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Abstract The Wireless Network Design Problem (WND) consists in choosing val-
ues of radio-electrical parameters of transmitters of a wireless network, to maximize
network coverage. We present a pure 0-1 Linear Programming formulation for the
WND that may contain an exponential number of constraints. Violated inequalities
of this formulation are hard to separate both theoretically and in practice. However,
a relevant subset of such inequalities can be separated more efficiently in practice
and can be used to strengthen classical MILP formulations for the WND. Prelimi-
nary computational experience confirms the effectiveness of our new technique both
in terms of quality of solutions found and provided bounds.

1 Introduction

Wireless networks have shown a rapid growth over the past two decades and now
play a key role in new generation telecommunications networks. Scarce radio re-
sources, such as frequencies, have rapidly became congested and the need for more
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effective design methods arose. A general planning problem consists in establishing
the radio-electrical parameters (e.g., power emission and frequency) of the trans-
mitters of a wireless network so as to maximize the overall network coverage. To
present our original contribution, in this paper we focus only on establishing power
emissions. This is actually a basic problem in all wireless planning contexts that can
be easily extended by introducing additional elements, such as frequencies [4, 5].

For our purposes, a wireless network can be described as a set of transmitters B
distributing a telecommunication service to a set of receivers T . Each transmitter
b ∈ B emits a radio signal with power pb ∈ [0,Pmax]. The power pb(t) that receiver t
gets from transmitter b is proportional to the emitted power pb by a factor atb ∈ [0,1],
i.e. pb(t) = atb · pb, commonly called fading coefficient. Among the signals received
from transmitters in B, receiver t can select a reference signal (or server), which is
the one carrying the service. All the other signals are interfering.

A receiver t is regarded as served by the network, specifically by server β ∈ B,
if the ratio of the serving power to the sum of the interfering powers (signal-to-
interference ratio or SIR) is above a threshold δ [11], (SIR threshold), whose value
depends on the technology and the desired quality of service:

atβ · pβ

µ +∑b∈B\{β} atb · pb
≥ δ (1)

where the system noise µ > 0 is assimilated to an interfering signal with fixed (very
low) power emission.

For every t ∈ T , we have one inequality of type (1) for each potential server β ∈
B: in particular, we denote by SIR(t,b) the inequality (1) associated with receiver t
and server b. Receiver t is served if at least one of these inequalities is satisfied or,
equivalently, if the following disjunctive constraint is satisfied:

∨

β∈B

(
atβ · pβ −δ · ∑

b∈B\{β}
atb · pb ≥ δ ·µ

)
(2)

Each linear inequality of the above disjunction is obtained by simple algebra from
the SIR expression (1).

If each receiver t ∈ T is associated to a value rt > 0 that expresses revenue ob-
tained by serving t, the Wireless Network Design Problem (WND) consists in setting
the power emission of each transmitter b∈ B and the server of each receiver in t ∈ T
with the aim of maximizing the overall revenue of served receivers.

2 A pure 0-1 Linear Programming formulation for the WND

The WND is often approached by solving a suitable Mixed-Integer Linear Program
(MILP): first, a binary variable xtb is introduced for every t ∈ T , b ∈ B, with xtb = 1
if and only if b serves t; then, variables xtb are used to replace each disjunction (2)
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with a set of |B| linear constraint, that, however, include large positive constants,
the notorious big-M coefficients [5, 7]. The (linear) objective function aims to max-
imize the overall revenue from coverage, i.e. max∑t∈T ∑b∈B rt · xtb and requires the
additional constraints:

∑
b∈B

xtb ≤ 1 t ∈ T (3)

to ensure that each receiver is associated to at most one server. A vector x ∈
{0,1}T×B satisfying (3) is a server assignment.

The resulting MILP presents severe drawbacks, highlighted in several works, e.g.
[5, 7, 8]. First, the coefficients in the SIR inequalities may vary over a very wide
range, with differences up to 1012 or even larger. This makes the constraint matrix
very ill-conditioned and the solutions returned by solvers are often inaccurate and
may contain errors. Also, the presence of big-M terms results in weak bounds thus
leading to very large search trees. To tackle these problems a number of different ap-
proaches were recently proposed. For a comprehensive introduction to these related
works, we refer the reader to [4, 5, 7].

In this paper, we propose an alternative pure 0-1 Linear Programming formula-
tion for the WND, whose defining inequalities are linear constraints in the assign-
ment variables xtb. Such inequalities are thus valid for all the formulations that are
derived from the previously introduced MILPs and can be included to strengthen
them.

Let now x̃ ∈ {0,1}T×B be a server assignment and let Σ denote the set of all the
SIR inequalities SIR(t,b) and the lower and upper bounds constraints 0≤ pb ≤ Pmax
on power emissions. With x̃ we associate the subsystem I(x̃) of SIR inequalities (1)
whose corresponding variables x̃tb are activated, i.e:

I(x̃) = {SIR(t,b) ∈ Σ : x̃tb = 1}

It is easy to check if I(x̃), extended with lower and upper bounds on the variables
pb, is feasible. If this is the case, all of the assigned testpoints can actually be served
by the network, and we say that x is a feasible server assignment.

At this point, we can restate the WND as the problem of finding a feasible server
assignment that maximizes the revenue function. To this aim, a simple characteriza-
tion of all the feasible server assignments goes as follows. Denote by IS the set of
subsystems I(x) such that x is not feasible. Then x̃ ∈ {0,1}T×B is a feasible server
assignment if and only if x̃ satisfies the following system of linear inequalities:

∑
(t,b)∈I

x̃tb ≤ |I|−1 ∀ I ∈ IS (4)

The above system is in general very large and the inequalities must be generated
dynamically. Unfortunately, the separation of violated inequalities (4) is hard, both
theoretically and in practice [2, 10]. Moreover, it may entail some of the numerical
difficulties associate with the MILP formulations for the WND. Still, a relevant
subset of these inequalities can be separated more effectively, as we describe next.
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To this end, we proceed in a similar way to [8]. Namely, we generate a new
system Σ ′ obtained from Σ by substituting each (1) with the system:

atβ · pβ

atb · pb
≥ δ ∀ b ∈ B\{β} (5)

where, to simplify the notation, we assume that B also contains the noise µ as a
fictitious transmitter with fixed power emission. It is not difficult to see that Σ ′ is a
relaxation of Σ and every infeasible subsystem of Σ ′ corresponds to an infeasible
subsystem of Σ . Basically, this relaxation corresponds to considering a receiver as
served if the power emission of its server suffices to contrast each interferer individ-
ually and the thermal noise. Or, alternatively, if its best server is “stronger” than its
strongest interferer. In [8] the authors show that, in most cases of practical interest,
this is indeed a good approximation of the original SIR constraint.

By assuming pb ∈ [ε,Pb], with ε > 0 very small, and by taking the logarithm2 of
both left and right hand side multiplied by 10, the system Σ ′ can be rewritten as:

qb−qβ ≤ wt
βb t ∈ T,β ∈ B,b ∈ B\{β} (6)

where qb = 10log10 pb for all b ∈ B and wt
βb = d10(log10 atβ − log10 atb− log10 δ )e,

extended with the lower and upper bounds 10log10 ε ≤ qb≤ 10log10 Pb, for all b∈B.
In this way, the system Σ ′ is transformed into a system of difference inequalities

(lower and upper bounds can be easily represented in this form as well), where
each constraint (6) is associated with a server β and a receiver t and thus with an
assignment variable xtβ .

Now, given a generic system of difference constraints Σ d :

(i) tv− tu ≤ luv, (u,v) ∈ A (7)

where t ∈ IRA and l ∈ ZA, we can consider the associated weighted directed graph
G = (V,A), with weight function l. Then, it is well known that every infeasible
subsystem of (7) contains (the constraints corresponding to) the arcs of a negative
directed cycle of G [9]. Also, denoting by x ∈ {0,1}A the incidence vector of (the
arcs corresponding to) a feasible subsystem of Σ d , then x is the set of solutions to:

(i) ∑uv∈C xuv ≤ |C|−1, C ∈ C−

x ∈ {0,1}A
(8)

where C− is the set of negative directed cycles of G.
In [6] we develop an exact approach to the separation of violated inequalities

(8.i). The resulting algorithm can be used to separate the violated inequalities as-
sociated with the system (6) (including upper and lower bounds on the q variables
expressed as difference inequalities) which correspond to negative directed cycles
in the associated directed graph. One of these cycles C corresponds to a subset of

2 This corresponds to rewriting all quantities in dB format.
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constraints of (6) associated with the pairs IC = {(β1, t1), . . . ,(βm, tm)}⊆B×T (plus
possibly some lower and upper bound constraints).

One can show that β1 6= β2 6= . . . 6= βm and t1 6= t2 6= . . . 6= tm and the valid con-
straint:

∑
(t,b)∈IC

xtb ≤ |IC|−1 (9)

may be added to the formulation. In our preliminary results, however, we limit to
consider cycle inequalities with |C|= 2 and separate them by enumeration.

3 Preliminary Computational Results

We test the performance of our new approach to WND on a set of 15 realistic in-
stances, developed with the Technical Strategy & Innovations Unit of British Tele-
com Italia (BT Italia SpA). All the instances refer to a Fixed WiMAX Network [1],
deployable in an urban residential area and consider various scenarios with up to
|T |= 529 receivers, |B|= 36 transmitters, |F |= 3 frequencies, |H|= 4 burst profiles
(see Table 1). We remark that the experiments refer to a formulation that extends the
basic one considered in Section 1, by including frequency channels and modulation
schemes as additional decision variables. Such formulation is denoted by (BM) and
captures specific features of so-called Next Generation Networks like WiMAX [1].
For a detailed description of (BM), we refer the reader to [3].

For each instance, we present preliminary computational results obtained by
solving the big-M formulation (BM) and its corresponding Power-Indexed formu-
lation (PI) [5]. We consider (BM) and (PI) formulations with and without the valid
inequalities (8) obtained for |C|= 2. Formulations strengthened through (8) are dis-
tinguished by adding S-, i.e. (S-BM) and (S-PI).

Experiments are run by imposing a time limit of 1 hour and by using a machine
with a 1.80 GHz Intel Core 2 Duo processor and 2 GB of RAM. Table 1 reports the
performance of the four considered formulations over the set of WiMAX instances.
We solve (BM) and (S-BM) by direct application of IBM ILOG Cplex 11.1 and we
report i) the upper bound UB0 obtained at node 0 of the branch-and-bound tree, ii)
the value |T ∗| of the best solution found within the time limit and iii) the final inte-
grality gap gap%. The presence of two values in some lines of the column |T ∗| of
(BM) indicates that the coverage plans returned by Cplex contain errors and some
receivers are actually not covered. We instead solve (PI) and (S-PI) by the incre-
mental algorithm WPLAN described in [5] and we report i) the upper bound UB0
obtained at node 0 when considering the basic set of power levels, and ii) the value
|T ∗| of the best solution found by WPLAN within the time limit.

By adding the new valid inequalities (8) for |C| = 2, in most cases stronger
bounds are obtained at node 0 and smaller integrality gaps are reached within the
time limit. In particular, the benefits are particularly evident in the case of the big-M
formulation: in three cases, namely I6, I12, I15, the value of the best solution is
increased, even eliminating coverage errors (I6, I15).
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Table 1 Comparisons between (BM) and (PI) with and without valid inequalities (8)

(BM) (S-BM) (PI) (S-PI)
ID |T| |B| |F| |H|

UB0 |T ∗| gap% UB0 |T ∗| gap% UB0 |T ∗| UB0 |T ∗|
I1 100 12 1 1 98.36 66 (70) 29.43 96.78 66 (70) 27.68 90.77 75 90.23 75
I2 169 12 1 1 165.47 97 59.81 163.15 97 57.39 153.12 101 152.37 101
I3 196 12 1 1 193.61 102 (105) 77.87 192.02 102 (105) 75.11 179.35 108 177.92 108
I4 225 12 1 1 219.76 92 81.13 218.36 92 79.36 202.44 92 201.54 92
I5 289 12 1 1 287.20 76 (77) 195.44 287.20 76 (77) 194.92 274.62 85 274.13 85
I6 361 12 1 1 352.01 126 (132) 154.87 350.43 140 138.76 337.22 156 336.46 156
I7 400 18 1 1 397.21 166 132.01 396.79 166 131.32 386.07 184 384.95 184
I8 400 18 3 4 400.00 356 12.36 400.00 356 12.36 396.53 372 395.80 372
I9 441 18 3 4 441.00 266 (270) 63.33 441.00 266 (270) 63.33 438.28 295 437.52 295

I10 484 27 3 4 484.00 120 (122) 296.72 484.00 120 (122) 296.72 479.10 242 478.68 242
I11 529 27 3 4 529.00 77 587 529.00 77 587 523.15 168 521.76 168
I12 400 36 1 4 398.04 72 (74) 287.30 396.93 77 (78) 264.85 389.61 102 389.14 102
I13 441 36 1 4 433.21 184 131.03 431.42 184 129.77 414.93 194 413.78 194
I14 484 36 1 4 482.78 209 108.31 481.66 209 107.56 472.44 251 471.58 251
I15 529 36 1 4 517.89 98 (105) 226.44 516.14 114 198.57 503.32 232 502.67 232
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