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Toward a Balance Between Energy Consumption
and Security in IoT Networks: A Survey

Michaël Mahamat, Ghada Jaber, Abdelmadjid Bouabdallah

Abstract—The advent of the Internet of Things (IoT), with
thousands of connected, heterogeneous, and energy-constrained
devices, enables new application domains and improves our
everyday life. To minimize maintenance costs and maximize net-
work lifetime, developers and companies use energy management
methods. In addition, heterogeneity and the deployment of IoT
networks in open environments increase the attack surface. A
successful attack can dramatically impact an IoT network and
causes physical or economical harm. However, securing a network
against these threats incurs additional energy consumption that
may be unbearable for energy-constrained devices, thus depleting
their batteries and reducing network lifetime. In the literature,
there is a huge number of research works that propose solutions
for either security or energy management for IoT networks.
However, research on joint optimization of security and energy
is scarce. In addition to that, existing surveys focused also either
on IoT energy management or on IoT security. In this paper, we
present a survey based on a new approach that tackles jointly
the problem of security and its impacts on the energy efficiency
of IoT networks. We propose a taxonomy of recent solutions
that reduce energy consumption while efficiently securing IoT
networks. We consider context-aware security for IoT networks
as an interesting way to secure IoT networks while reducing the
overall energy consumption. We also present recent advances
and new paradigms such as artificial intelligence and Software-
Defined Networking (SDN) and their use in the development
of efficient energy aware security solutions for IoT. Finally, we
present a general model for the development of energy-efficient
IoT security solutions to go toward a good trade-off between
security and energy consumption.

Index Terms—Internet of Things (IoT), Green IoT, Security,
Energy, Energy Harvesting, Energy Management, Context-aware
security.

I. INTRODUCTION

The Internet of Things (IoT) is growing so fast and objects
around us become connected, whether they are in our everyday
life such as smart factories, smart farms, or in an open
hostile environment. IoT has seen the development of multiple
applications, from the industrial perspective [1] to smart cities
and smart agriculture systems [2]–[4]. The use of IoT is
drastically improving the quality of our lives and the efficiency
of industrial production. Companies using or creating IoT
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applications will have to adapt their business model to succeed
in their projects [5]. In addition to that, the energy sector [6]
is gradually increasing its use of IoT for energy and microgrid
management.

IoT networks are naturally heterogeneous systems, as multi-
ple types of devices are connected. They may include Wireless
Sensor Networks (WSNs), RFID sensors networks, Mobile
Ad-hoc Networks (MANETs), actuators, or other smart ob-
jects. Due to this heterogeneous nature, the limited energy
capacity of devices, and the existence of multiple technologies
enabling IoT networks [7], [8], several challenges for IoT
networks arise. Energy and security are considered as two
important challenges among economical costs, scalability or
interoperability for instance. Moreover, the applications de-
ployed in an IoT network are more and more complex and
connect more and more devices, which are smaller and limited
in terms of energy storage. Hence, it is mandatory to develop
lightweight protocols and applications to reduce the energy
consumption of such constrained devices, and consequently,
maximize their lifetime. Furthermore, since IoT networks are
mostly deployed in open environments, with various tech-
nologies, security breaches and attack surfaces are increasing
[9]. Thus, there is an urgent need to protect IoT networks
from attacks and malicious entities. Indeed, successful attacks
may lead to economic losses, outages, or critical issues if
IoT networks are deployed for critical applications, such as
the energy sector [6]. Then, it is important to deploy highly
secure solutions to protect sensitive networks. Nevertheless,
deploying a secure solution creates an additional energy con-
sumption and hence, a faster battery depletion which may lead
to the reduction of network lifetime or even industrial process
failure. Thus, designing IoT security solutions that are energy-
efficient, but also in the same time, efficient against multiple
threats, appears to be a tedious quest.

In this paper, we study the impact of security solutions
on energy consumption in order to develop security solutions
for IoT networks that do not affect energy efficiency, hence
improving network lifetime. We aim to give researchers,
developers, and manufacturers, insights on how to design
security solutions that are energy-efficient and efficient against
ever-evolving threats. Our contributions in this survey can be
summarized as follows:

• We present a review of existing surveys in the field of
IoT energy management methods, IoT security solutions,
a discussion about their limitations, and show how our
survey outperforms existing surveys.

• We study the impact of security solutions on the energy
consumption of IoT nodes, i.e. how can security solutions
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consider energy consumption. We present a comparison
and a classification of existing research works which may
help the reader to select the appropriate security solution
for a specific IoT application domain.

• We present and discuss design challenges of energy-
efficient and adaptive IoT security solutions including
recent advances and new paradigms such as Software
Defined Networks (SDNs) and artificial intelligence that
are used in the development of energy-efficient and secure
solutions for IoT.

The rest of this paper is organized as follows. In section
II, we discuss the limits of existing surveys and we present a
classification of recent surveys according to several criteria. In
section III, we recall different energy management techniques
for IoT networks. In section IV, we address fundamentals on
security and present some recent works on IoT security. In
section V, we study the impacts of security mechanisms on
energy, and we present solutions trying to find a trade-off
between security and energy. In section VI, we discuss the
identified limits in previous sections and expose challenges for
the design of secure, robust, and energy-efficient IoT networks.
Finally, we conclude the paper.

II. RELATED WORKS

In the past years, several surveys in the IoT field (from IoT
architectures to IoT security solutions) have been published.
We present in this section existing surveys regarding energy
efficiency and security solutions for IoT. We classify the
studied surveys in table I regarding their scope and give
relevant comments on each of them.

A. IoT Energy Efficiency

Energy is a scarce resource for many IoT devices as
they may be hard to reach or recharge. Then, using energy
management methods and Energy Harvesting (EH) techniques
can extend their lifetime.

In [11], Sah et al. surveyed different techniques to man-
age energy consumption and the different existing renewable
Energy Harvesting (EH) schemes for the WSNs. For energy
management, clustering, load balancing, energy balancing,
coverage awareness, and node placement are the main ap-
proaches that are used to reduce energy consumption and
improve network lifetime. Different renewable energies may
be harvested such as solar energy, wind energy, kinetic energy,
thermal energy, etc. However many challenges arise regarding
energy harvesting. One of them is the design of the harvesting
units. They must not be intrusive and should be designed
to be compatible with the sensor. Energy harvesting models
should also consider the chaotic nature of the environment and
weather to reduce prediction errors.

In [10], Alsamhi et al. investigated the different enabling
technologies and algorithms for greener IoT networks (green
RFID, green WSNs, green cloud computing, green data cen-
ters, and green communication networks) which are being used
to reduce the energy consumption and CO2 emissions in smart
cities. Green RFID can be enabled by using smaller tags as
they are hard to recycle. Green wireless sensors networks

may use duty-cycling schemes, data reduction techniques,
energy harvesting, and transceiver power optimization. Green
cloud computing may use virtual machines, better components,
and better resource allocation schemes to produce less CO2

and reduce the overall energy consumption. Relay nodes and
better routing algorithms can reduce CO2 emissions. These
techniques are useful for convergence toward a greener IoT,
but they may have impacts on network performances such as
a lower QoS, longer delays, etc. The authors considered also
that drones (UAVs) are going to be useful in future green
smart cities for pollution monitoring and reducing the energy
consumption of other devices.

In [12], authors surveyed the different existing harvesting
techniques for IoT. They provide a taxonomy of the differ-
ent harvestable energies in five categories: ambient, human,
mechanical, organic, and hybrid sources. They also discuss
the advantages and drawbacks of using each energy source
and present energy harvesting models. These models are
either deterministic or stochastic. Stochastic models, such
as Markow processes or Kalman filters, can consider the
natural uncertainty of energy harvesting mechanisms. Along
the provided taxonomy and studied models, authors presented
two case studies for IoT. The first case is a beacon-based on
BLE powered by solar energy. The second case is a beacon
powered with RF energy, also based on BLE. Both beacons
have embedded sensors to monitor their environment. These
platforms allowed authors to quantify the effectiveness of such
harvesting techniques and challenges linked to energy harvest-
ing. These challenges involve economical costs, utilization of a
specific energy source for specific applications, energy storage,
or the use of multiple energy sources.

B. IoT Security

Security methods for IoT are abundant and many research
has been conducted. Without implementing security solutions,
networks might face outages or data theft. Several surveys have
been written to cover existing threats and security solutions for
IoT. Table II compares the most important IoT security surveys
with our work.

In [13], the authors reviewed the threats and the existing
security solutions for the IoT. The authors considered an
IoT network with four layers (sensing layer, network layer,
middleware layer, and application layer). Each layer has to
cope with specific threats. They identified four categories
of solutions: blockchain-based solutions, fog-computing-based
solutions, machine learning (ML) based solutions, and edge-
computing-based solutions. Each category of solutions focuses
on particular threats. This survey presents existing solutions
and discusses how the different categories of solutions take
into account the heterogeneity, privacy concerns, and resource
constraints. In [14], authors surveyed security and privacy
solutions for IoT networks and their applications in various
domains. They exposed the weaknesses of old security solu-
tions with regard to scalability, heterogeneity and mobility.
They presented new solutions based on SDN, Blockchain,
and the importance of context-aware security for adaptive
security solutions. In [15], Tahsien et al. also surveyed IoT
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Surveys Scope Comments

[10] Green IoT technologies and applications Presentation of green IoT technologies in smart cities. This paper
does not present security issues.

[11], [12] Harvesting methods and IoT prediction models Presentation of energy harvesting methods, modeling and prediction
methods. These papers do not present security issues.

[13]–[17] IoT security solutions Presentation of IoT security solutions based on emerging tech-
nologies (machine learning, blockchain, etc.). [16] presents threats
against WSNs, RFID networks and tools (simulators, analyzers)
used in the surveyed works.

[9], [18], [19] Iot objects and vulnerabilities Detailed taxonomies of threats and vulnerabilities in IoT. [9] de-
scribes vulnerabilities in commercial IoT objects and the associated
communication protocols, with a focus on fitness and smart home
solutions.

[20], [21] Energy-efficient mechanisms for IoT security Presentation of energy-efficient mechanisms for security solutions
to alleviate computations and decrease the energy consumption of
security solutions. Authors focus on secure data aggregation in [21].

[22] Security mechanisms for energy-harvesting enabled IoT Presentation of security solutions for energy harvesting network,
with a major focus on physical layer and physical properties.

Our survey Trade-off between IoT security mechanisms and energy consumption Survey of recent security methods and exploration of trade-off
between security and energy consumption.

TABLE I
TABLE SUMMARIZING THE SCOPE AND REMARKS OF STUDIED SURVEYS.

Survey Year Emerging technologies Energy-efficiency for security

[20] 2017 − +
[16] 2018 ∼ −
[18] 2019 ∼ −
[13] 2019 + −
[14] 2018 + −
[22] 2020 − ∼
[19] 2020 ∼ −

Our survey 2021 + +
TABLE II

STUDIED SURVEYS BETWEEN 2017 AND 2020 REGARDING IOT SECURITY.

Legend −: Subject is not discussed, +: Subject is discussed, ∼: Subject is
partially discussed.

security solutions based on machine learning algorithms. In
[16], authors conducted a review of security solutions for
IoT networks. They considered a three-layer architecture: a
perception layer, a network layer, and an application layer.
They presented possible attacks against RFID nodes and
WSNs, and security solutions or services as solutions. In
[17], Yugha et al. also surveyed security protocols for each
network layer and simulation tools for IoT networks. In [18],
Neshenko et al. presented an extensive taxonomy of IoT
vulnerabilities, the linked attacks, their impacts, and the cor-
responding countermeasures. Authors also presented for each
class of vulnerability, the impacts on security objectives, and
countermeasures. They identified for each vulnerability class,
the state of current research, and the limits. Authors in [19]
focused their survey on threats and vulnerabilities in WSNs
and IoT networks and discussed cybersecurity strategies for
IoT networks. Menghello et al. in [9] studied existing security
vulnerabilities and attack surfaces for widely used communi-
cation technologies (ZigBee, Bluetooth Low Energy (BLE),
6LoWPAN with CoAP and LoRaWAN). They highlighted the
severe security problems present within commercial solutions
based on those communication technologies. Especially, in
ZigBee and BLE solutions, security and privacy are not the
primary concerns of manufacturers.

In [20], the authors surveyed energy-efficient mechanisms

for IoT security services and gave a taxonomy of those
mechanisms. They discussed the need for energy-efficient and
energy-aware security solutions that may use confidentiality,
authentication, access control, signature and verification, and
key establishment. Due to the heavy operations involved in
many security primitives, there is a need to design energy-
efficient security solutions. The energy-efficient mechanisms
are classified into six categories: online/offline security, out-
sourcing, adaptive security, low-power security protocols, data
compression, and hybridization. This survey is the first survey
to detail energy-efficient mechanisms for security solutions.
However, it mainly focuses on authentication methods, sig-
nature methods, and key management systems, as they may
consume a lot of energy. In addition to that, they did not
discuss security measures and linked (if they exist) energy-
efficient mechanisms using PHY-layer properties.

In [21], Yousefpoor et al. surveyed various methods to
secure the data aggregation process for WSNs and established
a taxonomy depending on the network architecture. Data
aggregation is a well-known method used to reduce the energy
consumption in WSNs.

In [22], Tedeschi et al. presented the different methods of
Energy Harvesting (EH) and surveyed the existing security
solutions for energy harvesting networks, as they exhibit
particular properties. Moreover, they considered that EH
networks have less available energy. They focused their study
on EH networks harvesting RF energy. Authors presented
specific threats in energy harvesting networks such as
beamforming vector poisoning attacks, leeching, greedy,
and cheating attacks. To overcome those threats, authors
presented multiple security methods for different kinds of
EH networks. Those methods can be categorized into two
parts: cryptography methods and data secrecy methods using
PHY-layer properties. On one-hand, cryptography methods
for EH networks focus on pre-computation techniques,
computation offloading, optimization of the implementation
to reduce the energy consumption, or a dynamic adaptation of
the security service. On the other hand, PHY-layer methods
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and properties guarantee data secrecy. This review is more
focused on the security of EH networks than using EH
methods to improve security solutions for IoT networks.

The presented surveys focus on different methods to secure
IoT networks with different approaches. However, energy
conservation is not the main focus of these surveys. Energy
is a resource that may be protected against sleep deprivation
attacks for instance, but it has not been discussed as a resource
to be well managed along security services in IoT networks.
In [22], authors considered security for EH-WSNs networks.
Authors in [20] focused on the reduction of the energy cost
of security solutions used in IoT networks. In [14], authors
exposed context-aware security solutions that are energy-
efficient, but they did not provide an in-depth explanation on
the energy-efficiency of context-aware security. Moreover, the
energy efficiency of security solutions is not the main focus of
their survey. Authors in [21] only focused their study on data
aggregation. There is no survey considering the optimization
of the energy consumption of a whole security solution, from
the physical layer to the application layer.

In our study, we found that few surveys tackled the problem
of energy for security solutions and the need for a trade-off be-
tween the security level and energy consumption. Whether we
consider EH-enabled IoT networks or generic IoT networks,
there is an urgent need to consider the energy factor in the
design of security solutions. Indeed, their energy cost is not
negligible and it impacts the available energy for other tasks.
Hence, this will be detailed in the rest of our survey.

III. IOT ENERGY SAVING MECHANISMS AND ENERGY
HARVESTING

Since IoT devices have limited energy resources, it is
necessary to enhance them with energy management and
optimization solutions in order to maximize their lifetime. In
this section, we will present a review of energy management
and optimization techniques that we classify into two main
categories: energy management mechanisms and energy har-
vesting mechanisms.

• Energy management methods save energy to improve
network lifetime. Duty-cycling or global strategies are
examples of such mechanisms.

• Energy harvesting mechanisms allow a node to harvest
energy from the surrounding environment. This category
includes energy transfer methods, wireless transfer meth-
ods, and energy harvesters.

We summarize in figure 1 the different categories pre-
sented in this section. We do not aim to present all existing
techniques. Instead, we give the readers a quick overview
of existing harvesting and management techniques. Extensive
research has been conducted in this field and complete reviews
have been written [10]–[12].

A. Energy management mechanisms

Energy in IoT networks can be efficiently managed and
saved using different techniques issued from green IoT re-
search. Green IoT can be defined as an IoT network where

greenhouse impacts are lower than a traditional IoT network or
nullified. Green IoT networks aim to decrease energy footprint
and respect the environment. Each layer of a green IoT
network is concerned, from the sensing layer to the deployed
applications.

In [23], the authors investigated the different green
principles and techniques to move toward green IoT. These
techniques may be software-based, hardware-based, policy-
based, or awareness-based. Moreover, changing the habits of
the users or recycling devices may lead to green IoT networks
too. Interoperability should also be heavily researched
because having interoperable systems could reduce the carbon
footprint of future IoT systems. It will also reduce economical
costs.

1) Duty-cycling:

The first efficient way to save energy is using duty cycling
mechanisms. Duty-cycling allows a node to cycle between
states (active, listening, sleeping for instance) to consume
less energy. In [24], authors studied duty-cycling for nodes
in a smart home environment. They designed an algorithm
implementing duty-cycling for IoT nodes and conducted ex-
periments on a small test-bed with an Arduino. Their results
show that the Arduino consumed less energy during off and
pre-off cycles than in the active cycle state.

In [25], the authors studied Content-Centric Networking
(CCN) for WSNs and provided an algorithm to reduce the
energy consumption for content forwarding: ADDC-CCWSN
(Adaptive and fully distributed duty-cycle algorithm for
content-centric wireless sensor networks) based on duty-
cycling. Nodes having a high activity rate for forwarding
content have a high duty cycle and it is reduced if these nodes
do not forward a lot of contents. This duty-cycling algorithm
is adaptive and can be increased or decreased depending on
the users interest. Authors show that reducing the activity
of nodes does not impact the functionalities of the protocol
and reduces energy consumption. Presented concepts can be
applied to IoT as duty-cycling can be used to reduce the
activity of less active IoT nodes.

2) Clustering:

Clustering is used to group nodes into clusters. In a cluster,
a cluster head (CH) is elected and is in charge of scheduling
communications for its cluster members. There exist different
clustering algorithms and one famous clustering algorithm is
LEACH [26]. Authors in [27] presented an adaptive clustering
solution based on LEACH and energy harvesting. Their solu-
tion works in two phases. One phase is the setup phase where
a CH sets up communications in its cluster. The second phase
is the operational phase where cluster members sense and send
data to their CH. In their simulations, the effectiveness of their
solution is validated with an increased network lifetime and a
better throughput.

In [28], Wang et al. presented a solution that includes solar
energy harvesting sensors, cluster head re-selection, wireless
charging, and tour planning. Regarding the clustering section
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Fig. 1. Subfields of energy management methods and harvesting mechanisms presented in this survey.

of their work, authors studied cluster head re-selection when
the weather is rainy and a CH harvesting solar energy cannot
fulfill its duties anymore (due to a lack of energy). Cluster
head re-selection increases network lifetime.

3) Deployment schemes:

Deployment schemes focus on node deployment to reduce
the cost or the energy needed to transmit messages in the
network. In [29], the authors introduced a deployment scheme
to minimize the energy consumption of the IoT network. It is
focused on relay nodes as they are economically expensive.
Authors considered an approach similar to the Steiner tree
and provided an algorithm to solve the underlying problem.
Although the proposed method is interesting in the deployment
phase (offline) and shows lower energy consumption in their
simulations, it suffers from a high computational cost, even if
in some cases, the Steiner tree can be solved in a linear time.

Authors in [30] provided an energy-efficient architecture
model for Industrial IoT (IIoT) networks. The node deploy-
ment model is a hierarchical deployment model. It is done
using three layers: a sensing layer, a gateway layer, and a
control layer. Authors advocated that this hierarchical deploy-
ment should also consider link traffic constraints to achieve
energy-efficient IIoT. Their approach has been validated in
experiments where deployed nodes showed a lower energy
consumption and a higher resource utilization rate.

In [28], authors also investigated deployment schemes for
solar harvesting nodes. They provided two algorithms: one
for a discrete deployment space and one for a continuous
deployment space (solar nodes can be deployed everywhere).
Their algorithms give acceptable solutions due to the NP-
hardiness of the deployment problem.

4) Combined energy management techniques:

Combining multiple management methods allows the de-
signer to create efficient energy management systems. In [31],
Said et al. combined three strategies to design an Energy
Management Scheme (EMS) for green and heterogeneous IoT
Networks. This EMS is managed by servers which observe the
level of energy in nodes. The first strategy aims to minimize
the amount of transmitted data in the IoT network since radio
transmissions consume a lot of energy. The second strategy
schedules the tasks to reduce energy consumption. The last
strategy aims to guarantee fault tolerance. These strategies
are applied on energy-based nodes and the chosen strategy
depends on the energy level of the considered node. The
presented simulations demonstrated the efficiency of their
EMS compared to another system without EMS. Indeed, fewer
nodes are dead and the throughput is 53 % better.

In [32], Ejaz et al. presented energy-efficient solutions and
an optimization framework for smart cities. To reduce the
energy consumption of green IoT applications, solutions such
as lightweight protocols, scheduling, predictive models for
energy consumption, or enhanced transceivers are needed.
The proposed optimization framework covers the different
objectives and the associated mathematical tools. Aside from
energy management techniques, energy harvesting can be
used in smart cities to increase network lifetime. Authors
studied the problem of scheduling energy transmitters (with
unlimited energy) to transfer energy to nodes in a network.
They also showed that number of tasks and number of energy
transmitters have an impact on the energy consumption of the
network.
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B. Energy harvesting schemes
On the other hand, IoT nodes can use energy harvesting

to re-fill their energy storage (battery, capacitor, or
supercapacitor) by converting the harvested energy into
a Direct Current (DC). Energy harvesting in IoT (and
previously in WSNs) is inspired by the existing harvesting
methods for renewable energies (solar, wind, geothermic, and
hydroelectricity). Existing taxonomies organize energies into
multiple categories: controllable or uncontrollable, predictable
or unpredictable, amount of harvested energy, etc. [11], [12],
[33], [34]. Intensive research has been conducted in this
domain and many results, regarding harvester technology,
energy prediction, or amount of harvested energy are available.

1) RF energy harvesting:

Radio-frequency (RF) energy harvesting has attracted re-
search due to the abundance of RF energy in the environment.
In [35], the authors presented a system model for Wireless
Energy Harvesting (WEH). The considered energy source is
the RF energy produced by a sink node. The main contribution
of their work is the introduction of a Power Management Unit
(PMU) with a duty-cycling policy linked to a Wake-Up Radio
(WUR). The PMU manages the allocation of the available
energy to the different components. The WEH possesses a
rectifier that converts RF energy into a stable direct current. In
their experiments, the proposed method drastically improved
network lifetime, up to 510 % for the Adhoc topology.

In [36], the authors provided state-of-the-art of architectures
for Wireless Powered Communication networks (using RF
energy) which are WET (Wireless Energy Transfer), SWIPT
(Simultaneous Wireless and Information Power Transfer), and
WPCN (Wireless Powered Communication Network). WET
is a building block for the two other architectures. In SWIPT
networks, signals used for data transmission and energy trans-
fer are the same, while for WPCN, an energy signal is sent
downlink and the harvested energy will be used to send data
in the uplink.

In [37], Mishra et al. explored different scenarios and
methods to improve the efficiency of RF energy harvesting
with a focus on multipath energy routing (MPER). RF energy
harvesting suffers from losses and interference, and MPER
could limit the impacts of those problems. Indeed, MPER
reduces charging time and allows for a higher number of
nodes that never run out of energy.

2) Prediction of the amount of harvested energy:

Some natural energy sources cannot be controlled, as they
are far away (e.g. the Sun), chaotic (e.g. the wind), or disrupted
by hostile weather conditions. Thus, it is important to predict
in the near future how much energy nodes can harvest to adapt
their activity.

One of the first proposed models to predict the amount of
harvested solar energy is the Exponentially Weighted Moving-
Average (EWMA) method [38]. It takes advantage of sun
cycles as they begin and end, in a given season, roughly at the
same time each day. A day is decomposed into time slots of 30

minutes (a total of 48 time slots). The main assumption of the
model is that the amount of harvested energy during the day d
at the time slot t is similar to the energy harvested during the
previous day d−1 at the same time slot. Although it can adapt
to seasonal changes, EMWA is not suited to environments
subject to chaotic weather conditions.

In [39], a novel energy prediction (PROfile Energy pre-
diction, Pro-Energy) model for solar and wind energy is
presented. Previous models such as Exponentially Weighted
Moving Average (EWMA) and Weather-Conditioned Moving
Average (WCMA) [40] lack the ability to consider multiple
previous observations for the prediction of harvested energy
in the current time slot. Pro-Energy may be used for short-
term predictions with a weighting parameter α and medium-
term predictions by using a single or multiple past profiles.
Their experiments validated the effectiveness of Pro-Energy
compared to EMWA and WCMA regarding energy prediction
and prediction errors.

In a more recent model [41], authors proposed an energy
prediction algorithm for solar energy harvesting for WSNs
called QL-SEP. As opposed to previous works, the proposed
work uses Q-learning to be able to capture weather variations
during the day. It may use similar observations from previous
days. In their simulations, QL-SEP performed better than
EWMA and Pro-Energy but showed weaknesses during winter
with high error predictions (due to the bad weather).

C. Wireless Charging

Wireless Charging is a special case of energy harvesting
where Mobile Chargers (MCs) make tours to charge the battery
of devices. MCs can also collect data while charging nodes.

In [28], along with clustering and deployment schemes,
authors also considered the wireless charging problem. They
highlighted that in previous works, only full recharges were
considered. Thus, they decided to use partial recharges and
optimize the trajectory of mobile chargers according to these
partial recharges. Due to similarities with the Traveling Sales-
man Problem with Neighborhoods (TSPN), authors designed
a heuristic to optimize the charging time of nodes. Their
simulations showed the efficiency of their complete framework
regarding energy savings and trajectory optimization.

In [42], Abid et al. provided charging strategies and an
architecture based on solar energy harvesting and wireless
charging for WSNs. The network has an Energy Harvesting
Base Station (EHBS) supplying a mobile charger. The goal
is to improve network lifetime while considering the costs
of deploying EHBS with MCs. The three charging strategies
provided by the authors for the MCs are: on Demand energy
Distribution Protocol (DDP), Periodic energy Distribution Pro-
tocol (PDP), and Periodic energy Distribution Protocol with
Priority (PDPP). They made experiments to analyze network
lifetime along with deployment costs for each protocol and
different numbers of EHBSs. They found out that the best
trade-off between network lifetime and deployment cost is the
use of one EHBS and PDP protocol.

In [43], authors presented a framework to minimize the
energy consumption of a MC charging devices. Best Charging
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Efficiency (BCE) allows a MC to charge multiple nodes at
once. BCE is designed as a first algorithm to compute the
charging cost. A second algorithm, Branching Second Best
Efficiency Algorithm (BSBE), is designed to overcome cluster
selection problems when the number of nodes increases. BSBE
takes the second best clusters, but it provides a trade-off
between performance and computation time. The charging
path is determined by considering the energy in the MC and
the remaining energy of nodes. In their experiments, BCE is
computationally faster than BSBE. Nevertheless, BSBE has a
better charging cost and performs better than BCE in large
networks.

In [44], authors also tackled the optimization of charging
tours and charging time. They provided two algorithms in
their framework: Charge Time Optimization of Wireless
Mobile Charger (CTOWMC) and Route Optimization of
WMC algorithm (ROWMC) algorithms. Their solution,
compared to other works, use two MCs, one MC dedicated to
lifetime balance (minimizing the variance of the lifetime) and
one spare MC to charge nodes which have low energy levels
(under a threshold). In their experiments, the variance of the
remaining lifetime for ROWMC is lower than other schemes,
whether it is in low-density networks or high-density networks.

Research in the field of energy management and energy
harvesting is important and multiple surveys on the matter
exist [10]–[12] as presented in section II.

On one side, energy management schemes allow nodes to
save energy in an efficient manner but they introduce new
challenges such as designing cross-layer protocols to consider
these energy-saving mechanisms with each aspect of IoT
networking. On the other side, energy harvesting methods
replenish energy containers with variable efficiency. RF energy
is an abundant energy source but the converted power is low.
Solar and wind energy can yield more power, however, they
are uncontrollable. Nodes harvesting these energies must be
deployed in the best zones to harvest the highest amount of
energy.

MCs can drastically improve network lifetime if they are
used along with energy harvesting nodes. However, MCs
need to have considerable batteries to charge nodes and they
are expensive. Indeed, in [44], authors did not consider that
WMCs consume energy to move and they considered that
WMCs have unlimited energy. These assumptions are not quite
real, as WMCs have a limited energy budget.

Moreover, techniques based on node monitoring to choose
a strategy, such as in [31], are not secured. If malicious nodes
report wrong energy levels to the Energy Management System,
it can take wrong decisions and impact badly the network.
Some schemes are not secured, which is a disadvantage in
a world with many cyber threats and attackers. Hence, there
is a need to secure IoT nodes to keep them alive as long as
possible.

IV. RECENT ADVANCES IN IOT SECURITY

In this section we firstly recall basic notions of IoT security,
then we present some recent security solutions and discuss

their limits regarding energy efficiency. We also present intel-
ligent security mechanisms using learning techniques which
are useful to provide adapted security services. Hence, IoT
networks become more reactive to threats when using intelli-
gent security methods. Figure 2 lists the different points we
are going to present in this section.

A. Fundamentals of IoT security

Due to the existence of multiple technologies in an IoT
network, the number of potential attacks and vulnerabilities
increases. Researchers have presented multiple taxonomies and
existing attacks in previous surveys and articles [9], [13], [18]–
[20], [22], [45].

Security methods for IoT networks need to fulfill multiple
security services:

• Confidentiality: data must be protected from malicious
entities.

• Integrity: data must be accurate and protected against
malicious modifications.

• Availability: data must be available as much as possible
and unavailable to malicious entities.

• Non-repudiation: Actions or messages sent by a node
cannot be repudiated by this node.

Confidentiality, integrity, and availability are called the CIA
attributes. In addition, the privacy of the users is also a
challenging issue in IoT networks.

Two types of attackers can target IoT networks and impair
one or multiple CIA attributes:

• Passive attackers who do not actively seek to impair
the network. Eavesdroppers are an example of passive
attackers.

• Active attackers who actively try to impair the network.
Denial of Service attacks and jamming attacks are active
attacks.

When deploying security solutions in an IoT network, both
classes of attackers should be considered.

There are also two classes of attacks: cyber threats targeting
the different layers of an IoT node or IoT network and physical
threats which target the physical device such as its destruction.

A baseline approach to secure communications in IoT
networks is encryption. This is done to protect the content of a
message from an attacker and to do so, encryption relies on the
use of keys. There exist two types of encryption: symmetric-
based encryption and public-key encryption. In symmetric-
based encryption, the key used for encryption and decryption
is the same. In a network, each node must have the same
key if they use a symmetric-based encryption scheme. Public-
key encryption considers a pair of keys (public and private)
to encrypt and decrypt messages. The public key of a node
can be known from other nodes and is used for encryption
whereas the private key of this node, as its name suggests, is
only known to this node and is used for decryption. For both
classes of encryption, keys must be generated and distributed
in the network.

Authentication methods are used to authenticate the sender
of a message. It is needed in an IoT network as a lot of
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Fig. 2. Oultine of the studied classes of security solutions.

data can be generated and the number of nodes is signifi-
cant. If malicious nodes are present and try to impersonate
other nodes, authentication can prevent these malicious nodes
to access sensitive data. For instance, in [46], the authors
provided an authentication protocol based on Elliptic Curve
Cryptography (ECC) for IoT edge devices, ECCbAP, with a
focus on BLE and RFID tags. Their protocol has two phases:
registration phase and login (plus authentication) phase. Au-
thors removed the hash function from edge devices. This
reduces the computational cost of the protocol for the edge
nodes. They claimed that, compared to other protocols having
three or four phases, ECCbAP is secure against the same
attacks and provides additional security against impersonation
attacks, message integrity attacks, and replays attacks.

B. Security based on physical properties

In this part, we consider different security solutions based
on physical properties. The use of physical properties such
as Received Signal Strength (RSS) may be useful for IoT
security and may protect the network from threats such as
eavesdropping or DoS attacks. Tedeschi et al. in [22] presented
security solutions for the physical layer of energy harvesting
networks.

Ghahramani et al. presented in [47] an authentication
method based on Received Signal Strength (RSS) to overcome
weaknesses of authentication protocols studied in their state of
the art. RSS is used to determine the presence of malicious
nodes. If malicious nodes are in the network, nodes solve an
optimization problem to find their position. Their simulations
showed that their method had a lower distance error and saved
energy, even if RSS computation may incur additional energy
costs for some nodes.

Chen et al. presented in [48] three scheduling schemes
to protect data secrecy when an untrusted relay is present:
Optimal Scheduling (OS), Threshold-based Scheduling (TS),
and Random Scheduling (RS). They observed during the
simulations that a higher number of sensors in a cluster
improves the energy efficiency and security of OS scheme.
They also observed that TS is a trade-off between OS and RS
regarding energy efficiency and data secrecy.

C. New security approaches

New technologies such as blockchain or Software-Defined
Networking (SDN) [49], [50] may be used to create enhanced
IoT security solutions. Indeed, SDN offers the possibility to
program network functionalities, such as routing, packet filter-
ing, or security rules. Control and data planes are separated and

thus, it enables scalability and quick responses to changes and
threats. In addition, trust systems are useful for IoT security
as they monitor nodes behavior and conduct analyses to detect
malicious nodes.

In [51], Szymanski explored security and privacy concerns
for green IoT networks. The proposed approach to achieve a
good security level considers a combination of a centralized
control plane with SDNs and deterministic virtual networks
(DVNs) with a lightweight encryption protocol using long
keys. The SDN control plane can detect unauthorized and
unplanned data flows. The use of FPGA with silicon photonics,
along with SDN, increases the available bandwidth while
reducing economical costs and communication delays. Author
claims that strong security is achieved thanks to the optical
switches, using multiple SDN control planes along with a
voting system, and lightweight encryption with long keys.

In [52], authors proposed a decentralized and secure energy
management framework based on blockchain and SDN for
microgrid networks. SDN is used within microgrids to secure
communications and to implement security policies (such as
access control and whitelists). Microgrid Master Controllers
(MGMC), which are powerful devices deployed in microgrids,
use blockchain technology to secure data exchanges with each
other. MGMCs also manage the SDN control layer and use
asymmetric cryptography to interact with the blockchain.

In [53], authors provided a security solution based on
blockchain to secure a smart home IoT network. They also
used AI to offer intelligent services to the users. They provided
a proof of concept with a light sensor, a smart curtain, and
lights.

Hasan et al. aimed in [54] to optimize the number and the
placement of trust systems in IoT-based SCADA systems for
grid networks. Trust systems are used to manage cyberattacks
with firewalls and intrusion detection systems but they are
expensive. Their solution minimizes the number of trust nodes
deployed by solving an optimization problem (thus minimizing
the costs). Authors evaluated their approach on IEEE test
system topologies. Compared to a greedy approach, their
solution uses more trust nodes. It also provides a higher
security level as the number of monitored network segments
is higher.

Using evolutionary game theory as their main building
block, authors presented in [55] an adaptive cybersecurity
framework in IoT-based healthcare applications. In the con-
sidered scenario, the healthcare institution (the highest layer)
is connected to smart homes which are connected to smart-
phones with wearables (the lowest layer). In their simulations,
attackers and defenders are not aware of the choices of the
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other players and after around 160 runs, for both attackers
and defenders, the average utility stabilizes. Both populations
focus their actions on the highest layer (healthcare institution).

D. Intelligent security mechanisms

Security solutions may also consider learning-based tech-
niques. Learning-based techniques are useful in Intrusion
Detection Systems (IDS) or can be used to design adaptive
security methods. The significant amount of data generated
by IoT networks justifies the use of intelligent algorithms
to secure them and research in this field has increased these
last years. For instance, in [57], authors surveyed various ma-
chine learning and deep learning algorithms for IoT security.
Figure 3 displays the three categories of intelligent solutions
presented in this subsection and in table III, we sum up the
contribution of each studied article in the field of artificial
intelligence for security.

Each class of techniques has different characteristics and
can be used to work on two kinds of tasks: classification
and regression tasks. Machine Learning (ML) techniques
are techniques learning from raw data representations
relationships between variables. Deep Learning (DL) can
be used in regression, classification tasks, or even in data
generation (variational autoencoders or generative adversarial
networks for instance). It heavily relies on artificial neural
networks. Reinforcement Learning (RL) is a special case
of machine learning where an agent interacts with its
environment and tries to maximize the rewards it gains
over time for each action taken. RL can use deep learning
approaches in conjunction with RL algorithms, such as
Deep-Q learning. RL mimics well the learning process
humans have. The scope of this survey is not to present every
existing learning technique and application domain, but to
give a quick overview of recent learning techniques for IoT
security.

1) Machine learning approaches:

In [56], authors proposed IoTArgos, a monitoring security
system based on machine learning which detects anomalous
behaviors and intrusions in the network. It is placed in the
home router to monitor multiple layers and analyze data
issued from different communication protocols. IoTArgos
works in two phases: a first phase where IoTArgos is trained
using supervised approaches (on known attacks) and a second
phase where IoTArgos uses unsupervised learning to detect

outliers. In their experiments, authors considered multiple
learning algorithms to find the best combination with the
best classification and error results. They showed that the
deployment of IoTArgos with the best classification results
uses random forests for the first phase and PCA for the
second phase with an accuracy of 98.18 % and an Area
Under the Curve (AUC) of 96.78 %.

2) Deep learning based IoT security approaches:

In [58], authors presented a neural network approach in
the MAC layer of MICA2 motes to detect DoS attacks and
mitigate them. Each mote possesses a Multi-Layer Perceptron
(MLP) linked to its MAC layer. The MLP takes as inputs
the collision rate, packet request rate, average packet waiting
time and a unit bias to give in return a suspicion factor in the
interval [0; 1]. If this suspicion factor is above a predefined
threshold, the node is shut down. Two training algorithms
are considered: backpropagation (BP) and Particle Swarm
Optimization (PSO). In their simulations, they considered 17
nodes with an attacker, and nodes are initialized with initial
random battery values between 500 and 1000 units. They
observed that PSO has lower mean square errors but a higher
training time than BP. Moreover, a higher threshold decreases
the network lifetime but it also decreases the number of false
alarms.

In [59], authors investigated the use of an Improved Condi-
tional Variational AutoEncoder (ICVAE), along a Deep Neural
Network (DNN), to detect intrusions. ICVAE generates new
attack samples from an initial training data set to increase the
number of rare attacks in the data set. It also reduces data
dimension and initializes the weights of the hidden layers
of the DNN, which is used to detect attacks. Authors used
NSL-KDD and UNSW-NB15 data sets to validate their model
implemented with TensorFlow. ICVAE-DNN has the best
detection results on the NSL-KDD dataset compared to other
oversampling methods. For the UNSW-NB15 dataset, ICVAE-
DNN has good detection rates for many attacks but falls
behind other models for DoS, backdoors, analysis, fuzzers,
and reconnaissance attacks compared to other oversampling
methods.

Considering Deep Belief Networks (DBNs) and PSO
algorithm, authors proposed in [60] an intrusion detection
model for Unmanned Aerial Vehicle (UAV) networks. PSO
algorithm optimizes the number of hidden layer nodes of the
DBNs which detects the intrusions. To validate their model,
authors used the KDD Cup99 dataset which mimics intrusions
in a military network. With a DBN using four layers, their
model reached an accuracy of 92.44 % and presented the best
results compared to other approaches (such as C-SVC). They
also compared the effects of different optimization algorithms
for the number of nodes in each layer and PSO has the best
results. However, their work has not been tested on a practical
UAV network whose nodes are resource-constrained.

3) Reinforcement learning based IoT security approaches:
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Article Subfield Learning methods Security measure

[56] Machine learning Random forests, PCA Intrusion detection in smart home networks
[58] Deep learning Multi-layer perceptron DoS attacks detection and mitigation
[59] Deep learning Improved Conditional Variational AutoEncoder (ICVAE),

Deep Neural Network (DNN)
Intrusion detection

[60] Deep learning Particle swarm optimization (PSO), Deep Belief Network
(DBN)

Intrusion detection in UAVs

[61] Reinforcement learning Q-learning Impersonation attack detection
TABLE III

INTELLIGENT SECURITY SOLUTIONS.

As opposed to machine learning and deep learning, rein-
forcement learning does not need to use an initial dataset to
learn to detect threats. These methods, applied to IoT security
can protect networks against known and unknown threats
and provide ever-evolving security services. Indeed, in [62],
authors surveyed existing reinforcement methods and stated
that reinforcement learning can be efficiently used to develop
IoT security solutions against DoS, spoofing, or jamming
attacks.

In [61], Tu et al. applied Q-learning to detect impersonation
attacks in fog computing. In the network, when receivers need
to detect transmitting nodes using fake MAC addresses, they
run a hypothesis test on each packet they receive from those
suspicious nodes. The test uses Q-learning to dynamically
adapt its threshold. They compared their approach with a fixed-
threshold approach and observed that theirs has better accuracy
and a lower average detection time. Average Error Rate (AER),
False Alarm Rate (FAR), and Miss Detection Rate (MDR) are
also lower for the Q-learning approach.

E. Remarks

The research works presented interesting results. However,
they have clear limitations. For security solutions based on
ECC, the main problem is the heavy computation cost. In [46],
although the hash function has been eliminated, the energy
consumption is not discussed in the paper as ECC is used. It
should have been discussed as they claim that their solution
is good for RFID nodes or BLE-enabled nodes.

Security solutions for the physical layer and using CSI or
RSS may consider energy efficiency. As discussed in section
II, Tedeschi et al. in [22] surveyed many security solutions for
Energy-Harvesting (EH) networks using PHY-layer properties
but solely focused their study on specific threats and did not
fully explore the question of learning methods to reinforce
security in EH networks.

Security solutions based on blockchain may have some
difficulties when the network scales up, such as the size of
the distributed register. If there are thousands or millions of
nodes contributing to a blockchain, there is a need to limit the
size of the blockchain. In [53], authors only use three smart
things for a smart house network, which can be handled easily
by a blockchain. Moreover, they did not develop the AI part
in their PoC. In the future, a smart house may use more than
a hundred of connected objects to deliver multiple services to
its users.

Intelligent security solutions can face the complexity linked
to the chosen model and the data. If data is not properly

cleaned, it can greatly impact the effectiveness of the learning
model. Moreover, if the model is not suited to the situation,
it can negatively impact security (with a lot of false alarms or
no alarms). Authors did not provide practical implementations
in [60], [61] and that is why it is hard to determine if their
methods can efficiently work in constrained environments.
Other problems linked to reinforcement learning are the curse
of dimensionality which is the difficulty of discretizing a
continuous action space or working with a continuous action
space.

Solutions based on adaptive security may be efficient against
a wide array of attacks. However, the presented framework
in [55] does not consider the heavily constrained nature of
wearables and the limited battery of smartphones.

Moreover, the presented papers do not consider energy as
a constraint. Each security solution induces additional energy
costs in communications (higher message sizes within security
headers), computations (ECC needs a lot of computation
power), or memory usage (learning-based models can use a
lot of memory space). We summarize in table IV the studied
security solutions, their category, the underlying technologies,
and the mitigated attacks.

In the next section, we introduce works measuring the
energy cost of security solutions and energy-aware security
solutions.

V. TRADE-OFFS BETWEEN SECURITY AND ENERGY

In the previous section, we have presented recent IoT se-
curity solutions. However, implementing security solutions in
IoT networks increases energy consumption due to overheads
in communications and computation. Hence, this reduces the
lifetime of devices. Few research has evaluated the impact of
security solutions on the energy consumption of the nodes.
We will now tackle the different impacts of security on en-
ergy consumption and present existing security solutions that
try to minimize nodes energy consumption while providing
the required security level. If nodes are energy-efficient and
rechargeable, they may have a longer lifetime and do not need
battery changes.

In subsection V-C we present security solutions considering
energy as a major constraint. In figure 4, we present the main
categories of energy-efficient security solutions we will present
in this section.

A. Measurement of the energy cost of security solutions

The discussed security solutions in section IV did not
consider the energy consumption, which is problematic if they
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Article Category Underlying technology Resilient against

[46] Authentication Elliptic curve cryptography (ECC) Impersonation attacks, message integrity
attacks and replay attacks

[48] PHY-layer security Secrecy rate, CSI Communication with an untrsuted relay
[47] PHY-layer security Received Signal Strength (RSS) DoS attacks
[51] Backbone security Software defined networking (SDN), deter-

ministic virtual networks (DVNs), optical
switches

Unauthorized packets, cyberattacker detec-
tion

[52] Cybersecurity for microgrids Software-Defined Networking (SDN),
blockchain

Data leakage, information distortion

[54] Cybersecurity for SCADA (trust systems deployment) Trust systems, linear programming Intrusions, information distortion
[53] Cybersecurity for smart homes Blockchain, AI Data leakage
[55] Adaptive security Evolutionary game theory Not specified

TABLE IV
RECENT SECURITY SOLUTIONS STUDIED FOR IOT IN THIS SECTION.

Consideration of energy
consumption in security methods

Lightweight
protocols

Energy-efficient
security Adaptive security Context-aware

security

Lightweight
authentication

Lightweight
encryption

Pre-
computation

Outsourcing

Energy-
awareness

Adaptive
encryption
method choice

Adaptive
security level
choice

Context-aware
encryption

Context-aware
authentication
and access

Context-aware
trust

Fig. 4. Different categories of security solutions considering energy presented in this survey.

have to be deployed in constrained nodes. There exist nu-
merous research works regarding energy costs for encryption
methods, authentication, and signature protocols.

First of all, using a security service or solution impacts
QoS, throughput, and energy consumption. Indeed, authors
in [63] observed that, for the IEEE 802.15.4 protocol, using
higher security levels negatively impact throughput, latency,
and energy consumption. For a payload of 24 bytes, the overall
energy consumption is increased by 31.5 % for the lowest
security level and by 60.46 % for the highest security level
(using encryption and authentication).

In [64], authors evaluated the energy cost of ECDH-ECDSA
(asymmetric, use of SHA-1 and secp160r1) and Kerberos
(symmetric, use of AES-128). They measured the energy cost
of different modes (transmit, listen, receive, compute sleep)
for two known platforms: MicaZ and TeloSB motes. They
observed that ECDH-ECDSA consumes more energy than
Kerberos, regardless of the platform they used (20 times on
the MicaZ mote and 10 times for TeloSB).

In [65], the authors studied the energy cost of 18 authenti-
cation methods on a real test-bed with energy and computation
constraints. They provided a design space to estimate the

impact of each block of an authentication solution. Indeed,
algorithm type (MAC-based or signature-based), security level
(in bits), number of passes (1 or 2), voltage scaling, and
the potential use of a hardware multiplier are all blocks
impacting the cost of a whole authentication method. For
MAC-based algorithms, authors considered SHA1, SH2, and
Keccak which are widely used. For signature algorithms,
they also considered known algorithms which are ECDSA,
Winternitz, and Lamport. They conducted experiments on a
MSP430 micro-controller powered by a supercapacitor and
solar energy harvesting. Their results show that signature-
based authentication protocols consumed more energy than
MAC-based solutions. Moreover, they observed that using a
higher CPU frequency reduces the energy consumption of
authentication methods and a 32-bit hardware multiplier also
reduces the energy consumption of ECDSA.

The energy cost for authentication or encryption may be-
come unbearable for small and energy-constrained devices.
In [66], Schaumont outlined that for a device using a piezo-
electric harvester, a single ECDSA authentication can only be
made every 20 minutes. He advocated the need for security
designs based on available energy rather than the available
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computing power.
In [67], authors evaluated the energy cost of three encryp-

tion algorithms on a microcontroller based on PIC18F45K22.
These algorithms are Tiny Encryption Algorithm (TEA) [68],
eXtended TEA (XTEA) [69] and SKIPJACK [70]. Two asym-
metric signature algorithms, RSA and ElGamal, are also stud-
ied but are implemented with low-size keys (16-bit). Regarding
encryption algorithms, the majority of energy is consumed
during the sending phase. XTEA consumes less energy than
the other encryption algorithms, with SKIPJACK consuming
the most during encryption. However, SKIPJACK takes less
time to complete encryption and data sending. For digital
signature algorithms, signing time and energy costs are higher
for RSA than for ElGamal.

In [71], authors presented a fast, secure and deployable
architecture for IoT made of open-source and off-the-shelf
components. They compared AES with and without hardware
accelerators, XTEA, and SEA to study the memory perfor-
mance, energy consumption, and execution time. It appeared
that AES-128 and AES-256 without hardware accelerators
have the worst performance, regarding energy, memory perfor-
mance, and computation time compared to XTEA and SEA.
However, if AES-256 uses hardware accelerators, the results
are the best. XTEA and SEA provide a lower security level
but are more energy and memory-efficient.

In [72], authors also observed that AES consumes more
energy than Chacha and Acorn, regardless of the platform
they used. However, encryption and decryption times depend
on the platform. Atmega328 is the slowest platform, contrary
to the ESP8266. Aerabi et al. confirmed in [73] that AES
and its variants were not among the best performing block
ciphers for the nRF51822 chip and Atmega328 platform. They
also validated that RC6, TEA, and Simeck have the best
performance, the lowest energy consumption, and few cycles
spent per bit.

Girgenti et al. studied in [74] the energy cost, encryption,
and decryption times of three Attribute-Based Encryption
(ABE) schemes: Goyal-Pandey-Sahai-Waters’s scheme (KP-
ABE), Bethencourt-Sahai-Waters scheme (CP-ABE), and Yao-
Chen-Tian scheme (KP-ABE). Through extensive simulations,
they observed that the number of attributes has a direct impact
on energy consumption, encryption, and decryption times. KP-
ABE schemes are more energy-efficient than the CP-ABE
scheme, but CP-ABE schemes are easier to implement.

Energy consumption of a given security service may impact
the network lifetime and incur economical or material costs:
batteries will be changed or replenished by operators. The less
energy a security service consumes, the less costly it will be,
whether it is economical or material. A first step to have a
balance between energy consumption and the security service
provided is to know how much energy is consumed by a
specific authentication, encryption, or signature algorithm. A
second step is to determine which encryption, authentication,
or signature algorithms should be used according to the
available resources. A third step is to efficiently incorporate
them in composing security methods in order to cover multiple
threats.

B. Energy model for security solutions

In the previous subsection, we outlined the works regarding
encryption, authentication, and signature energy costs. These
methods are the primary blocks to be used to ensure the pri-
mary security services (confidentiality, availability, integrity).

The use of models to evaluate the energy cost of security
solutions is important and pinpoint the most costly blocks
of a particular solution, not only regarding computation costs
but also regarding communication costs. Indeed, in [75], the
authors proposed an energy model to evaluate the energy cost
for secure IoT networking. All phases of a security algorithm
can be evaluated using this energy model. In symmetric
cryptography methods, the energy cost of security solutions
is low compared to asymmetric security solutions. The energy
cost of single operations has already been studied in previous
papers, but the networking part had not been considered. At
a given time t, the energy consumed by a node d, knowing it
has n connections, is given by:

Ed =

n∑
i=1

Ec(i) + EOS (1)

, with Ec(i) the cost of the ith connection of the node d and
EOS the energy cost spent by the node in the common tasks
(routine). Connection between two nodes can be broken down
in three phases (Ec): creation of the security context, data
exchange and key update or revocation (if the connection has
ended). The creation of the security context also consumes
energy. It is based on the energy cost of asymmetric or
symmetric procedures and the termination cost (which is
low). The cost related to the secure communication phase
is the sum of the energy needed for ciphering, integrity,
and authentication. Finally, there is an energy cost linked
to the transceiver. Simulation parameters were fixed using
values from older works on the energy cost of cryptographic
algorithms.

Works in the next subsection use their own model for the
energy consumption, a common model taking into considera-
tion each important block and the cost of each ”consequence”
does not exist. There is a need to propose general models
able to grasp the cost of each security operation in a security
solution.

C. Designing energy-efficient and energy-aware security so-
lutions

Researchers remarked that security can impact the energy
efficiency of IoT nodes. However, little research has tackled
the ways to improve the energy efficiency of security solutions.
As stated in [20], different energy-efficient mechanisms exist
to take advantage of the available energy for security methods.
These techniques are: online and offline security, outsourcing
heavy computations, adaptive security, low-power security
protocols, and size compression.

We present in this subsection a new taxonomy with four
categories: lightweight protocols, energy-efficient solutions,
adaptive security solutions, and context-aware security solu-
tions.
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Lightweight protocols (encryption and authentication) are
designed to run on constrained nodes, energy-wise or
computationally-wise.

Energy-efficient solutions use energy-efficient mechanisms
to minimize the energy consumption of a given security
solution.

Adaptive security solutions provide varying security levels
in response to adaptive threats or various data types (adapt the
security level to different data types). By adapting the security
level to present threats or data, energy can be saved.

Context-aware security solutions consider the context to de-
liver an adapted security service; they may present similarities
with adaptive security solutions.

In table V, we present the different surveyed solutions and
classify them with regard to their category, the type of IoT
network considered, and how energy is saved.

1) Lightweight protocols:

Lightweight protocols such as lightweight encryption and
lightweight authentication are designed to cope with the con-
strained nature of IoT nodes. Research in this domain has
increased in the past years and many surveys and lightweight
methods have been designed. For instance, in [96], authors ref-
erenced lightweight cryptography algorithms for the IoT and
classified them regarding their structure. They also provided a
comparative study of the hardware and software performance
of these algorithms and a security analysis.

In [76], authors provided two schemes for lightweight and
mutual authentication and key agreement for IoT networks.
The first scheme is designed for resource-constrained devices
and considers the use of the elliptic curve Qu-Vanstone
(ECQV) which is an implicit certificate scheme. The sec-
ond scheme is based on certificateless authentication and
key agreement (CL-AKA) and provides a slower but higher
security level. In their simulations, they studied the overhead,
which is lower than the majority of studied works and their
schemes are faster than other works, but the second scheme is
slower than the second scheme. However, the energy cost has
not been studied in this work and they did not simulate their
work in a heterogeneous network.

Seok et al. provided in [77] a secure Device to Device
(D2D) communication system for 5G-based IoT networks.
They used lightweight cryptography based on ECC and
lightweight authenticated encryption with associated data
(AEAD) ciphers. A token system based on ECDSA is used
between IoT nodes and general Node-B (gNB, 5G base
stations). They simulated their experiments and observed
that AES had the highest delay compares to lightweight
ciphers. Their system performs basic authentication using
5G-AKA and provides confidentiality and integrity of the
exchanged data. It also provides anonymity and protection
against impersonation attacks, eavesdropping, privacy sniffing,
free-riding attacks, and location spoofing.

2) Energy-efficient security:

Energy-efficient security methods exploit different mecha-
nisms for energy savings while providing an adequate security
level. As stated previously, in [20], authors provided a first sur-
vey on energy-efficient mechanisms for IoT security solutions.
In this subsection, we present recent solutions using energy-
efficient mechanisms.

Kommuru et al. provided in [78] a scheme to reduce energy
consumption while ensuring an adequate security level in
WSNs. They used XOR encryption and asymmetric cryptog-
raphy to secure the network while using PSO and LEACH
to cluster nodes. They validated their solution in simulations
and improved network lifetime compared to an approach only
based on LEACH or PSO. However, they did not discuss the
cost of their security method which may be high due to the
use of asymmetric encryption.

Authors in [79] provided an outsourcing scheme called
HELIOS for green WSNs. By outsourcing costly security
operations in neighboring nodes, nodes with few energy may
improve their lifetime. HELIOS is made of three methods:
tHELIOS for trusted environments, dHELIOS for detection of
malicious nodes, and iHELIOS for identification of malicious
nodes. tHELIOS and dHELIOS decrease energy consumption
of the delegating node, regardless of the chosen security level.
iHELIOS increases the energy consumption of the delegating
node for increasing the number of nodes and values of security
levels.

Suslowicz et al. in [80] investigated the use of pre-computed
values called coupons for security methods in IoT networks.
Coupons can be used to optimize cryptographic operations that
can be separated into an offline phase and an online phase.
They are computed during the offline phase and used during
the online phase. They validated their approach by using it
on AES-CTR for key expansion and counter increments and
observed that energy consumption and latency were reduced.

Fang et al. proposed in [81] two algorithms to send data
in a single block or in multiple data blocks while considering
security costs created by the headers. Security headers cause
a supplementary but fixed cost (for a given security level).
Each algorithm corresponds to a specific case: a case when
nodes have harvested enough energy and a case when energy
harvesting is not sufficient to supply the capacitor. Their sim-
ulations exposed that their algorithms achieved near-optimal
results.

Authors provided in [82] a security solution based on ECC
and MQTT to mitigate eavesdropping, replay attacks, and
data tampering for IoT networks. Replay attacks and data
tampering are managed by using a timestamp system along
with a wake-up pattern mechanism. ECC is made energy-
aware by assigning to each elliptic curve considered (193,
239, and 409 bit length), a key frequency exchange. When
the available energy decreases, the method chooses a curve
with a lower security level. Their model improved network
lifetime during their experiments. However, as the available
energy decreased, the number of messages exchanged for key
re-generation increased, and the amount of energy spent in
communications increased.

Mohd et al. in [83] provided a power-aware and adap-
tive encryption method. Their method maps different pre-
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Article Type of network Class of security solutions Concerned Security Solution(s) How is energy saved?

[76] Generic IoT Lightweight authentication Mutual authentication, ECQV Use of lightweight cryptography
[77] 5G IoT Lightweight authentication and encryption D2D communications Use of lightweight AEAD ciphers
[78] WSNs Energy-efficient security XOR encryption Use of LEACH and PSO to reduce the energy

consumption of routing paths.
[79] WSNs Energy-efficient security Discrete Log based schemes Outsourcing.
[80] Generic IoT Energy-efficient security AES-CTR, TRNG Pre-computation.
[81] Low-power sensors Energy-efficient security Lightweight encryption Decide if data should be sent in one big packet or

multiple packets with a security header for each
packet.

[82] Fog and edge IoT Energy-efficient security ECC Choice of elliptic curve based on remaining energy
[83] Generic IoT Energy-efficient security HIGHT Cipher Mapping of different HIGHT implementations to

pre-defined power levels.
[84] 5G IoT Energy-efficient security Anomaly detection in SDNs A lightweight anomaly predetection module runs

before activating a heavyweight detection module.
[85] SDN-enabled IoT Energy-efficient security Public and private blockchain Using both public and private blockchain in an

SDN environment eliminates Proof of Work (PoW)
and thus saves energy for all devices.

[86] Generic IoT Energy-efficient security Adaptive encryption (AES) Adaptive choice of AES method reduces energy
consumption for resource constrained devices.

[87] WSNs Adaptive security Secure MAC-Access, Key management Energy levels considered and energy harvesting
nodes.

[88] 5G-based IoT Adaptive security Adaptive encryption Dynamic choice of a security level using reinforce-
ment learning.

[89] 5G-based IoT Adaptive security Adaptive encryption Adaptive security reduces energy consumption.
[90] 5G IoT Adaptive security Dummy signals countering rogue nodes Optimization of security, privacy, energy consump-

tion and QoS.
[91] SDN-enabled IoT Adaptive security IEEE 802.15.4 Adaptive choice of a security level among the

eight possible levels in function of threat level and
available energy.

[92] Smart home IoT network Context-aware privacy Differential privacy Choice of the best energy offer which satisfies
privacy to have energy savings.

[93] Generic IoT Context-aware security Encryption methods Choice of an adapted encryption method regarding
the context and available energy.

[94] Mobile devices Context-aware security AES, RC5, HMAC-MD5 Allocation of adapted security levels to a user and
the places they will visit.

[95] Mobile devices Context-aware security Not specified Dynamic choice of a security level when arriving
in a new place.

TABLE V
ENERGY-EFFICIENT AND ENERGY-AWARE SECURITY SOLUTIONS.

determined power levels to a particular encryption method.
In their experiments, compared to static security levels (use of
a single encryption method with a fixed number of rounds),
their method consumed 39 % less energy than a method using
2 rounds and 32 iterations. 35 % of energy is saved compared
to the encryption made with one round and 32 iterations.

Wang et al. in [84] provided a machine-learning based
scheme, to detect anomalies in wireless SDNs. They designed
an energy-efficient detection module made of a lightweight
anomaly pre-detector and a heavyweight anomaly detector.
The heavyweight anomaly detector uses machine learning
and likelihood-based techniques to detect if suspicious flows
are signs of DoS and DDoS attacks or not. Their module
consumed less energy, had a better detection rate and an
overall lower false positive rate than other machine-learning
based detection schemes.

Yazdinejad et al. in [85] provided an efficient SDN con-
troller architecture to secure IoT networks while reducing
the energy consumption of all devices. A public blockchain
is used between SDN controllers and private blockchain is
used between the devices of an SDN domain (managed by an
SDN controller). Authors managed to eliminate Proof of Work
(PoW) by using both categories of blockchain. If a device has a
malicious behavior, its ID is registered in the public blockchain
and it is blacklisted. They validated the effectiveness of their
method in simulations and observed a reduced latency along
with a lower energy consumption.

Farooq et al. provided in [86] a security framework for
IoT networks with a focus on heterogeneous and constrained
devices. Their method picks a security level according to

the available resources and the needed throughput. Authors
solved a multi-objective optimization problem with the
use of the Hungarian algorithm. In their experiments, their
method has a higher average throughput and a lower average
resource utilization than a greedy approach (maximizing the
throughput).

3) Adaptive security solutions:

Adaptive security solutions provide an adapted security
response toward evolving threats or different classes of data.
By choosing a lower security level if there are few or no
ongoing threats, energy can be saved.

Mauro in [87] considered the problem of security and
channel access in energy harvesting WSNs (EH-WSNs). He
discussed adaptive security by assigning to each packet pi
a security value H(pi), which is a pair (encryption method,
authentication). Each receiver has a lower security capability
value and a maximum capability value. These values are sent
within the beacons to advertise their security level. Then a
safe route can be chosen to transfer packets. Energy can also
be considered to choose an adapted security scheme. Thus, it
provides an energy-aware and adaptive security level.

In [88], the focus is on adaptive security using Reinforce-
ment Learning (RL) and Deep Reinforcement Learning (DRL).
The goal is to determine the optimal security policy to choose
in an IoT network using 5G and User Equipments (UEs). The
choice of a security solution regarding multiple parameters
such as available energy, harvested energy, or consumed en-
ergy can be modeled as an Infinite Horizon Markov Decision
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Process (MDP). Thus, the choice of a security context (4
available levels) is energy aware by using RL and DRL
techniques. Each packet type (user plane, control plane, and
network discovery messages) has a set of allowed security
levels. Nodes can also harvest energy from their environment,
which is considered in the environment model used in RL and
DRL models.

Hellaoui et al. proposed in [89] an adaptive security frame-
work based on coalitional games to choose the optimal security
level (encryption method and key length) for IoT devices
during the establishment phase. During the use phase, the
network uses a trust system to monitor, detect threats, and take
appropriate and adaptive security decisions. They validated
their framework through extensive simulations and observed
a reduced energy consumption compared to a static approach
where only the highest security level is used.

Mohammed et al. in [90] presented UbiPriSEQ, a deep
reinforcement learning scheme to guarantee privacy, secu-
rity, QoS, and reduce energy consumption in 5G-based IoT
networks. UbiPriSEQ provides security against rogue nodes
and jamming attacks while ensuring privacy through Laplace
mechanism. Nodes use less energy by offloading tasks to other
nodes. UbiPriSEQ is evaluated in simulations and compared to
an approach based on Constrained Markov Decision Process
(CMDP), their approach provides better privacy, a lower
latency, and a better average utility. However, authors did not
provide details on how much energy was saved and on average,
how many tasks were offloaded.

Mao et al. in [91] presented a scheme to secure IoT
networks based on energy harvesting and SDNs. There exists
a prediction of harvested energy for the m future time slots.
Their model allocates a security level for those m future time
slots while considering potential threats. Their simulations
validated their method and improved network lifetime, and
throughput. Moreover, IoT nodes needing privacy protection
have a higher security level than other IoT nodes with
non-sensitive data.

4) Context-aware security:

Context-awareness for IoT security solutions allows a node
to consider the context in which it operates. Context-awareness
can provide a form of intelligence [97] in IoT networks. These
solutions may have a reduced energy consumption compared
to classical approaches. We do not aim to survey in detail
what are the different works regarding context-awareness and
security in the IoT. For instance, context-aware security can
consist in context-aware authentication [98], anomaly detec-
tion [99] or context-aware trust systems [100]. We present in
this subsection, works that consider the context to provide
an adapted security service while having a lower energy
consumption.

Zhou et al. provided in [92] PRCOES to preserve the
privacy of the users based on their context in a smart home
environment. PRCOES is also designed to save energy of
smart home devices. Their scheme chooses, using an online
RL model, the best Energy Offer (EO). PRCOES protects the
privacy of the users by using Laplace mechanism on EOs

and Exponential mechanism on user data. Authors simulated
a smart home environment and fulfilled user satisfaction while
saving energy and preserving user privacy.

Roy et al. in [94] provided a method based on dynamic
programming to provide a context-adaptive and energy-aware
security for mobile devices. The underlying problem is to
allocate a security level to each place the user goes in order
to respect an energy budget and security requirements. The
authors opted for an off-line approach where places do not
have preferences regarding security levels. Authors provided
a greedy heuristic to solve this optimization problem similar
to the knapsack problem.

Authors in [95] continued the work done in [94] and
provided an online algorithm for security allocation for mobile
users under energy constraints. As opposed to the work in
[94], places have to respect a minimum security level. They
provided two algorithms to tackle this problem: a greedy
algorithm and an efficient algorithm. They observed during
simulations that the benefits of the efficient algorithm are
higher than those of the greedy algorithm. However, the greedy
algorithm always allocates a security level, as opposed to the
efficient algorithm which is a clear limit.

Massad et al. provided in [93] a scheme called MQTTSec
(Secure MQTT) enhancing MQTT v5. MQTTSec consists
of a selection algorithm, CASA, to choose an encryption
algorithm given the context and available energy. MQTTSec
also enhances CONNECT and CONNACK messages by
adding new fields to those messages. They created a small
test-bed and considered AES, DES, RSA, and Blowfish for
the set of available encryption methods. Authors stated that
MQTTSec provides security against multiple attacks such as
broker impersonation attacks, eavesdropping, chosen plaintext
attacks, chosen ciphertext attack, man-in-the-middle attack,
and cryptanalysis.

D. Remarks and lessons learned

There is an increasing literature on benchmarks of encryp-
tion, authentication, and signature methods. The common point
among these papers is that the energy consumption of AES
is not negligible [71]–[73]. Moreover, lightweight encryption
methods (such as SPECK or SIMON) are not the primary
choice in lightweight or energy-efficient methods. ECC and
AES are widely used in lightweight security solutions as
they provide a good security level [80], [82], [86] and a
widespread literature. However, neither ECC and AES are
lightweight, compared to other methods. Thakor et al. present
many lightweight encryption algorithms (with a software or
hardware implementation) in [96] which may provide a suf-
ficient security level with a lower energy consumption. The
results exposed by Schaumont in [66] outline that the choice
of ECDSA may not the best choice for small and heavily
energy-constrained devices. Offloading heavy computations
as presented in [79] may alleviate constrained nodes and
improve their lifetime while guaranteeing a sufficient security.
Encryption, authentication, and signature algorithms are the
primary brick to ensure security primitives. If manufacturers
and developers carefully choose appropriate methods, their
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products may have a longer lifetime than those using only
AES or ECDSA for instance.

Furthermore, as explained in section II, only Hellaoui et al.
in [20] surveyed energy-efficient mechanisms for IoT security.
Since 2017, more energy-aware security methods have been
proposed by researchers. Authors in [83] provided power-
aware encryption. But the approach is static with regard to
threats because with decreasing energy levels, the security pro-
vided by the cipher decreases. Other methods using learning
approaches [88], [90] or game-based approaches [89] for 5G-
based IoT networks provide sufficient security against adaptive
threats.

Context-aware security and privacy solutions use multiple
data sources (historical data and contextual data, neighbor
nodes, and servers) to secure an IoT network (or node). The
solutions we have surveyed are energy-aware and context-
aware. Both [94] and [95] considered context and user’s energy
budget to choose a security level when they arrive in a new
place. Context-awareness combined with energy-awareness
may provide improved security and better energy management.
These solutions may consume less energy compared to a static
approach. However, in [94] and [95], authors did not provide
comparisons with static approaches for the energy costs. What
is the result if only the highest (or lowest) security level is used
in each place?

VI. DISCUSSION AND CHALLENGES

As IoT is used in many fields, some solutions are more
appropriate due to the consideration of field-related parameters
and environment constraints. In figure 5, we remind the differ-
ent categories of solutions we have surveyed in the previous
section (section V) which aim to balance security and their
energy consumption.

A. Summary of studied solutions

Lightweights protocols [76], [77], [96] (authentication, en-
cryption) are useful for resource-constrained nodes, since
computational power and energy are limited. However, these
protocols are static and offer only a fixed security level.
They need to be combined with other methods to have a
better consideration of energy and threats. Thus, they may be
considered as a building block for future security solutions.

Energy-efficient security solutions can consider the use of
lightweight protocols and use energy-efficiency mechanisms
(described in [20]) to lighten the energy cost of such protocols.
These solutions may also be limited in the security service
provided. They may also adapt the security service to the
remaining energy but not necessarily to threats, data, or users.

Adaptive security methods can cover a variety of threats
by adapting the security level to the treat or data sensitivity
[89]–[91]. In our study, these solutions are energy-aware and
may use various lightweight protocols to provide an adapted
security level with a decreased energy consumption. These
solutions are dynamic with regard to the provided security
service. The choice of an adapted security level instead of a
static security level may save energy in the long run.

Lightweight protocols (au-
thentication, encryption)

• Static security service
• Cover few threats

Energy-efficient mecha-
nisms in security solutions

• May be used on lightweight protocols
• Static or dynamic security service

Adaptive Security
• May use lightweight protocols and energy-

efficient mechanisms
• Data or threat oriented
• Dynamic security service

Context-aware Security
• May use elements of adaptive security,

lightweights protocols and energy-efficient
mechanisms

• May cover multiple threats
• Dynamic security service

Fig. 5. Characteristics of surveyed IoT security solutions which may save
energy while providing an adequate security service. Complexity, flexibility
and potential saved energy increase from top to bottom.

Finally, context-aware security methods can cover a variety
of threats and provide an adaptive security level by observing
the context and taking an appropriate decision. Due to the
use of multiple data sources (historical, environmental ob-
servations, network traces, trust sources ...), implementing a
context-aware security solution is far more complex than using
a simple lightweight protocol. The dynamism behind context-
aware security solutions make them useful and appropriate for
mobile IoT nodes [94], [95]. It may appear natural to merge
context-aware security and adaptive security to exploit possible
synergies between them.
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Energy approaches

Security approaches
Energy-efficient security methods Adaptive security Context-aware security

Energy management methods [78], [85] X X
Energy harvesting [79]–[81] [87], [88], [91] X
Wireless charging X X X
No particular mechanism used [82]–[84], [86] [89], [90] [92]–[95]

TABLE VI
CLASSIFICATION OF STUDIED WORKS WITH REGARD TO ENERGY MANAGEMENT OR HARVESTING METHODS THEY USE AND THE SECURITY CLASSES

THEY BELONG TO.

Lightweight cryptography

Energy-efficient
mechanisms for security Adaptive security

Context-awareness

Threat monitoring

Energy management methods

Solution balancing the security ser-
vice and the energy consumption

Fig. 6. Elements needed to provide a security solution balancing the provided
security level and energy consumption.

B. Issues and challenges

There is an urgent need to design security solutions covering
multiple threats and suited to heterogeneous IoT networks.
However, as they are resource-constrained, it is impossible
to cover each existing threat. Depending on the application
domain, some threats are more present and should be the
focus of the security system deployed. Available energy must
be considered while designing and implementing security
solutions as the induced energy cost is non-negligible [65].
This cost is caused by the use of the radio transceiver and the
MCU which consume a lot of energy. Hence, heavy security
solutions should not be implemented at the expanse of the
applications running in an IoT node, especially when these
applications are energy-demanding.

With our classification, we identified the main blocks and
concepts to develop energy-efficient and effective security
solutions for IoT networks. Firstly, lightweight encryption and
authentication methods should be used as the building blocks.
Alternatives should be used instead of always considering
AES due to the important cost if no dedicated hardware
implementations are used [71]. The same remark applies to
ECC [65]. Secondly, energy-efficient mechanisms (and energy-
awareness) are the second block to consider to reduce the
energy consumption of this security solution. Thirdly, adaptive
security concepts may prove useful to continuously adapt the
security level to a plethora of threats. Then, context-awareness
may give additional information from the environment and the
users to the security solution in order to fine-tune the choice of
a security level. Combining the concepts of adaptive security
and context-aware security may improve security while reduc-
ing the energy consumption of the security tasks. On one hand,
if the environment is safe and fully trusted, a low security
level might be applied to save more energy. In another hand,

if the environment becomes insecure, the highest security
level may be applied. Moreover, network administrators and
developers may use threat monitoring systems to improve the
choice of a security level, along with the context-aware and
adaptive security modules. In figure 6, we summarize the main
building blocks to consider in order to have a global security
solution minimizing the energy consumption in fully trusted or
untrusted environments while providing an adequate security
level.

Energy-efficient mechanisms for security solutions are not
the only way to have a balance between energy and security.
As presented in table VI, some IoT security solutions may use
(or be built upon) energy management or harvesting methods.
Indeed, energy harvesting and energy saving mechanisms can
lead to energy savings when used in security solutions [66],
[80]. If hardware constructors design harvesting units with
dedicated MCUs for cryptographic operations [101], other
MCUs or chips can have more energy and power dedicated
to other tasks and balance security with energy consumption.
However, according to the authors in [102], asynchronous
duty-cycling may negatively impact the energy consumption
induced by security solutions. This point requires further
research for different duty-cycling protocols.

Mobile chargers [42], [44] may also be considered to extend
network lifetime and reduce maintenance costs. However, the
use of such robots has a cost, and recharge time relies on
antenna efficiency and distances. If there are unreachable
nodes or impassable fields, other methods to replenish batteries
and operators may be required. These mobile chargers may
also be mobile nodes dedicated to heavy computations. In-
deed, computation offloading in mobile edge computing nodes
(MEC) is a topic of interest in research [103]. Offloading
and outsourcing security operations in mobile robots could be
an interesting way to manage heavy security operations and
thus, nodes with constrained resources may save more energy.
However, to the best of our knowledge, no work considered
the use of mobile chargers to help securing IoT networks as
shown in table VI.

Operators may also use SDN to secure and reduce energy
consumption of IoT networks. Authors in [104] surveyed both
energy-efficient mechanisms for SDNs and possible security
solutions. Authors in [85] proposed an energy-efficient SDN
controller along the use of blockchain technology (public
and private blockchains) to secure and reduce the energy
consumption of all devices in the network. SDN is a promising
technology and may be used along 5G networks [84].

Another possible method to optimize both security and
energy consumption is the use of learning methods. Authors
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considered this approach in [90] to optimize QoS, secu-
rity, privacy and energy consumption for 5G IoT networks.
Conceição in [88] used reinforcement learning to dynamically
attribute security levels along the use of energy harvesting in
5G IoT networks. On the contrary, authors in [91] favored
an approach based on optimization to find the best security
suite for a given time cycle. However, using learning methods
such as reinforcement learning or deep learning may incur
an additional complexity and sometimes, these solutions may
not scale well. Some solutions we surveyed in section IV
may scale well, others may be not practical in real IoT
environments. Moreover, some solutions consider real-time
and constrained environments (such as UAV networks [60]),
but no practical information on the feasibility is given. In table
VII, we sum up the characteristics of each security solution
using a learning method.

We believe that researchers should pursue further research
in this field to improve network lifetime along securing IoT
devices. Moreover, combining adaptive security and context-
aware security may improve network protection against ad-
vanced threats. In addition, such solutions may consider en-
ergy constraints, user needs, security requirements, and other
attributes to continuously adapt the security services with
regard to the available resources. There is research in the field
of green IoT, energy-efficient IoT, security for IoT, energy-
efficient security, but research tackling both green IoT and
energy-efficient security in IoT is scarce. Authors in [105]
advocate the need of research in the field of sustainable
security for IoT. We also think that more research needs to
be done in this field. The energy cost of security solutions
cannot be ignored anymore.

VII. CONCLUSION

Security is needed due to the increasing number of threats
and sensitive data but this will increase energy consumption
and deplete batteries. Thus, there is a need to design security
solutions that can efficiently protect IoT networks with a
controlled energy consumption to maximize network lifetime.

Toward this end, we have taken a different approach in
this survey compared to the majority of existing surveys on
IoT security which were only focused on the security of
IoT networks. We studied both energy management methods
and recent security solutions and showed the limits of those
solutions. Then, we discussed the cost associated with security
primitives. After that, we presented classes of recent security
solutions which can have a decreased energy consumption
while providing appropriate security service in a static or
dynamic manner. We classified these security solutions into
four classes, namely lightweight protocols, energy-efficient
methods, adaptive security methods, and context-aware se-
curity methods. We also proposed a set of elements needed
to design an energy-efficient and secure IoT solution based
on the classification we provided. New approaches based
on artificial intelligence or software-defined networking may
reduce energy consumption while securing IoT networks. This
survey proposes new research challenges linked to the balance
of security and energy consumption and we hope that it will

inspire researchers and industries to further develop energy-
efficient security solutions for IoT networks.

Our future work will focus on intelligent and energy-
aware security solutions for large-scale IoT networks. Learning
approaches, along optimization, may provide the keys needed
to balance energy and security. Moreover, the use of particular
technologies such as SDN and energy-harvesting, may further
improve the network lifetime and provide more tools for
security.
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