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ECM: An evidential version of the fuzzy

c-means algorithm

Marie-Hélène Masson ∗ T. Denœux

UMR CNRS 6599 Heudiasyc, Université de Technologie de Compiègne BP 20529

- F-60205 Compiègne cedex - France

Abstract

A new clustering method for object data, called ECM (Evidential c-means) is intro-
duced, in the theoretical framework of belief functions. It is based on the concept of
credal partition, extending those of hard, fuzzy and possibilistic ones. To derive such
a structure, a suitable objective function is minimized using a FCM-like algorithm.
A validity index allowing the determination of the proper number of clusters is also
proposed. Experiments with synthetic and real data sets show that the proposed
algorithm can be considered as a promising tool in the field of exploratory statistics.

Key words: Clustering, unsupervised learning, Dempster-Shafer theory, evidence
theory, belief functions, cluster validity, robustness

1 Introduction

Cluster analysis is an exploratory data analysis tool which aims at grouping

a set of n objects into c clusters ω1, ..., ωc whose members are similar in some

way. To measure their similarity, the objects are either described by object data

or relational data. Object data give an explicit description of the objects using

p numeric attributes. Relational data arise from direct pairwise measurement

of similarities or dissimilarities between the objects. A wide variety of methods
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for clustering object and relational data have been developed. They can be

broadly classified into two main families : hierarchical and hard or fuzzy par-

titioning methods. Hierarchical (divisive or agglomerative) methods provide

a description of the data in the form of a sequence of nested clusters. Using

hard partitioning methods, objects are grouped in an exclusive way, so that

if a certain object belongs to a cluster then it cannot be included in another

cluster. On the contrary, with fuzzy partitioning, each object may belong to

two or more clusters with different degrees of membership. The most popu-

lar fuzzy partitioning method is Bezdek’s Fuzzy C-means (FCM) algorithm

[4] for object data (an extension of the fuzzy ISODATA algorithm proposed

by Dunn [16]) and its relational counterpart, the so-called relational fuzzy

c-means (RFCM) [18] .

By minimizing a suitable objective function, these algorithms compute a fuzzy

partition matrix (also called a probabilistic fuzzy partition), i.e. a matrix U =

(uik) of size n× c such that

c∑
k=1

uik = 1 ∀ i ∈ {1, . . . , n} (1)

and

n∑
i=1

uik > 0 ∀ k ∈ {1, . . . , c} . (2)

Each number uik ∈ [0, 1] is interpreted as a degree of membership of object i to

cluster k. Several authors, having observed counterintuitive results and a poor

robustness against noise and outliers, have proposed to relax the normalization
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constraint defined by equation (1). The resulting partition is referred to as

a possibilistic partition. For instance, Krishnapuram and Keller introduced

the possibilistic (PCM) clustering algorithm [21] by modifiying the objective

function to be minimized. The membership uik obtained by PCM is interpreted

as a typicality degree or a possibility degree (in the sense of possibility theory

[15]) that object i belongs to cluster k. Using a different approach, Davé [9]

proposed to add a noise cluster, grouping objects badly represented by the

clusters. Initially developed for object data, these algorithms have also been

extended to handle relational data [19,27,11].

Recently, a new concept of partition, the credal partition, based on the belief

functions theory, has been introduced in [13,12]. A credal partition extends

the existing concepts of hard, fuzzy (probabilistic) and possibilistic partition

by allocating, for each object, a “mass of belief”, not only to single clusters,

but also to any subsets of Ω = {ω1, ..., ωc}. Experiments have shown that this

additional flexibility allows to gain a deeper insight in the data and to im-

prove robustness with respect to outliers. An algorithm to derive the partition

from relational data, called EVCLUS (EVidential CLUStering), has been de-

veloped. In this paper, we address the problem of computing a credal partition

from object data and we propose a new algorithm, called ECM (Evidential

c-Means), inspired from FCM and from Davé’s Noise-Clustering algorithm.

The rest of the paper is organized as follows. Section 2 recalls the necessary

background about belief functions and the main fuzzy partitioning algorithms
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from which ECM is derived. Section 3 recalls the definition of a credal partition

and explains how to compute such a partition from data. The interpretation of

a credal partition and the determination of the number of clusters are discussed

and illustrated using synthetic and real data sets in Section 4. An analysis of

the complexity of the method and some guideline for choosing the parameters

of the method are also presented. Section 5 presents an application of the

method to the segmentation of medical images. Finally, Section 6 concludes

the paper.

2 Background

2.1 Belief functions

The Dempster-Shafer theory of evidence (or belief functions theory), like prob-

ability or possibility theories, is a theoretical framework for reasoning with

partial and unreliable information. It encompasses different models of reason-

ing under uncertainty including Smets’s Transferable Belief Model [31]. In this

section, only the main concepts of this theory are recalled. A more complete

description can be found in Shafer’s book [28].

Let us consider a variable ω taking values in a finite set Ω called the frame of

discernment. Partial knowledge regarding the actual value taken by ω can be

represented by a basic belief assignment (bba) [28,30], defined as a function m
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from 2Ω to [0, 1], verifying:

∑
A⊆Ω

m(A) = 1. (3)

The subsets A of Ω such that m(A) > 0 are the focal sets of m. Each focal set

A is a set of possible values for ω, and the number m(A) can be interpreted

as a fraction of a unit mass of belief, which is allocated to A on the basis

of a given evidential corpus. Complete ignorance corresponds to m(Ω) = 1,

whereas perfect knowledge of the value of ω is represented by the allocation of

the whole mass of belief to a unique singleton of Ω (m is then called a certain

bba). When all focal sets of m are singletons, m is equivalent to a probability

function, and is called a Bayesian bba.

A bba m such that m(∅) = 0 is said to be normal. This condition was originally

imposed by Shafer [28], but it may be relaxed if one accepts the open-world

assumption stating that the set Ω might not be complete, and ω might take

its value outside Ω [29]. The quantity m(∅) is then interpreted as a mass of

belief given to the hypothesis that ω might not lie in Ω.

A bba m can be equivalently represented by a plausibility function pl : 2Ω �→

[0, 1], defined as

pl(A) �
∑

B∩A �=∅

m(B) ∀A ⊆ Ω . (4)

The plausibility pl(A) represents potential amount of support given to A. It

is important to note that pl boils down to a probability measure when m is a

Bayesian bba and to a possibility measure when the focal elements are nested.
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Probability and possibility measures are thus recovered as special cases of

belief functions.

If two bbas m1 and m2 representing distinct items of evidence concerning the

value of ω are available, the standard way of combining them is through the

conjunctive sum operation ∩© [29] defined as:

(m1 ∩©m2)(A) �
∑

B∩C=A

m1(B)m2(C) , ∀A ⊆ Ω. (5)

If necessary, the normality condition m(∅) = 0 may be recovered by dividing

each mass (m1 ∩©m2)(A) by 1 − K with K = (m1 ∩©m2)(∅). The resulting

operation is noted ⊕ and is called Dempster’s rule of combination [28]:

(m1 ⊕m2)(A) �
1

1−K

∑
B∩C=A

m1(B)m2(C), ∀A ⊆ Ω, A 
= ∅ . (6)

The available evidence being modeled in the form of a basic belief assignment,

it is often desirable or necessary to make a decision regarding the selection of

one single hypothesis in Ω. In this case, a first solution consists in choosing

the singleton in Ω with the highest plausibility [8]. Alternatively, Smets [30]

has proposed and justified the use of a probability function. He has shown

that the only transformation of a belief function into a probability function

satisfying elementary rationality requirements is the pignistic transformation,

in which each mass of belief m(A) is equally distributed among the elements

of A [32]. This leads to the concept of pignistic probability, BetP, defined, for
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a normal bba, by:

BetP(ω) �
∑
ω∈A

m(A)

|A|
∀ω ∈ Ω, (7)

where |A| denotes the cardinality of A ⊆ Ω. If the bba is subnormal (m(∅) 
=

0), then a preliminary normalization step has to be performed. Two methods

may apply: Dempster’s normalization that consists in dividing all the masses

given to nonempty sets by m(∅), and Yager’s normalization in which the mass

m(∅) is transferred to m(Ω) [34].

2.2 Fuzzy and possibilistic c-means

Let {x1, ...,xn} be a collection of vectors in R
p describing the n objects. Let c

(2 ≤ c < n) be the desired number of classes. Each cluster is represented by a

prototype or a center vk ∈ R
p. Let V denotes a matrix of size (c×p) composed

of the coordinates of the cluster centers such that Vkq is the qth component

of the cluster center vk. FCM looks for a partition matrix U = (uik) of size

(n× c) and for the matrix V by minimizing the following objective function:

JFCM(U, V ) �

n∑
i=1

c∑
j=1

uβ
ijd

2
ij , (8)

subject to the constraints (1) and (2). In the objective function (8), β > 1 is a

weighting exponent that controls the fuzziness of the partition and dij denotes

the Euclidean distance between xi and the cluster center vj . The objective

function is minimized using an iterative algorithm, which alternatively opti-

mizes the cluster centers and the membership degrees. The update formulas
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are obtained by introducing a Lagrange multiplier with respect to constraint

(1) and setting the partial derivatives of the Lagrangian with respect to the

parameters to zero [4]. They are given by:

vk =

∑n
i=1 uβ

ikxi∑n
i=1 uβ

ik

∀k = 1, c, (9)

uij =
d
−2/(β−1)
ij∑c

k=1 d
−2/(β−1)
ik

. (10)

The algorithm starts from an initial guess for either the partitioning matrix or

the cluster centers and iterates until convergence. Convergence is guaranteed

but it may lead a local minimum [4].

As it is pointed out, for instance, in [21] or [14], the probabilistic constraint (1)

is responsible for undesirable effects, among which the inability to detect noisy

data or outliers. In fact, from (10), it can be easily seen that the membership of

an object i to cluster j depends not only on dij but also on its distances to all

other clusters. In the possibilistic version of the c-means algorithm introduced

by Krishapuram and Keller [21], the probabilistic constraint is dropped and,

to avoid the trivial solution uij = 0 for all i and j, a penalty term is added to

the objective function:

JPCM(U, V ) �

n∑
i=1

c∑
j=1

uβ
ijd

2
ij +

c∑
j=1

ηj

n∑
i=1

(1− uij)
β , (11)

where the ηi are fixed, user-specified positive weights, balancing the opposite

effects of the two terms in JPCM. An alternating optimization procedure, similar

to FCM, can also be derived from the usual first order necessary conditions
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for U and V . The update equation for the membership degree is given by

uij =
1

1 +
(
d2

ij/ηi

)1/(β−1)
, (12)

whereas the update formula for the centers remains the same than in FCM.

Equation (12) shows that the membership degree of an object i to a cluster

j depends only on its distance to this cluster, reflecting thereby a typicality

degree instead of a relative membership. This property enables the algorithm

to detect atypical data. Several authors, however, have underlined the fact

that the independent treatment of the clusters may lead sometimes to unsat-

isfactory results [2,22]. In fact, PCM exhibits a tendency to produce clusters

closer to each other than FCM does. For example, a group of objects can

be represented by two or more clusters in the possibilistic model, while some

other objects exhibiting a cluster structure are not covered by clusters in the

model.

An alternative approach has been proposed by Davé [9] with the “noise-

clustering” algorithm (NC). It consists in adding to the c initial clusters a

“noise” cluster, associated to a fixed distance δ to all objects. The parameter

δ controls the amount of data considered as outliers. The membership ui∗ of

an object i to the noise cluster is given by:

ui∗ = 1−
c∑

k=1

uik, (13)

relaxing implicitly the probabilistic constraint for the c real clusters. The ob-
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jective function to be minimized can be written as:

JNC(U, V ) �

n∑
i=1

c∑
j=1

uβ
ijd

2
ij +

c∑
i=n

δ2

⎛
⎝1−

c∑
j=1

uij

⎞
⎠

β

. (14)

The algorithm is similar to FCM and PCM with the following updating equa-

tion for the membership degrees:

uij =
d
−2/(β−1)
ij∑c

k=1 d
−2/(β−1)
ik + δ−2/(β−1)

. (15)

Note that, as suggested by Davé, the squared value of parameter δ may be

fixed as a proportion of the mean of the squared distances between points and

cluster centers, after a first run of the algorithm without outlier rejection:

δ2 = λ
1

c · n

⎛
⎝ n∑

i=1

c∑
j=1

d2
ij

⎞
⎠ , (16)

where λ is a user-defined parameter determining the proportion.

These three algorithms have inspired the clustering method presented in the

next section. The proposed approach is developed within the framework of

belief functions theory and is based on the concept of credal partition.

3 Evidential c-means

3.1 Credal partition

In [13,12,24], it was proposed to represent partial knowledge regarding the

class membership of an object i by a bba mi on the set Ω = {ω1, ..., ωc}. This

representation makes it possible to model all situations ranging from complete
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ignorance to full certainty concerning the class of i.

Example. Let us consider a collection of n = 5 objects and c = 3 classes.

Bbas for each object are given in Table 1. They illustrate various situations:

the class of object 2 is known with certainty, whereas the class of object 5 is

completely unknown; the cases of objects 3 and 4 correspond to situations of

partial knowledge (m4 is Bayesian); finally, the mass m1(∅) = 1 indicates a

strong evidence that the class of object 1 does not lie in Ω.

INSERT TABLE I

A credal partition is defined as the n-tuple M = (m1, . . . , mn). It can be seen

as a general model of partitioning:

• when each mi is a certain bba, then M defines a conventional, crisp partition

of the set of objects; this corresponds to a situation of complete knowledge;

• when each mi is a Bayesian bba, then M specifies a fuzzy partition, as

defined by Bezdek [5];

• when the focal elements of all bbas are restricted to be singletons of Ω or

the empty set, a partition similar to the one of Davé is recovered.

Note that a credal partition can be converted into a fuzzy or a possibilistic

one, as will be shown in Section 4.

A credal partition M = (m1, . . . , mn) is of size c if:

11
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• each bba mi, i = 1, . . . , n is defined on a frame Ω of c elements, and

• each class has a strictly positive degree of plausibility for at least one object,

i.e., for all ω ∈ Ω, we have pli({ω}) > 0 for some i ∈ {1, . . . , n}, pli being

the plausibility function associated to mi. Note that this condition is the

equivalent of (2) in the definition of a fuzzy c-partition.

3.2 Deriving a credal partition from object data: objective function

Deriving a credal partition from object data implies determining, for each

object i, the quantities mij = mi(Aj) (Aj 
= ∅, Aj ⊆ Ω) in such a way that mij

is low (resp. high) when the distance dij between i and the focal set Aj is high

(resp. low). The distance between an object and any non empty subset of Ω

has thus to be defined. Like in fuzzy clustering, we assume that each class ωk

is represented by a center vk ∈ R
p. We propose to associate to each subset Aj

of Ω the barycenter v̄j of the centers associated to the classes composing Aj .

More precisely, introducing the notation

skj =

⎧⎨
⎩1 if ωk ∈ Aj

0 else
, (17)

we compute the barycenter v̄j associated to Aj by:

v̄j =
1

cj

c∑
k=1

skjvk, (18)

where cj = |Aj | denotes the cardinal of Aj . The distance dij is then defined

by:

d2
ij � ||xi − v̄j ||

2. (19)
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According to the interpretation of a credal partition explained in the previous

section, a separate treatment of the empty set is proposed. This particular

focal element is in fact assimilated to a noise cluster, allowing to detect atypical

data. Thus, we introduce in the objective function an additional term similar

to that in (14) depending on a fixed distance δ between all objects and the

empty set.

Finally, we propose to look for the credal partition M = (m1, . . . , mn) ∈ R
n×2c

and the matrix V of size (c × p) of cluster centers minimizing the following

objective function:

JECM(M, V ) �

n∑
i=1

∑
{j/Aj �=∅,Aj⊆Ω}

cα
j mβ

ijd
2
ij +

n∑
i=1

δ2mβ
i∅, (20)

subject to

∑
{j/Aj⊆Ω,Aj �=∅}

mij + mi∅ = 1 ∀i = 1, n, (21)

where mi∅ denotes mi(∅). The criterion JECM is similar to JNC except that an

additional weighting coefficient (cα
j ) is introduced: it aims at penalizing the

subsets in Ω of high cardinality, the exponent α allowing to control the degree

of penalization. Parameters β and δ have the same meaning as in Davé’s

method. What fundamentally differentiates the two methods is that a credal

partition has more degrees of freedom than a fuzzy one. It may thus allow a

better modeling and more detailed description of complex data.

Remark 1 A previous attempt to enrich the concept of fuzzy partition was

proposed under the name of fuzzy (c+2)-means by Ménard et al [25] who in-
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troduced the concept of “ambiguity clusters”. Although some ideas are shared

by the two methods, the approaches are radically different: the fuzzy (c+2)-

means is not formalized within the framework of belief functions, and the

geometrical model as well as the optimization process are distinct.

Remark 2 As indicated in the introduction, an algorithm called EVCLUS

[12] was previously developed to derive a credal partition from relational data.

Although founded on the same general model of partitioning, EVCLUS and

ECM are very different. EVCLUS is applicable to both metric and non metric

dissimilarity data and does not use any explicit geometrical model of the data.

It only postulates that the more similar two objects, the more plausible it is

that they belong to the same cluster. A credal partition is determined in such

a way that this condition is, at least approximately, realized. The optimization

procedure is based on gradient descent of a stress function and is somewhat

related to Multidimensional Scaling (MDS) methods. In contrast, ECM is

in line with FCM, PCM and NC: each class is represented by a prototype

and the similarity between an object and a cluster is measured using by the

Euclidean metric. As will be seen in the next section, ECM uses an alternate

optimization procedure to find a credal partition minimizing criterion (20).

This makes ECM compuationally much more efficient than EVCLUS when

applied to object data.
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3.3 Optimization

To minimize JECM, an alternate optimization scheme can be designed as in

the FCM and NC algorithms. First, we consider that V is fixed. To solve the

constrained minimization problem with respect to M , we introduce n Lagrange

multipliers λi and write the Lagrangian:

L(M, λ1, ..., λn) = JECM(M, V )−
n∑

i=1

λi

⎛
⎝ ∑

{j/Aj⊆Ω,Aj �=∅}

mij + mi∅ − 1

⎞
⎠ . (22)

By differentiating the Lagrangian with respect to the mij , mi∅ and λi and

setting the derivatives to zero, we obtain:

∂L

∂mij
= βcα

j mβ−1
ij d2

ij − λi = 0, (23)

∂L

∂mi∅
= βδ2mβ−1

i∅ − λi = 0, (24)

∂L

∂λi
=

∑
{j/Aj⊆Ω,Aj �=∅}

mij + mi∅ − 1 = 0. (25)

We thus have from (23)

mij =

(
λi

β

)1/(β−1) (
1

cα
j d2

ij

)1/(β−1)

, (26)

and from (24)

mi∅ =

(
λi

β

)1/(β−1) (
1

δ2

)1/(β−1)

. (27)

Using (25), (26) and (27),

(
λi

β

)1/(β−1)

=

⎛
⎝∑

j

1

c
α/(β−1)
j

1

d
2/(β−1)
ij

+
1

δ2/(β−1)

⎞
⎠

−1

. (28)

Returning in (26), one obtains the necessary condition of optimality for M :
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mij =
c
−α/(β−1)
j d

−2/(β−1)
ij∑

Ak �=∅ c
−α/(β−1)
k d

−2/(β−1)
ik + δ−2/(β−1)

∀i = 1, n ∀j/Aj ⊆ Ω, Aj 
= ∅

(29)

and

mi∅ = 1−
∑

Aj �=∅

mij ∀i = 1, n. (30)

Note that these update equations are very similar to those of the NC algorithm

(15) except that there are 2c values mij to compute instead of c + 1 fuzzy

membership degrees uij.

Let us now consider that M is fixed. The minimization of JECM with respect to

V is an unconstrained optimization problem. The partial derivatives of JECM

with respect to the the centers are given by:

∂JECM

∂vl
=

n∑
i=1

∑
Aj �=∅

cα
j mβ

ij

∂d2
ij

∂vl
. (31)

∂d2
ij

∂vl

= 2(slj)(xi − v̄j)(−
1

cj

). (32)

From (31) and (32) we thus have:

∂JECM

∂vl

= −2
n∑

i=1

∑
Aj �=∅

cα−1
j mβ

ijslj(xi − v̄j) (33)

= −2
n∑

i=1

∑
Aj �=∅

cα−1
j mβ

ijslj(xi −
1

cj

∑
k

skjvk) ∀l = 1, c. (34)

Setting these derivatives to zero gives l linear equations in vk which can be

written as:

∑
i

xi

∑
Aj �=∅

cα−1
j mβ

ijslj =
∑
k

vk

∑
i

∑
Aj �=∅

cα−2
j mβ

ijsljskj l = 1, c. (35)
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Let B be a matrix of size (c× p) defined by:

Blq =
n∑

i=1

xiq

∑
Aj �=∅

cα−1
j mβ

ijslj =
n∑

i=1

xiq

∑
Aj�ωl

cα−1
j mβ

ij l = 1, c q = 1, p, (36)

and H a matrix of size (c× c) given by:

Hlk =
∑

i

∑
Aj �=∅

cα−2
j mβ

ijsljskj =
∑

i

∑
Aj⊇{ωk ,ωl}

cα−2
j mβ

ij k, l = 1, c. (37)

With these notations, V is solution of the following linear system:

HV = B, (38)

which can be solved using a standard linear system solver. Table 2 gives an

overview of the algorithm.

INSERT TABLE 2

Example (Diamond data set). We illustrate the behavior of ECM using

a first simple example inspired from a classical data set [33]. It is composed

of twelve objects which are represented in Figure 1. Objects 1 to 11 are part

of Windham’s data whereas object 12 is an outlier. ECM was run with the

following parameters: α = 1, β = 2, δ2 = 20 and ε = 10−3. A 2-credal

partition was imposed so that four focal elements have been considered in the

optimization process: ω1, ω2, Ω and the empty set. The masses are represented

in Figure 2, in which m({ω1}), m({ω2}), m(Ω) and m(∅) are plotted against i.

It can be seen that the two natural clusters are correctly recovered for points

1 to 11. Point 6 is assigned a high mass to Ω, which reveals that this point
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is ambiguous: it could be assigned either to ω1 or ω2. Point 12, which can be

considered as an outlier, is logically assigned a high mass to the empty set.

INSERT FIGURES 1 and 2

4 Practical issues

4.1 Interpreting a credal partition

A credal partition carries a lot of information about the data. Depending

on what is expected from the analysis, different tools may help the user to

interpret the results of ECM.

First, the classical clustering structures (possibilistic, fuzzy and hard parti-

tions) can be recovered. A possibilistic partition can be obtained by computing

from each bba mi the plausibilities pli({ωk}) of the different clusters:

pli({ωk}) =
∑

A∩{ωk}�=∅

mi(A). (39)

The value pli({ωk}) represents the plausibility (or the possibility) that object

i belongs to cluster k. In the same way, a probabilistic fuzzy partition may be

obtained by calculating the pignistic probability BetPi({ωk}) induced by each

bba mi and interpreting this value as the degree of membership of the object

i to cluster k. Finally, a hard partition can be easily obtained by assigning

each object to the cluster with highest pignistic probability, or with highest

plausibility. Note that points with high masses on the empty set may optionally
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be rejected as outliers before hard assignment to the clusters.

Alternatively, and perhaps more interestingly, the concept of credal partition

suggests different ways of summarizing the data. One of these ways consists

in assigning each object to the set of clusters with the highest mass. One

then obtains a partition of the n points in at most 2c groups, where each

group corresponds to a set of clusters. This makes it possible to highlight the

points that unambiguously belong to one cluster, and the points that lie at

the boundary of two or more clusters. More formally, let X(Aj) denote the set

of objects for which the mass assigned to Aj is the highest one:

X(Aj) = {i/mi(Aj) = max
k

mi(Ak)}. (40)

The X(Aj) for j = 1, . . . , 2c define a hard partition of the n objects which will

be referred to as a hard credal partition.

Following a point of view similar to the one of Lingras [23] using ideas from

rough sets theory, it is also possible to characterize each cluster ωk by two

sets: the set of objects which can be classified in ωk without any ambiguity

and the set of objects which could possibly be assigned to ωk. These two sets

will be referred to as the lower and upper approximations of ωk and denoted,

respectively, ωL
k and ωU

k . They can be defined using the X(Aj) as:

ωL
k = X({ωk}), (41)
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and

ωU
k =

⋃
{j/ωk∈Aj}

X(Aj). (42)

The hard credal partition and the associated lower and upper cluster ap-

proximations are thus qualitative summaries of the clustering results. Such

summaries may be argued to be quite intuitive and easier to interpret than

purely numerical results such as fuzzy partitions, while being much richer than

classical hard partitions. As such, we believe that they are very useful tools

for displaying and interpreting the results of ECM.

Example (Diamond data set). Table 3 shows the plausibilities, the pig-

nistic probabilities (computed with Dempster’s normalization) and the hard

cluster assignments for the different points. Note that both classes are com-

pletely plausible for point 6 (pl6({ω1}) = pl6({ω2}) ≈ 1) whereas none of the

classes is plausible for point 12 (pl12(∅) = 0.09 and pl12(∅) = 0.15). To define

the hard partition, point 6 was arbitrarily assigned to cluster 1. The last col-

umn of Table 3 shows the hard assignments to sets of clusters, defining the

hard credal partition. It is defined in that case as:

X(∅) = {12}, X({ω1}) = {1, 2, 3, 4, 5},

X({ω2}) = {7, 8, 9, 10, 11}, X({ω1, ω2}) = {6}.

We thus have in that case

ωL
1 = {1, 2, 3, 4, 5}, ωU

1 = {1, 2, 3, 4, 5, 6},
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ωL
2 = {7, 8, 9, 10, 11}, ωU

2 = {6, 7, 8, 9, 10, 11}.

INSERT TABLE 3

Example (Four-class data set). To illustrate this interest of the lower

and outer cluster approximations in a more realistic situation, let us consider

the following synthetic example: four classes of 200 points each are generated

from a multivariate t distribution with 5 degrees of freedom and centered

respectively on [0;0], [0;4], [4;0] and [4;4]. This data set is represented in Figure

3. The clustering task is to find a four-credal partition with the following

parameters: α = 1, β = 2, δ2 = 20 and ε = 10−3. Figure 4 represents the hard

credal partition (note that ωij means {ωi, ωj} and ωijk means {ωi, ωj, ωk}).

Each subset is represented by its convex hull. The center of gravity vk of

each cluster is marked by a cross. The points in X(∅) for which the highest

mass is given to the empty set are identified by squares. It can be seen that

a meaningful partition is recovered and that outliers are correctly detected.

Figures 5 and 6 show the lower and upper approximations of each cluster, also

represented by their convex hulls.

INSERT FIGURES 3, 4, 5 and 6
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4.2 Limiting the complexity

For each object, the ECM algorithm distributes a fraction of the unit mass to

each element of 2Ω. Consequently, the number of parameters to be optimized is

exponential in the number of clusters (and linear in the number of objects). For

a limited number of classes (say, less than 10), calculations are easily tractable.

For example, for the diamond data, each run of the algorithm implemented

in Matlab takes about 0.06 seconds on a PC equipped with a Pentium 4

processor.

However, if necessary, it is also possible to reduce the complexity of the method

by considering only a subclass of bbas with a limited number of focal sets. For

example, we may constrain the focal sets to be either Ω, or to be composed

of at most two classes, thereby reducing the complexity from 2c to c2. By

this way, the number of parameters to be optimized is drastically reduced and

an acceptable trade-off between flexibility of the method and computational

tractability is achieved.

In Table 4, a comparison between these two versions of ECM (V1: no limitation

of the number of focal elements; V2: cardinality of the focal elements at most

equal to 2 except for Ω) is provided. This table shows the execution times

and the final value of objective function (20) obtained for the four-class data

set (800 points). The number of clusters was varied between 2 to 6, and the

following settings were used: α = 2, β = 2, δ2 = 20 and ε = 10−3. Mean values
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and standard deviations over 100 runs of the algorithm are reported. Results

with version V2 are reported only for c > 3, as the two versions are identical

for c ≤ 3.

Several remarks can be made. First, one can see that, as expected, JECM de-

creases as c grows. In contrast, this monotonic tendency with respect to c is

not systematically observed for the mean execution time since it depends also

on the adequation between the model and the structure of the data. A signif-

icant reduction of computing time is obtained using the constrained version

V2, at the price of a slightly higher value of the objective function at conver-

gence, which is obviously due to the lower number of free parameters in the

constrained model. Finally, it can be noticed that the results are quite stable,

particularly for c = 4 which corresponds to the true number of clusters. This

suggests that the stability of the partition can be used as a clue for choosing

the number of cluster. Another approach to model complexity determination

based on a validity index will be presented in the next section.

INSERT TABLE 4

To conclude this section on complexity issues, we may notice that a common

strategy for accelerating iterative clustering procedures is to start from a good

initial condition obtained using a simpler method. Here, one could think of

initializing the centers using FCM instead of random initialization. This strat-

egy, however, did not yield any significant reduction of execution time when
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applied to the four-class data.

4.3 Determining the number of clusters

One of the fundamental issue in fuzzy clustering is the choice of a suitable

number of clusters. This problem is often referred to as cluster validity. Most

of the methods consists in computing a validity index from several partitions

obtained with different values of c and looking for a minimum, a maximum

or an abrupt change in the criterion. A great number of validity indexes have

been proposed for assessing the quality of a fuzzy partition. We review some

of them and then propose a new index for assessing the quality of a credal

partition.

The first index associated with FCM was the partition coefficient defined as

[4]:

PC(c) �
1

n

n∑
i=1

c∑
j=1

µ2
ij, (43)

where 1
c
≤ PC(c) ≤ 1. The partition entropy [3] was defined by:

PE(c) � −
1

n

n∑
i=1

c∑
j=1

µij log2(µij), (44)

where 0 ≤ PE(c) ≤ log2(c). The optimal partition (or equivalently the optimal

number of clusters c) is obtained by maximizing PC (or minimizing PE) with

respect to c = 2, 3, ..., cmax. Both PC and PE possess a monotonic tendency

with respect to c. To overcome this problem, Davé [10] proposed a modified
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PC (MPC) index defined by:

MPC(c) � 1−
c

c− 1
(1− PC(c)), (45)

where 0 ≤ PE(c) ≤ 1. This index has to be maximized.

These indexes have inspired the validity index proposed in the sequel. Intu-

itively, one feels that if a proper number of classes is chosen, the centers of

gravity will cover correctly the clusters and the major part of the mass will

be allocated to singletons of 2Ω. On the contrary, if c is too small or too high,

the mass will be distributed to subsets with higher cardinality or to the empty

set. In other words, the more specific a credal partition will be, the more accu-

rately it will represent the structure of the data. These remarks lead to the use

of one of the entropy measures proposed for belief functions, the nonspecificity

[26]. Klir and Wierman [20, p. 51] defined the nonspecificity of a subnormal

bba m as:

N(m) �
∑

A∈2Ω\∅

m(A) log2 |A|+ m(∅) log2 |Ω|, (46)

where 0 ≤ N(m) ≤ log2(|Ω|). This measure tends to be small when the mass

is assigned to few non empty focal sets with small cardinality. We propose

to define the validity index of a credal partition as the average normalized

specificity:

N∗(c) �
1

n log2(c)

n∑
i=1

⎡
⎣ ∑

A∈2Ω\∅

mi(A) log2 |A|+ mi(∅) log2(c)

⎤
⎦ , (47)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized.
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Its application is illustrated using three data sets.

Example (Four-classes data set). ECM was run with β = 2, δ2 = 20 and

ε = 10−3. For different values of α (namely 1, 2 and 3), the number of desired

clusters was varied from 2 to 6. The results are reported in Figure 7. It can be

seen that the minimum is always obtained for c = 4 clusters, this minimum

being less pronounced as α increases, or, equivalently, as the focal elements of

high cardinality are more strongly penalized in the objective function.

INSERT FIGURE 7

Example (Iris data set). This famous data set [1,17] is composed of flowers

from the iris species setosa, versicolor, and virginica. From each species there

are 50 observations for sepal length, sepal width, petal length, and petal width

in cm. Two clusters are known to have a significant overlap so that c = 2 or

c = 3 may be a good choice for these data. The proposed validity index,

computed for different α with β = 2, δ2 = 10 and ε = 10−3, is shown in Figure

8. Depending on α, one can see that a minimum of 2 or 3 is always found.

INSERT FIGURE 8

Example (Soybean data set). This data set on diseases in soybeans, avail-

able from the UCI Machine Learning repository, contains 47 data points. Each

data point has 35 categorical attributes and is classified into four diseases. One
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disease has 17 data, and the three other diseases have 10 data each. The data

set is represented using a MDS algorithm in Figure 9. Although presented as

a four-class problem, this representation suggests that three clusters could be

a reasonable choice for these data. Figure 10 displays the value of N∗(c) ob-

tained for different α with β = 2, δ2 = 30 and ε = 10−3. A proper minimum is

reached for c = 3 clusters except for α = 2.5, which indicates a cluster number

estimate equal to 4.

INSERT FIGURES 9 AND 10

These simple examples suggests that N∗ can be a valuable index for credal

partitions.

4.4 Some guidelines for choosing the parameters

Before running ECM, one has to set the values of several parameters. As in

FCM, PCM or NC, for which it is a usual choice, we used β = 2 in all exper-

iments. Parameter α allows to control the amount of points assigned to focal

elements of high cardinality. The value α = 2 can be used as a starting default

value but it can be modified according to what is expected from the user: the

higher α, the less imprecise will be the resulting partition. The choice of δ

is more difficult and is strongly data-dependent. If the number of clusters is

fixed, a strategy similar to the one of Davé can be applied, so as to achieve

a given rejection rate. For choosing c, we recommend the use of several tools
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including the validity index described above, the observation of the variability

of the results over several runs as discussed in Section 4.2, but also low dimen-

sional graphical displays of the data provided by, e.g., Principal Component

Analysis or MDS.

5 Application to medical image segmentation

The interest of ECM will now be illustrated using an example in medical imag-

ing taken from [6,7]. Two images of a pathological brain were acquired using

magnetic resonance imaging using two different sets of acquisition parameters

(dual-echo MRI). They are represented in Figure 11. In the first echo, ac-

cording to the grey levels of the pixels, two main areas may be distinguished:

normal brain tissues on the one hand (bright area) and ventricles and cere-

brospinal fluid (CSF) (darker areas) on the other hand. The pathology cannot

be seen in the first image. In the second echo, the pathology (bright area)

is easily seen but CSF and ventricles have almost the same grey levels than

the rest of the brain and have ill-defined contours. Several experiments were

conducted with these data; they are reported in the following.

INSERT FIGURE 11

We first applied ECM on each image with the following settings: α = 2, β = 2,

δ2 = 10 and ε = 10−3 (note that, to avoid manipulating large values of dis-

tances between points, the grey level of each pixel was divided by 100 before
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processing). The results of these segmentations are presented in Figures 12 and

13 in the form of lower (grey) and upper (grey + dark grey) approximations

of the clusters. One can see that each area of interest of the brain (CSF and

ventricles, normal tissues, pathology) are well recovered by the lower approx-

imations. The darker areas correspond to doubtful pixels with intermediate

grey levels.

INSERT FIGURES 12 and 13

We then considered jointly the two echos and performed a direct classification

in three clusters in the two-dimensional space formed by the grey levels of

images 1 and 2 . The resulting segmentation (in the form of the lower and

upper approximations of the clusters) is shown in Figure 14. Here again, the

main areas of interest are well recovered by the lower approximations of the

clusters, whereas upper approximations highlight contour or doubtful pixels.

Another view of this segmentation, in the form of a hard credal partition in

the two-dimensional intensity space, is given in Figure 15.

INSERT FIGURES 14 and 15

The last experiment is intended to illustrate another way of exploiting the

great expressive power of a credal partition. As indicated in Section 2.1, an

interesting feature of belief function theory is the existence of simple tools for

combining different sources of informations. In the segmentation problem con-

sidered here, each echo can be considered as a distinct source of information.
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It was thus interesting to see if a meaningful three-class partition of the brain

could be recovered by combining the individual two-class partitions extracted

from each image. Before being combined, the masses have to be expressed on

the same frame of discernment.

This problem can be formalized as follows. Let Γ = {γ1, γ2} denote the frame

of discernment of bbas obtained from the first image. Singleton γ1 corresponds

to the ventricles and CSF, γ2 corresponds to the normal and pathological tis-

sues. In the same way, let Θ = {θ1, θ2} denote the frame of discernment of

bbas associated to the second image with θ1 corresponding to the pathology,

ventricles and CSF and θ2 to the normal tissues. Finally, let Ω = {ω1, ω2, ω3}

be the frame of discernment corresponding to the three areas of interest: sin-

gleton ω1 denotes the pathology, ω2 denotes the ventricles and CSF, and ω3

corresponds to the normal brain tissues. Bbas expressed on Γ, Θ, and Ω are

respectively denoted mΓ, mΘ,and mΩ.

We can observe that frame Ω is finer, i.e., more detailed than the other two:

using the terminology introduced by Shafer [28, page 115], it is a refinement

of Γ and Θ. As a consequence, bbas mΓ and mΘ may be expressed on Ω using

an operation called a refining. It is a very simple process which consists in

transferring the masses in the following way. We can see that γ1 corresponds to

ω2 and γ2 corresponds to {ω1, ω3}. Consequently, mΓ({γ1}) may be transferred

to {ω2}, mΓ({γ2}) to {ω1, ω3}, and mΓ(Γ) to Ω. The resulting bba mΩ
1 on Ω

30



Acc
ep

te
d m

an
usc

rip
t 

is thus defined as

mΩ
1 ({ω2}) = mΓ({γ1}), mΩ

1 ({ω1, ω3}) = mΓ({γ2}), mΩ
1 (Ω) = mΓ(Γ).

Similarly, θ1 corresponds to {ω1, ω2} and θ2 corresponds to ω3. Consequently,

mΘ({θ1}) can be transferred to {ω1, ω2}, mΘ({θ2}) to {ω3}, and mΘ(Θ) to Ω.

The resulting bba mΩ
2 on Ω is thus defined as

mΩ
2 ({ω1, ω2}) = mΘ({θ1}), mΩ

2 ({ω3}) = mΘ({θ2}), mΩ
2 (Ω) = mΘ(Θ).

Once the bbas have been expressed on the same frame of discernment, they can

be combined using Dempster’s rule (6) to produce the final mass assignment

mΩ = mΩ
1 ⊕mΩ

2 . The result of this combination scheme is presented in Figure

16. The partition obtained is very similar to the previous one, and again all

regions of interest are correctly recovered.

INSERT FIGURE 16

This example demonstrates an additional tool offered by the theoretical frame-

work of belief functions for clustering: the possibility to combine in a mean-

ingful way several partitions obtained from different sources. Thanks to this

possibility, complex problems in pattern recognition or image analysis may

be decomposed into smaller, simpler problems, the solutions of which being

fused to derive a global solution. For example, in some cases, some subsets

of features are known to be more likely to discriminate some of the classes

than others. It is then possible to compute partitions from different subsets

31



Acc
ep

te
d m

an
usc

rip
t 

of features (which constitute simpler clustering tasks), and then to combine

them. A similar combination approach may also be used for incorporating

prior information provided by an expert.

6 Conclusion

A new clustering method based on belief functions theory has been proposed.

The concepts of fuzzy, possibilistic and probabilistic partitions have been

shown to be recovered as special cases of a more general clustering concept:

the credal partition. To derive a credal partition from object data, an efficient

algorithm, called ECM, similar to FCM, has been introduced. It is based on

a classical alternating minimization scheme, with, in a first step, the deter-

mination of the centers of the clusters, and, in a second step, the allocation

of the masses to the different subsets of classes. Examples have shown that

meaningful partitions of the data could be obtained. A credal partition may

be analyzed by computing from it a hard, a possibilistic, or a fuzzy parti-

tion as by-products. Alternatively, a hard credal partition can be determined,

from which lower and upper approximations of clusters may be computed,

providing an intuitive summary of the data. A validity index, based on the

notion of nonspecificity of belief functions, has been proposed and illustrated

using three data sets. Finally, an application to multimodal image segmenta-

tion has been presented. This work offers several perspectives, among which

a kernelized version of the algorithm and a new algorithm for relational data.
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the two-dimensional intensity space (ω1=pathology; ω2=CSF

and ventricles; ω3=normal brain tissues). The focal sets are

represented by different grey levels. 56

16 Segmentation of the brain by combination of the partitions

obtained from individual images. (a) pathology; (b) CSF and

ventricles; (c) normal brain tissues. The lower approximations

of the clusters are represented by light grey areas, the upper

approximations by the union of light and dark grey areas. 57
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A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 1 0 0 0 0

{ω1} 0 0 0 0.2 0

{ω2} 0 1 0 0.4 0

{ω1, ω2} 0 0 0 0 0

{ω3} 0 0 0.2 0.4 0

{ω1, ω3} 0 0 0.5 0 0

{ω2, ω3} 0 0 0 0 0

Ω 0 0 0.3 0 1

Table 1
Example of credal partition
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Input {x1, ...,xn}: n vectors in R
p

Parameters c: number clusters 1 < c < n

α ≥ 0: weighting exponent for cardinality (default value 2)

β > 1: weighting exponent (default value 2)

δ > 0: distance to the empty set

ε: termination threshold (default value 10−3)

Initialization Choose randomly c initial cluster centers = V0

Loop t← 0

Repeat

t← t + 1

Compute Mt using (19), (18), (29), (30), and Vt−1;

Compute Ht and Bt using (36), (37), and Mt;

Solve HtVt = Bt ;

Until ||Vt − Vt−1|| < ε

Table 2
Evidential c-means algorithm
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i pli({ω1}) pli({ω2}) BetPi({ω1}) BetPi({ω2}) Hard Hard credal

partition partition

1 0.8846 0.0603 0.9534 0.0466 1 1

2 0.8488 0.1195 0.9091 0.0909 1 1

3 0.9973 0.0025 0.9984 0.0016 1 1

4 0.8478 0.1193 0.9091 0.0909 1 1

5 0.8423 0.3803 0.7544 0.2456 1 1

6 0.9994 0.9994 0.5000 0.5000 1 1,2

7 0.4172 0.8388 0.2676 0.7324 2 2

8 0.1291 0.8394 0.0988 0.9012 2 2

9 0.0052 0.9945 0.0034 0.9966 2 2

10 0.1189 0.8534 0.0898 0.9102 2 2

11 0.0563 0.8946 0.0431 0.9569 2 2

12 0.0957 0.1530 0.3628 0.6372 2 ∅

Table 3
Various partitions obtained using ECM on the Diamond data set: plausibilities
(possibilistic partition), pignistic probabilities (probabilistic fuzzy partition), hard
partition and hard credal partition.
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c JECM−V 1 JECM−V 2 TECM−V 1 TECM−V 2

2 2548.8 ± 46.2 3.1 ± 1.3

3 1355.3 ± 10.9 11.8 ± 5.8

4 720.9 ± 0.00 777.4 ± 0.00 12.2 ± 2.8 7.5 ± 0.02

5 496.2 ± 2.3 581.3 ± 1.8 63.6 ± 31.4 46.1 ± 39.9

6 327.2 ± 3.4 437.5 ± 0.7 185.0 ± 81.3 38.5 ± 14.3

Table 4
Four-classes data set. Values of criterion JECM and execution times in seconds (V1:
no limitation of the focal elements, and V2: with focal elements of size 2). Mean
values and standard deviations were computed over 100 runs of the algorithm.
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Fig. 1. Diamond data set.
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Fig. 2. Credal partition obtained from Diamond data set.
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Fig. 3. Four-class data set.
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Fig. 4. Four-class data set: hard credal partition computed from m.
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Fig. 5. Four-class data set: lower approximations of the four clusters.
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Fig. 6. Four-class data set: upper approximations of the four clusters.
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Fig. 7. Four-class data set: validity index.
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Fig. 8. Iris data set: validity index.
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Fig. 9. Soybean data set: MDS representation of the data.
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Fig. 10. Soybean data set: validity index.
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(a) (b)

Fig. 11. Dual-echo MRI acquisitions.
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(a) (b)

Fig. 12. Image 1. (a) Lower (light grey) and upper (light grey+dark grey) approx-
imations of class 1 (ventricles and CSF); (b) Lower (light grey) and upper (light
grey+dark grey) approximations of class 2 (normal and pathological brain tissues).
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(a) (b)

Fig. 13. Image 2. (a) Lower (light grey) and upper (light grey+dark grey) approxi-
mations of class 1 (pathology, ventricles and CSF); (b) Lower (light grey) and upper
(light grey + dark grey) approximations of class 2 (normal brain tissues).
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(b) (c)(a)

Fig. 14. Segmentation results obtained using images 1 and 2 simultaneously. (a)
pathology; (b) CSF and ventricles; (c) normal brain tissues. The lower approxima-
tions of the clusters are represented by light grey areas, the upper approximations
by the union of light and dark grey areas.
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Fig. 15. Representation of the hard credal partition of the brain data in the two-di-
mensional intensity space (ω1=pathology; ω2=CSF and ventricles; ω3=normal brain
tissues). The focal sets are represented by different grey levels.
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(c)(b)(a)

Fig. 16. Segmentation of the brain by combination of the partitions obtained from
individual images. (a) pathology; (b) CSF and ventricles; (c) normal brain tissues.
The lower approximations of the clusters are represented by light grey areas, the
upper approximations by the union of light and dark grey areas.
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