the x-axis we vary the instance size configurations in
terms of CP load (leading consequently to more VNFCs and higher
problem complexity), starting from 106 ev/h (28 VNFCs) up to 12·106

ev/h (310 VNFCs). In the graph on the left, we show the number of
active servers (right y-axis), while the server's power consumption is
shown on the left y-axis. These results show the outcome of step one of
our algorithm considering the deterministic allocation without any
robustness or latency constraints.

The FFCA heuristic shows very encouraging results in terms of used
servers and their total power consumption. The heuristic shows even
better results compared to the optimal model when considering only
the number of used servers for some configurations (the improvement
of the results is between 7.15% and 11.76%). But the optimal solver has
better results in terms of finding a balance between total power
consumption and remaining network traffic. This is also due to the
fact that the FFCA heuristic does not take into account the power
model of different servers, as it simply uses a first-fit allocation policy
to reduce the flows to inject into the network. The FFCA heuristic
shows worse results in terms of network flows when the control plane
load is increasing because of the vEPC service chains' characteristics.
This is also because one component can be part of different service
chains, which makes it harder for the heuristic to attenuate the traffic,
especially when the CP load is increasing.

5.3. GRVP and FFCA heuristic combined

In Fig. 4, we compare the GRVP heuristic (using the optimal
placement model in Table 2 as step 1, followed by the robustifying part
and the latency aware flow routing in step 3) with the results of the
model in Marotta and Kassler (2016). For fair comparison, we
extended (Marotta and Kassler, 2016) to take into account latency
due to increased traffic demand with the corresponding constraints.
The difference to our heuristic is that (Marotta and Kassler, 2016) with
latency extensions uses Γ robustness principle and consequently
protects the whole placement (all servers) from demand deviations.

Fig. 3. Power consumption and remaining network flow for the optimal placement model and the FFCA heuristic.
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Therefore, our heuristic is more conservative as we protect each
individual server from demand deviations. We used Matlab (Matlab,
2017) and the ROME toolkit (Rome, 2017) for solving the extended
model in Marotta and Kassler (2016). Because of the high complexity
involved, we can only solve a small instance to optimality (1·106 ev/h),
and we vary from Γ = 0 (no protection) to the maximum protection
Γ = 28.

The figure shows the number of used physical servers and their total
power consumption in the left-graph and the active switches and links
in the right one, both for the GRVP heuristic and for the model in
Marotta and Kassler (2016) with latency aware flow routing. It is
interesting to observe that the heuristic approach and the optimal
solver achieve very similar results when no protection is applied
(Γ = 0): in particular, the number of used servers and networking
elements are the same, while the total power is only 2% higher than the
optimal one. Consequently, our heuristic provides excellent results
when no protection is desired. When Γ ≥ 4 the heuristic activates
around 25% more servers to cope with the uncertainty in demands
compared to the exact model. The used links and switches also stabilize
when Γ ≥ 4 to values that are 53.85% and 40% worse than the optimal
results, respectively. Besides, the heuristic has a total flow that is
75.31% higher with respect to the optimal solver in the worst case
(1328 traffic units against only 328 computed by CPLEX and ROME).
The difference in terms of power consumption is not too excessive, as
the heuristic calculates placements that have between 2% and 35.37%
higher power consumption than the one given by the exact model. The
reason why our heuristic has higher energy consumption compared to
the extended model from Marotta and Kassler (2016) is mainly because

the heuristic is much more conservative as it protects each server
individually from demand deviations, while Marotta and Kassler
(2016) considers all potential combinations of parameter uncertainty.
Consequently, for a targeted constraint violation probability, the
heuristic requires a lower Γ compared to the optimal model. As we
will see later, the benefits of our approach is that it is suitable for online
optimization while Marotta and Kassler (2016) is too complex to solve
reasonably sized instances in short time.

In Fig. 5, the results of the GRVP heuristic using FFCA allocation
techniques for a control plane load equal to 8·106 events per hour are
presented. The graph on the left shows the power consumption of the
servers, network nodes and the total power consumption of the VNF
Infrastructure when Γ is increased from 0 (no protection) up to 30
(beyond this value of Γ, no valuable changes in the results were
observed). The greatest increase in terms of total power consumption
(15.22%) is observed when Γ increases from 9 to 10: the number of
links, switches and servers change from 8 to 10, 5 to 7 and 25 to 28,
respectively, to sustain the possible demand deviations. For Γ = 23 the
active servers are stable to 34, while the used switches and links settle
to 7 and 10 when Γ is equal to 10. By having a close look at these
graphs, the VNI operator can decide if it should protect its VNF
deployment from more components that may deviate in terms of
resource demands, or be more power conservative consequently
leading to less protection in terms of potential SLA violations. The full
protection comes at a greater cost in terms of power consumption of
the VNF Infrastructure which is 73.74% higher in comparison to the
value obtained without any protection (Γ = 0). In Fig. 6, we show the
results obtained by the GRVP with FFCA for the number of used

Fig. 4. Comparison between the GRVP (with Optimal Placement Model) and the original model (Marotta and Kassler, 2016) (106 ev/h, ω = 40%).

Fig. 5. Results for GRVP with FFCA for 8M events and maximum deviation ω = 40%.
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servers, the total network flow and the number of activated links and
total power consumption of the VNF Infrastructure for different values
of Γ and increasing CP load (4 M up to 20 M). As can be seen, the total
power consumption increases both for increasing protection applied
and higher number of signalling events being served.

5.4. Price of robustness and runtime evaluation

Finally, we investigate the additional price to pay for robust solutions
in terms of higher energy consumption when protecting against uncer-
tainty for a given Γ. We solve the problem for a given Γ using our heuristic
phase 1 and 2 using GRVP with FFCA without the flow routing. For the
robust solution calculated after step 2, we create 10.000 different

instances of our input variables as follows. At each instance, if a VNFC
requires avr units of CPU, we modify its demand to fall randomly within
its upper and lower interval bound. After updating the CPU utilization on
each server according to the random values calculated within the given
bounds, we check the resource budget constraint and compute the
number of constraint violations due to the input parameter variation
within the given bounds. We calculate the robustness degree as:

robustness violations
runs

= 1 − #
# (32)

In addition, we calculate the price of robustness as the increase in the
objective function (i.e., the total server power consumption) compared to
the best value achieved when no protection is applied (Γ = 0):

Fig. 6. Results of GRVP with FFCA for different configurations (ω = 40%).

Fig. 7. Degree and price of robustness for GRVP with FFCA for different protection levels.
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totalpower totalpower

totalpower
=

−
Γ x

Γ x Γ

Γ
( = )

( = ) ( =0)

( =0) (33)

Fig. 7 shows the robustness degree (in blue) and the price of
robustness (in red) as the protection factor increases in four different
configurations of the vEPC: 5, 10, 15 and 20 M ev/h for different
protection level Γ from 0 to 10. When Γ = 0, we do not protect against
uncertainty and thus no additional resources are needed. This results in
the lowest cost also having the lowest protection factor. When Γ
increases, more servers and links are activated to protect the allocation
from the demand deviations leading to higher energy consumption. For
example, when Γ = 6 and ev/h = 20 M, we need around 15 % more
energy to protect at a robustness degree of around 20%. Interestingly,
when Γ = 7, the degree of robustness is 100%, meaning that no SLA
violations occur as the servers are all properly over-provisioned for the
given workload to cope with demand uncertainty. This is due to the
conservative nature of our heuristic.

Selecting a proper Γ is up to the Cloud Operator as the protection
factor achieves a trade-off between additional costs in terms of energy
consumption and the desired degree of robustness. A more conserva-
tive NFVI operator would like to protect its VNFI more from demand
deviations, and consequently would select a larger Γ. However, more
servers and network elements would be needed leading to higher costs
to run the infrastructure. A more opportunistic operator would select a
lower Γ leading to a potential higher constraint violation probability,
which may lead to increased resource contention and ultimately also to
SLA violations at the benefit of significant cost savings.

Finally, in Fig. 8 we show the execution times of the heuristic in
(Algorithm 2). In particular, we fix the protection level Γ to 5 and plot
the execution times starting from 1 million events per hour up to 60
millions events (1800 VMs in total). As shown in the figure, the
heuristic performs very well and we are able to calculate a robust
solution within 0.268 s for very large instance sizes.

6. Conclusions and future work

In this paper, we propose a fast three-phase heuristic to tackle the
problem of designing a power efficient Virtual Network Infrastructure
under uncertainty of resource demands. In the first phase, we solve the
problem of placing the VNF components on the servers in an energy
efficient way while at the same time minimizing the resulting traffic
matrix, without considering robustness. We propose both an exact
method and a fast heuristic based on clustering and greedy strategies.
The resulting initial placement is made robust in phase two by
exchanging VNFCs among servers in a specific way that protects the
servers from resource demand deviations of individual VNFCs, while at
the same time trying to power on the minimum amount of servers and
minimizing the total traffic matrix injected into the network. Finally, in
step three, we solve the latency and capacity constrained routing
problem to embed the service chain traffic into the substrate network.

We consider queueing induced latency which depends on the amount
of flows routed on a link.

Our approach can help a Telecom Operator in the planning decision
making by finding a balance between protection from demand un-
certainty of the VNFs and a higher cost in terms of additional energy
consumption required due to more servers and network elements
needed to protect from uncertainty. We show that our heuristic can
solve large instances and achieves reasonable results with respect to the
optimal solution. Our future work will consist in improving the
heuristic to reduce the gap from the optimal solution, also by
considering the integration of local search strategies such as greedy
randomized adaptive search (GRASP) into the algorithm. Another
important future step is to implement the fast heuristic into the
orchestrator of an ETSI MANO framework for NFV Orchestration.
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