Rakotomamonjy, A. and Bach, F. and Canu, S. and Grandvalet, Y.
Bibtex
SimpleMKL
[pdf]
Journal of Machine Learning Research, vol. 9, pp. 2491-2521, 2008
Rakotomamonjy, A. and Bach, F.R. and Canu, S. and Grandvalet, Y.
Bibtex
More Efficiency in Multiple Kernel Learning
[pdf]
Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), ed.: Ghahramani Z., pp. 775-782, 2007
Szafranski, M. and Grandvalet, Y. and Rakotomamonjy, A.
Bibtex
Composite Kernel Learning
[pdf]
International Conference on Machine Learning (ICML 2008), pp. 1040-1047, july, 2008
Szafranski, M. and Grandvalet, Y. and Morizet-Mahoudeaux, P.
Bibtex
Hierarchical Penalization
[pdf]
Advances in Neural Information Processing Systems 20 (NIPS 2007), pp. 1457-1464, MIT press, 2008
Avalos, M. and Grandvalet, Y. and Ambroise, C.
Bibtex
Parsimonious Additive Models
[pdf]
Computational Statistics and Data Analysis, vol. 51, num. 6, pp. 2851-2870, 2007
Grandvalet, Y. and Canu, S.
Bibtex
Adaptive Scaling for Feature Selection in SVMs
[pdf]
Advances in Neural Information Processing Systems 15 (NIPS 2002), pp. 569-576, MIT press, 2003 [ps.gz]
Grandvalet, Y. and Canu, S.
Bibtex
Outcomes of the equivalence of adaptive ridge with least absolute shrinkage
[pdf]
Advances in Neural Information Processing Systems 11 (NIPS 1998), pp. 445-451, MIT press, 1999 [ps.gz]
Grandvalet, Y.
Bibtex
Least absolute shrinkage is equivalent to quadratic penalization
[pdf]
ICANN'98, Perspectives in Neural Computing, pp. 201-206, Springer, 1998 [ps.gz]
Matlab function for doing adaptive ridge regression or lasso
Matlab code