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We provide an overview of the main results that we obtained studying uncertain
mixed integer linear programs when the uncertainty is represented through the new
multiband model [4]. Such model extends and refines the classical one proposed by
Bertsimas and Sim [2] and is particularly suitable in the common case of arbitrary
non-symmetric distributions of the uncertainty. Our investigations were inspired
by the practical needs of our industrial partners in the German research project
ROBUKOM [8].

1 Introduction

A central assumption in classical optimization is that all coefficients of the considered problem
are known exactly. However, many real-world problems involve uncertain data and neglecting
these uncertainties may have dramatic effects: optimal solutions may reveal to be of very bad
quality, and solutions supposed to be feasible may turn out to be infeasible.

Over the past few years, Robust Optimization (RO) has increasingly gained attention as
a valid methodology to tackle uncertainties affecting optimization problems. The key feature
of RO is to take into account uncertainty as hard constraints which restrict the feasible set,
thus maintaining only robust solutions, i.e. solutions protected from data deviations. For an
exhaustive introduction to the theory and applications of RO, we refer the reader to the recent
survey by Bertsimas et al. [1].

In this work, we focus on multiband uncertainty, a new approach to model uncertainty
that refines and generalizes the widely known Γ-scenario set (BS) of Bertsimas and Sim [2].
The uncertainty model BS assumes that, for each coefficient a of the problem, we know the
nominal value a as well as the maximum deviation d and that the actual value of a lies in
the symmetric interval [a− d, a+ d]. Moreover, a parameter Γ is introduced to represent the
maximum number of coefficients that deviate from their nominal value. This parameter is also
controls the conservativeness of the robust model. A central result of BS is that the robust
counterpart of an LP can be formulated as a compact linear problem. However, the use of a
single deviation band may greatly limit the power of modeling uncertainty, as noted even by



Sim and his colleagues in [7]. This is particularly evident in real-world problems, where it is
common to have asymmetric probability distributions for the deviations, that are additionally
defined over asymmetric intervals. In such cases, neglecting the inner-band behavior and just
considering the extreme values like in BS leads to a rough estimate of the deviations and
produce over-conservative robust solutions. Having a higher modeling resolution is therefore
highly desirable. This can be accomplished by a simple operation: breaking the single band of
BS into multiple narrower bands, each with its own Γ value, as we do in multiband uncertainty.

The idea of using multiple bands was originally proposed for portfolio optimization [3], but
this applied-oriented study was (surprisingly) not followed by a theoretical study. Our main
objective has thus been to close the knowledge gap about the use of multiband uncertainty in
RO.

For a comprehensive presentation of the results we refer the reader to [4, 5, 6]. In [4] we
have presented two of the fundamental results of the study, namely: 1) the robust counterpart
of a MILP can be formulated as a compact linear program; 2) the separation of robustness
cuts can be done by solving a min-cost flow problem. A refinement of the results is presented
in [5] and finally in [6] the study was extended by investigating special properties of uncertain
binary programs as well as the probability bounds of constraint violation.

We note that our results are not obtained by simply extending the proofs of [2] for single-band
uncertainty, but required alternative proof strategies.

2 Multiband uncertainty in Robust Optimization

We study the robust counterpart of the following Mixed-Integer Linear Program (MILP):

max
∑
j∈J

cj xj s.t.
∑
j∈J

aij xj ≤ bi , i ∈ I = {1, . . . ,m}, (1)

xj ≥ 0 , j ∈ J = {1, . . . , n}, xj ∈ Z+, j ∈ JZ ⊆ J . (2)

We assume that the value of each coefficient aij is uncertain and that the uncertainty is modeled
through what we call a multiband uncertainty set SM . Specifically, we assume that, for each
coefficient aij , we are given its nominal value aij and maximum negative and positive deviations

dK
−

ij , dK
+

ij from aij , such that the actual value aij lies in the interval [āij + dK
−

ij , āij + dK
+

ij ].
Moreover, we derive a generalization of the Bertsimas-Sim model by partitioning the single
deviation band [dK−

ij , dK+
ij ] of each coefficient aij into K bands, defined on the basis of K

deviation values: −∞ < dK
−

ij < · · · < d−2
ij < d−1

ij < d0ij = 0 < d1ij < d2ij < · · · < dK
+

ij < +∞.
Through these deviation values, we define: 1) a set of positive deviation bands, such that

each band k ∈ {1, . . . ,K+} corresponds to the range (dk−1
ij , dkij ]; 2) a set of negative deviation

bands, such that each band k ∈ {K− + 1, . . . ,−1, 0} corresponds to the range (dk−1
ij , dkij ] and

band k = K− corresponds to the single value dK
−

ij (the interval of each band but k = K− is
thus open on the left). With a slight abuse of notation, we denote a generic deviation band
by the index k, with k ∈ K = {K−, . . . ,−1, 0, 1, . . . ,K+} and the corresponding range by
(dk−1

ij , dkij ].
Additionally, for each band k ∈ K, we define a lower bound lk and an upper bound uk on

the number of deviations that may fall in k, with lk, uk ∈ Z satisfying 0 ≤ lk ≤ uk ≤ n. In the
case of band k = 0, we assume that u0 = n, i.e. we do not limit the number of coefficients that



take their nominal value. We also assume that
∑

k∈K lk ≤ n, so that there exists a feasible
realization of the coefficient matrix.

Consider a feasible solution x and a constraint i and denote by DEVi(x,SM ) the maximum
overall deviation allowed by the multiband uncertainty set SM , then the robust counterpart of
MILP can be defined by adding DEVi(x,SM ) to each constraint i ∈ I, namely

∑
j∈J aij xj +

DEVi(x,SM ) ≤ bi. Since DEVi(x,SM ) corresponds to a binary maximization program (see
[4] for details), the resulting robust counterpart is actually a (non-linear) max-max problem.
However, we prove that this problem can be reformulated as a compact and linear problem.
For lack of space in the present extended abstract, we state only informally the main results
of our investigations. We refer the reader to [4, 5, 6] for the formal complete statements and
proofs of the presented theorems.

Theorem 2.1. The robust counterpart of a MILP under the multiband uncertainty set is
equivalent to a compact MILP, which includes K ·m+ n ·m additional variables and K · n ·m
additional constraints.

As an alternative to the direct solution of the compact and linear robust counterpart, we
have also investigated the possibility of adopting a cutting-plane approach. Given a solution
to MILP, we want to test if the solution is robust feasible. If not, we separate a cut that
imposes robustness (robustness cut), we add it to the problem and we solve again the problem
including the new cut. This basic step can be iterated as in a typical cutting-plane method
until a robust feasible solution is found. In the case of the Bertsimas-Sim model, the problem
of separating a robustness cut for a given constraint is very simple and essentially consists in
sorting the deviations in increasing order and choose the worst Γ > 0. In the case of multiband
uncertainty, this simple approach does not guarantee the robustness of a computed solution.
However, we prove the following result:

Theorem 2.2. The separation of a robustness cut for a constraint of a MILP can be done in
polynomial time by solving a min-cost flow problem.

We refer again the reader to [4, 5, 6] for the formal statement and the detailed description of
how we build the min-cost flow instance and structure the corresponding proof.

2.1 Binary Programs with cost uncertainty

In the case of pure binary programs where the uncertainty only affects the objective function,
the results presented above can be refined. To this end, consider the following Binary Program
(BP):

min
∑
j∈J

cj xj (BP )

x ∈ X ⊆ {0, 1}n

with non-negative cost vector, i.e. cj ≥ 0, for all j ∈ J = {1, . . . , n}. Relevant problems such
as the minimum spanning tree problem, the maximum weighted matching problem and the
shortest path problem belong to this class of problems.

We have studied the robust version of the previous problem when only the cost coefficients
are uncertain and uncertainty is modeled through a multiband set. More formally, for each
element j ∈ J , we are given the nominal cost c̄j and a sequence of K+ + 1 deviation values



dkj , with k ∈ K = {0, . . . ,K+}, such that 0 = d0j < d1j < . . . < dK+
j < ∞ (note that in

contrast to the previous section we consider only positive deviations). Through these values,
we define: 1) the zero-deviation band corresponding to the single value d0j = 0; 2) a set K+ of

positive deviation bands, such that each band k ∈ K\{0} corresponds to the range (dk−1
j , dkj ].

Furthermore, integer values lk, uk ∈ Z, with 0 ≤ lk ≤ uk ≤ n, represent the lower and upper
bounds on the number of deviations falling in each band k ∈ K.

Since BP is a special case of MILP, we can solve it by referring to its compact robust
counterpart or by adopting a cutting-plane algorithm based on the separation of robustness
cuts, as shown above. However, as an alternative to these two approaches, we have proved the
following result:

Theorem 2.3. The robust optimal solution of a Binary Program with cost uncertainty modeled
through a multiband set can be computed by solving a polynomial number of nominal problems
BP with modified objective function, if the number of bands is constant. Tractability and
approximability of BP are maintained.

We refer the reader to [6] for the formal statement of the result. Our study has been completed
by computational experiments on realistic network instances, defined in collaboration with our
industrial partners in past and ongoing research projects. In particular, the experiments have
highlighted a reduction in the price of robustness, thanks to the refined representation of the
uncertainty obtained through the multiband model.
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