Robust Optimization under multi-band uncertainty

m

RWTHAACHEN UNIVERSITY

Christina Büsing

Classical Optimization

(NOMINAL PROBLEM)
$\forall i \in I$
$\forall j \in J$
$\forall j \in J_{\mathbb{Z}} \subseteq J$

Theoretical

assumption: all the coefficients a_{ij} are known exactly.

However, many real problems involve uncertain coefficients.

Consequences of neglecting uncertainty:

- optimal solutions may heavily lose in quality;
- feasible solutions may become infeasible.

Single-band uncertainty

The classical uncertainty model by Bertsimas and Sim (2004).

Main assumptions:

- $\textbf{\textbf{4}}$ single symmetric deviation band $a_{ij} \in [ar{a}_{ij} d_{ij}^{\max}, ar{a}_{ij} + d_{ij}^{\max}]$
- upper bound on the number of coefficients deviating from the nominal value in each constraint (i.e., $a_{ij} \neq \bar{a}_{ij}$)

Strongpoint:

Iinear and compact Robust Counterpart;

Drawback:

- the behaviour of uncertainty inside the band is completely neglected
 - ⇒ POOR MODELING OF ARBITRARY NON-SYMMETRIC DEVIATION BEHAVIOUR (common case in real problems)

Fabio D'Andreagiovanni

Robust Optimization

Inclusion of coefficient uncertainty in the problem through stricter constraints that protect against coefficient deviations.

$\max \sum_{j \in J} c_j x_j$		ROBUST COUNTERPART general form
$\sum_{j \in J} \bar{a}_{ij} x_j + DEV(x, D)$	$b) \leq b_i$	$\forall i \in I$
x	$j \ge 0$	$\forall j \in J$
x	$j \in \mathbb{Z}_+$	$\forall j \in J_{\mathbb{Z}} \subseteq J$

- $\mathbf{4} \ \bar{a}_{ij}$ = known nominal value of the uncertain coefficient a_{ij}
- \downarrow DEV(x, D) = worst deviation allowed by the uncertainty set D for a solution x

Multi-band uncertainty

Generalization of the Bertsimas-Sim model that breaks the single deviation band into multiple bands.

Main assumptions:

- \clubsuit multiple non-symmetric deviation bands $\, d^k_{ij} \in (\, d^{k-1}_{ij}, \, d^k_{ij} \,];$
- 🖊 lower and upper bounds on the number of coefficients deviating from the nominal value in each constraint.

Strongpoints:

- linear and compact Robust Counterpart;
- efficient separation of cuts imposing robustness (based on solving a min-cost flow problem;
- high modeling power of arbitrary deviation distributions (in particular deviation histograms built on historical data)

Project ROBUKOM

All the proposed developments about multi-band uncertainty are produced within ROBUKOM, a research project that aims for developing new models and algorithms for the design of robust telecommunication networks. The Project Partners of ZIB in ROBUKOM are:

TECHNISCHE UNIVERSITÄT CHEMNITZ

ID Bildung and Forschurg

Nokia Siemens Networks

ROBUKOM is supported by the German Federal Ministry for Education and Research (BMBF)

Essential references

D. Bertsimas, M. Sim, The Price of Robustness, Operations Research 51 (1), 35-53 (2004)

A. Bley, F. D'Andreagiovanni, A. Hanemann, Robustness in Communications Networks, Proc. ITG Optical Networks 2011, 1-8 (2011)

C. Büsing, F. D'Andreagiovanni, New results about multi-band uncertainty in Robust Optimization, Proc. SEA 2012, 63-74 (2012)