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Abstract

In belief functions theory, the discounting operation allows to combine information

provided by a source in the form of a belief function with meta-knowledge regarding the

reliability of that source, resulting in a “weakened”, less informative belief function. In

this article, an extension of the discounting operation is proposed, allowing to use more

detailed information regarding the reliability of the source in different contexts, i.e.,

conditionally on different hypotheses regarding the variable on interest. This results

in a contextual discounting operation parameterized with a discount rate vector. Some

properties of this contextual discounting operation are studied, and its relationship

with classical discounting is explained. A method for learning the discount rates is

also presented.

Keywords: Evidence Theory, Dempster-Shafer Theory, Belief Functions, Transfer-

able Belief Model, Uncertainty, Information Fusion.



1 Introduction

In information fusion, it is usually important to take into account the reliability of the

different sources in the evidence aggregation process [7, 6, 10, 16, 5]. In this paper,

this problem is addressed using the Dempster-Shafer theory of belief functions [11], a

powerful and flexible framework for representing and reasoning with various forms of

imperfect information and knowledge.

In the belief function framework, knowledge about the reliability of a source of

information (or sensor) is achieved by the discounting operation, which transforms

each belief function provided by a source into a weaker, less informative one [11]. The

discounting operation is controlled by a discount rate α taking values between 0 and 1:

if α = 0, the belief function is unchanged; if α = 1, the belief function is transformed

into the vacuous belief function, meaning that the information provided by the sensor

is completely discarded. As shown by Smets [13], the discounting operation is not ad

hoc, but it can be derived from a simple model of sensor reliability. In this model, the

sensor can be in two states: reliable or not. If we know that the sensor is reliable, the

belief function it provides is accepted without any modification. If we know that it

is not reliable, we consider the information coming from the source as irrelevant. In

practice, we do not know for sure whether the source is reliable or not, but we have

some degree of belief, equal to 1 − α, in this hypothesis. Each piece of knowledge in

this model can be translated into a belief function, and the combination of these belief

functions leads to the discounting operation.

In the above model, knowledge about sensor or expert reliability is described by

a single number. In certain cases, however, more refined knowledge is available. In

particular, the reliability of the source of information can be expected to depend

on the true value of the variable of interest. In medical diagnosis, for instance, a

physician may be, due to his/her past experience or training, particularly competent

to diagnose some types of diseases, while being less competent for other types. In

target recognition, the performances of a data acquisition system may depend not only

on weather conditions, but also on background and target properties [1, 5], making

the reliability of the decision system dependent on the target at hand.

To account for such refined knowledge, we proposed in [9] an extension of the
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above discounting model, in which the user is allowed to quantify his/her confidence

in the reliability of the source, conditionally on values or sets of values taken by

the variable of interest. Combination of this information yields a new contextual

discounting operation, controlled no longer by a single discount rate, but by a vector

of discount rates describing the expected reliability of the source in different contexts.

Here, properties of this operation are thoroughly studied, and its relationship with

classical discounting is explained. A method for learning discount rates from data,

generalizing the expert tuning method presented in [4], is also introduced.

The rest of this paper is organized as follows. Background material on belief

functions is first recalled in Section 2. Contextual discounting, and a more general

notion, Θ-contextual discounting, are then introduced in Sections 3 and 4, respectively.

The problem of learning discount rates is then addressed in Section 5, and Section 6

concludes the paper.

2 Background on Belief Functions

Belief functions were first introduced by Dempster as a tool for statistical inference

[2], and were later proposed by Shafer [11] as a general formalism for representing

partial information and reasoning under uncertainty. Since then, different models

based on belief functions have been proposed, including the Hints model [8] and the

Transferable Belief Model (TBM) [15, 18]. These models have in common the basic

mathematical apparatus of belief functions, but they differ at the semantic level. In

the TBM, belief functions are interpreted as expressing weighted opinions, irrespective

of any underlying probability distributions, whereas an underlying probability space is

postulated in the Hints model (which is actually quite close to the initial Dempster’s

model). Also, the concepts of unnormalized mass functions and pignistic transfor-

mation are specific to the TBM. A discussion of these two models (as well as other

interpretations of belief functions, such as random sets) can be found in [14]. Such a

discussion is clearly out of the scope of this paper, where the TBM interpretation will

be adopted for clarity of exposition. However, our approach is fully compatible with

other interpretations.
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2.1 Basic Concepts

Let x be a variable taking values in a finite set Ω = {ω1, . . . , ωK}, called the frame of

discernment. The knowledge held by a rational agent Y , regarding the actual value

ω0 taken by x, given an evidential corpus EC, can be quantified by a basic belief

assignment (BBA) mΩ
Y [EC], defined as a function from 2Ω to [0, 1] verifying:

∑
A⊆Ω

mΩ
Y [EC](A) = 1 .

When there is no ambiguity, the full notation mΩ
Y [EC] will be simplified to mΩ

Y or

mΩ. The vacuous mass function, defined by mΩ(Ω) = 1, represents total ignorance.

Note that, in the TBM, BBAs are not required to be normalized, i.e., we may have

mΩ(∅) > 0. The interpretation of mΩ(∅) is discussed in [12].

The belief and plausibility functions associated with a BBA are defined, respec-

tively, as:

belΩ(A) =
∑

∅�=B⊆A

mΩ(B),

and

plΩ(A) =
∑

B∩A �=∅
mΩ(B), ∀A ⊆ Ω.

These functions play a central role in the TBM as they have easy interpretation:

belΩ(A) is interpreted as a degree of justified support given to proposition A by the

available evidence, whereas plΩ(A) is a measure of the maximum potential support

that could be given to A, if further evidence became available. Related to belΩ and plΩ

is the implicability function [17] bΩ defined by bΩ(A) = belΩ(A)+mΩ(∅) = 1−plΩ(A),

∀A ⊆ Ω, where A is the complement of A.

The basic operation for combining BBAs induced by distinct sources of information

is the conjunctive rule of combination (CRC) defined as

mΩ
1 ∩©mΩ

2 (A) =
∑

B∩C=A

mΩ
1 (B)mΩ

2 (C), ∀A ⊆ Ω. (1)

This rule is commutative and associative. A disjunctive counterpart of the CRC is

the disjunctive rule of combination (DRC) [3, 13], defined as:

mΩ
1 ∪©mΩ

2 (A) =
∑

B∪C=A

mΩ
1 (B)mΩ

2 (C), ∀A ⊆ Ω. (2)
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The CRC applies when both sources are known to be reliable, whereas the DRC cor-

responds the hypothesis that at least one of the two sources is reliable [13]. The

DRC can be conveniently expressed using the implicability function: the implica-

bility function bΩ
1 ∩©2 associated with mΩ

1 ∪©mΩ
2 can be obtained from bΩ

1 and bΩ
2 ,

the implicability functions associated with mΩ
1 and mΩ

2 , by pointwise multiplication:

bΩ
1 ∪©2(A) = bΩ

1 (A)bΩ
2 (A), for all A ⊆ Ω.

2.2 Marginalization and Vacuous Extension

A BBA defined on a product frame Ω×Θ may be marginalized on Ω, by transferring

and summing each mass mΩ×Θ(B) for B ⊆ Ω × Θ to its projection on Ω:

mΩ×Θ↓Ω(A) =
∑

{B⊆Ω×Θ | B↓Ω=A}
mΩ×Θ(B), ∀A ⊆ Ω, (3)

where B ↓ Ω denotes the projection of B onto Ω.

It is usually not possible to retrieve the original BBA mΩ×Θ from its marginal-

ization mΩ×Θ↓Ω on Ω. However, the least committed BBA such that its projection

on Ω is mΩ×Θ↓Ω may be computed. This defines the vacuous extension of mΩ in the

product frame Ω × Θ [13], given by:

mΩ↑Ω×Θ(B) =

⎧⎨
⎩

mΩ(A) if B = A × Θ for some A ⊆ Ω,

0 otherwise.
(4)

2.3 Conditioning and Ballooning Extension

Conditional beliefs represent knowledge which is valid provided that a hypothesis is

satisfied. Let mΩ be a BBA, A ⊆ Ω an hypothesis and mΩ
A the categorical BBA such

as mΩ
A(A) = 1; the conditional belief function mΩ[A] is:

mΩ[A] = mΩ ∩©mΩ
A. (5)

If mΩ×Θ is defined on the product frame Ω×Θ, and C is a subset of Θ, the conditional

BBA mΩ[C] is defined by combining mΩ×Θ with mΘ↑Ω×Θ
C (where mΘ

C is the categorical

BBA verifying mΘ
C(C) = 1), and marginalizing the result on Ω:

mΩ[C] =
(
mΩ×Θ ∩©mΘ↑Ω×Θ

C

)↓Ω
. (6)
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Assume now that mΩ[C] represents your beliefs on Ω conditionally on C, i.e., in a

context where C holds. There are usually many BBAs on Ω × Θ, whose conditioning

on C yields mΩ[C]. Among these, the least committed one is the ballooning extension

[13] defined by:

mΩ[C]⇑Ω×Θ(A × C ∪ Ω × C) = mΩ[C](A), ∀A ⊆ Ω, (7)

where C is the complement of C.

2.4 Specialization and Generalization

Let us consider two BBAs mΩ
1 and mΩ

2 . BBA mΩ
1 is said to be a specialization of mΩ

2 ,

or to be strongly included in mΩ
2 [3], if it can be obtained from mΩ

2 by transferring each

mass mΩ
2 (A) to subsets of A. We then say that mΩ

2 is a generalization of mΩ
1 . This

property may be interpreted in terms of information content: if mΩ
1 is a specialization

of mΩ
2 , it is considered to have greater information content than mΩ

2 .

Mathematically, strong inclusion may be conveniently expressed using matrix cal-

culus [17]. Assume that the belief masses are arranged in vectors of dimension 2Ω. Let

m1 and m2 be the vectors corresponding to mΩ
1 and mΩ

2 , respectively. Then mΩ
2 is a

generalization of mΩ
1 iff m2 = Gm1, where G = [G(A,B)], A,B ⊆ Ω, is a stochastic

matrix verifying G(A,B) = 0, for all A and B such that B �⊆ A. With usual notations,

mΩ
2 (A) =

∑
B⊆Ω

G(A,B)mΩ
1 (B). (8)

The term G(A,B) represents the fraction of the mass mΩ
1 (B) which “flows up” to A,

with A ⊇ B. Matrix G is referred to as a generalization matrix.

2.5 Discounting

Let us assume that agent Y receives a BBA mΩ
S from a source S, describing the

source’s beliefs regarding the actual value ω0. Moreover, Y has some knowledge about

the reliability of S, quantified by a BBA mR
Y on the frame R = {R,NR}, where R

stands for “the source is reliable”, and NR for “the source is not reliable” [13]. Let

us assume that mR
Y has the following form:⎧⎨

⎩
mR

Y ({R}) = 1 − α

mR
Y (R) = α,

(9)
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for some α ∈ [0, 1]. Thus, α represents the plausibility that the source is not reliable

(plRY ({NR}) = α), whereas 1 − α represents the degree of belief that it is reliable

(belRY ({R}) = 1 − α).

If S is reliable, the information provided by S becomes Y ’s knowledge:

mΩ
Y [R] = mΩ

S , (10)

where the notation mΩ
Y [R] is used in place of mΩ

Y [{R}] for simplicity. If S is not reliable,

the information provided by S cannot be taken into account, and Y ’s knowledge is

vacuous:

mΩ
Y [NR](Ω) = 1. (11)

Therefore, we have two non-vacuous pieces of evidence, mR
Y and mΩ

Y [R]. Assuming

that they are distinct, they can be combined by vacuously extending mR
Y to Ω × R,

computing the ballooning extension of mΩ
Y [R] in the same frame, applying the CRC,

and marginalizing the result on Ω:

mΩ
Y [mΩ

S ,mR
Y ] =

(
mΩ

Y [R]⇑Ω×R ∩©mR↑Ω×R
Y

)↓Ω
. (12)

The resulting BBA mΩ
Y [mΩ

S ,mR
Y ] (where the brackets [ ] indicate the evidential corpus,

i.e., what is known to the belief holder) only depends on mΩ
S and α. Let us denote it

by αmΩ
Y . It is equal to

⎧⎨
⎩

αmΩ
Y (A) = (1 − α)mΩ

S (A), ∀A ⊂ Ω,

αmΩ
Y (Ω) = (1 − α)mΩ

S (Ω) + α.
(13)

The discounting operation can also be simply expressed using the implicability func-

tions:

αbΩ
Y (A) =

⎧⎨
⎩

(1 − α)bΩ
S (A) if A �= Ω

1 otherwise.
(14)

This operation was called discounting by Shafer [11, page 251], who introduced it

on intuitive grounds. The formal justification presented here was proposed by Smets

[13].

Remark 1 Note that αmΩ
Y is obtained from mΩ

S by transfering to Ω a fraction α of

each mass mΩ
S (B), for B �= Ω, and leaving the rest on B. Consequently, αmΩ

Y is a
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generalization of mΩ
S : we have

αmΩ
Y (A) =

∑
B⊆Ω

αG(A,B)mΩ
S (B), (15)

where αG is the generalization matrix defined by

αG(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 − α if A = B �= Ω,

α if A = Ω and B ⊂ A,

1 if A = B = Ω

0 otherwise.

(16)

(We recall that αG(A,B) is equal to the fraction of mΩ
S (B) transferred to A.) This

matrix is shown for the case K = 3 in Table 1.

Table 1: Generalization matrix associated with classical discounting in the case K = 3

(only non zero terms are represented).

A \ B ∅ {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} Ω

∅ 1 − α

{ω1} 1 − α

{ω2} 1 − α

{ω1, ω2} 1 − α

{ω3} 1 − α

{ω1, ω3} 1 − α

{ω2, ω3} 1 − α

Ω α α α α α α α 1

Remark 2 We can see αmΩ
Y as the disjunctive combination of mΩ

S with mΩ
0 defined

by mΩ
0 (∅) = 1 − α and mΩ

0 (Ω) = α, since we have:

mΩ
S ∪©mΩ

0 (A) = mΩ
S (A)mΩ

0 (∅) = (1 − α)mΩ
S (A) = αmΩ

Y (A)

for all A ⊂ Ω and

mΩ
S ∪©mΩ

0 (Ω) = mΩ
S (Ω)mΩ

0 (∅) + mΩ
0 (Ω)

∑
A⊆Ω

mΩ
S (A) = (1 − α)mΩ

S (Ω) + α = αmΩ
Y (Ω).
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Remark 3 If mR
Y is a Bayesian BBA:

⎧⎨
⎩

mR
Y ({R}) = 1 − α,

mR
Y ({NR}) = α,

(17)

the result of the discounting is the same [13]. Note that we might have considered this

model in the first place, instead of (9), as it may seem more natural to readers familiar

with probability theory. However, we find it remarkable that expression (13) can be

obtained assuming only weaker information regarding the reliability of the source, as

expressed by (9).

Example 1 As in [4], let us consider a simplified aerial target recognition problem,

in which we have three classes: airplane (ω1 ≡ a), helicopter (ω2 ≡ h) and rocket

(ω3 ≡ r). Let Ω = {a, h, r}. Assume that a sensor S has provided the following

BBA for a given target: mΩ
S ({a}) = 0.5, mΩ

S ({r}) = 0.5, meaning that the sensor

hesitates between classifying the target as an airplane or a rocket. Assume that the

agent has a degree of belief equal to 1 − α that the sensor is reliable. A discount

rate α is then applied to the sensor’s BBA. With α = 0.4, the agent’s BBA becomes:
αmΩ

Y ({a}) = 0.5(1 − α) = 0.3, αmΩ
Y ({r}) = 0.5(1 − α) = 0.3, αmΩ

Y (Ω) = α = 0.4.

3 Contextual Discounting

In this section, the above discounting operation is extended to allow the representation

of more refined meta-knowledge regarding the reliability of the source of information

in different contexts.

3.1 Basic Assumptions

Let us now assume that we have evidence regarding the reliability of a source S,

conditionally on each ωk ∈ Ω, i.e., in a context where the quantity x of interest is

known to be equal to ωk. We thus have K conditional BBAs mR
Y [ωk], k = 1, . . . ,K,

instead of the single unconditional BBA in (9). (As before, the notation mR
Y [ωk] is

used in place of mR
Y [{ωk}] for simplicity). Assume that these BBAs have the following
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form: ⎧⎨
⎩

mR
Y [ωk]({R}) = βk,

mR
Y [ωk](R) = αk,

(18)

where βk = 1−αk. Thus, βk represents our degree of belief that the source is reliable,

when it is known that the actual value of x is ωk, whereas αk is equal to the plausibility

that the source is not reliable, in the same context.

As before, we adopt the source’s beliefs on Ω when we know that the source is reli-

able, and we consider the information provided by the source as totally irrelevant when

we know that it is not reliable, as expressed by Equations (10) and (11), respectively.

We thus have K +1 non vacuous BBAs: mΩ
Y [R] = mΩ

S , and mR
Y [ωk], k = 1, . . . ,K.

To combine these BBAs, we have to compute their ballooning extensions in Ω × R
using (7), combine them using the CRC, and marginalize the result on Ω. This may

be compactly expressed by the following equation, which generalizes (12):

mΩ
Y

[
mΩ

S ,mR
Y [ω1], . . . ,mR

Y [ωK ]
]

=
(
mΩ

Y [R]⇑Ω×R ∩©mR
Y [ω1]⇑Ω×R ∩© . . . ∩©mR

Y [ωK ]⇑Ω×R
)↓Ω

. (19)

The result of this combination only depends on mΩ
S and on vector α = (α1, . . . , αK)

of discount rates. It will be noted αmΩ
Y (which is consistent with the notation used

in Section 2.5 for classical discounting), and the transformation mΩ
Y → αmΩ

Y will be

referred to as the contextual discounting operation, with discount rate vector α.

3.2 Expression of αmΩ
Y

Proposition 1 Let mΩ
S denote a BBA on Ω, and α = (α1, . . . , αK) ∈ [0, 1]K . The

contextually discounted BBA αmΩ
Y with discount rate vector α is given by

αmΩ
Y (A) =

∑
B⊆Ω

αG(A,B)mΩ
S (B), ∀A ⊆ Ω, (20)

with:

αG(A,B) =

⎧⎪⎪⎨
⎪⎪⎩

∏
ωk∈A\B

αk

∏

ω�∈A

β� if B ⊆ A,

0 otherwise,

(21)

where, following the classical mathematical convention, a product of terms is equal to

1 if the index set is empty.
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Proof: See Section A.1. �

Coefficients αG(A,B) for all A,B ⊆ Ω define a generalization matrix: αG(A,B)

is equal to the fraction of mΩ
S (B) transferred to A. As shown by (21), this fraction

increases with:

• the plausibility αk that the source is not reliable, given that the actual value of

the variable of interest is equal to ωk, for each ωk ∈ A \ B;

• the degree of belief β� that the source is reliable, given that the actual value of

the variable of interest is equal to ω�, for each ω� �∈ A.

The property of classical discounting mentioned in Remark 2 has a counterpart

with contextual discounting, as shown by the following proposition.

Proposition 2 αmΩ is the disjunctive combination of mΩ
S with a bbm mΩ

0 defined by

mΩ
0 (C) =

∏
ωk∈C

αk

∏

ω�∈C

β�, ∀C ⊆ Ω . (22)

Proof: See Section A.1. �

The following two propositions show that both αG of Proposition 1 and mΩ
0 of

Proposition 2 can be decomposed into simpler mathematical entities, each one corre-

sponding to an elementary contextual discounting operation.

Proposition 3 The BBA mΩ
0 of Proposition 2, can be written as:

mΩ
0 = mΩ

1 ∪©mΩ
2 ∪© . . . ∪©mΩ

K ,

where each BBA mΩ
k is defined by:

mΩ
k (∅) = βk,

mΩ
k ({ωk}) = αk.

Proof: Obvious from (22) and the definition of the DRC (2). �

We note that each BBA mΩ
k has the same form as mΩ

0 of Proposition 2, cor-

responding to a contextual discounting with discount rate vector αk with all com-

ponents equal to 0, except component k equal to αk. This shows that contextual

discounting with discount rate rate vector α = (α1, . . . , αK) can be decomposed into
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a sequence of contextual discountings with discount rate vectors α1 = (α1, 0, . . . , 0),

α2 = (0, α2, 0, . . . , 0), . . . , αK = (0, . . . , 0, αK); we can write

αmΩ
Y = αK (αK−1(. . . (α1mΩ

Y ) . . .)).

Proposition 4 The generalization matrix αG, defined in Proposition 1, can be ex-

pressed as:

αG =
K∏

k=1

αkG,

where αkG is the generalization matrix defined by:

αkG(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if A = B and ωk ∈ B,

βk if A = B and ωk /∈ B,

αk if A �= B and A = {ωk} ∪ B,

0 otherwise.

(23)

Proof: Immediate from Proposition 3. Each generalization matrix αkG corresponds

to a contextual discounting with discount rate vector αk. �

As another consequence of Proposition 3, the contextual discounting operation has

a simple expression in terms of implicability and plausibility functions, as shown in

the following proposition.

Proposition 5 Let αbΩ
Y and αplΩY be, respectively, the implicability and plausibility

functions associated with αmΩ
Y . They can be obtained from bΩ

S and plΩS , the corre-

sponding functions associated with mΩ
S , as:

αbΩ
Y (A) = bΩ

S (A)
∏

ωk∈A

βk, ∀A ⊆ Ω,

and
αplΩY (A) = 1 − (1 − plΩS (A))

∏
ωk∈A

βk, ∀A ⊆ Ω .

Proof: Let bΩ
k be the implicability function associated with mΩ

k of Proposition 3, for

k = 1, . . . ,K. We have

bΩ
k (A) =

⎧⎨
⎩

βk if ωk �∈ A

1 otherwise.
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Now, from Propositions 2 and 3, we have αbΩ
Y = bΩ

S

∏K
k=1 bΩ

k , which yields the ex-

pression of αbΩ
Y . The expression of αplΩY is then easily obtained using the equality

αplΩY (A) = 1 − αbΩ
Y (A). �

3.3 Discussion

Proposition 4, and particularly Equation (23) shed some light on the nature of the

contextual discounting operation. For each value of k, each mass mΩ
S (B) for B ⊆ Ω is

unchanged if ωk ∈ B, whereas a fraction αk is transferred to {ωk}∪B if ωk �∈ B. This

may be interpreted as follows: if the true state is ωk, the agent’s degree of belief that

the source is reliable is βk; consequently, this fraction of the mass initially assigned

by the source to B remains focused on B, whereas the remaining part is transferred

to the union of B and {ωk}. This operation is repeated for each B and each k.

Note that contextual discounting as defined in this section does not generalize the

classical discounting recalled in Section 2.5: as will be shown in the examples below,

the solution obtained by discounting mΩ
S with rates αi = α, i = 1, . . . ,K is different, in

general, from the one obtained using the classical discounting operation with a single

rate α. Both classical and contextual discounting appear in fact to be two instances

of a more general concept, which will be introduced in Section 4.

One may also wonder what would happen if the assumption expressed by (18) was

changed, without increasing the number of parameters. Two alternatives would be to

assign the mass αk to {NR}, and either leave the mass βk on {R} (yielding a Bayesian

BBA), or transfer it to R. As shown in Appendix A.2, the same solution as derived

in Section 3.2 is recovered in the first case, whereas the vacuous BBA is obtained in

the second case.

3.4 Special Cases and Example

The generalization matrix αG associated with contextual discounting in the cases

where K = 2 and K = 3 are shown in Tables 2 and 3, respectively.
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In the case K = 2, we have:

αmΩ
Y (∅) = β1β2m

Ω
S (∅)

αmΩ
Y ({ω1}) = α1β2m

Ω
S (∅) + β2m

Ω
S ({ω1})

αmΩ
Y ({ω2}) = α2β1m

Ω
S (∅) + β1m

Ω
S ({ω1})

αmΩ
Y (Ω) = α1α2m

Ω
S (∅) + α2m

Ω
S ({ω1}) + α1m

Ω
S ({ω2}) + mΩ

S (Ω) .

We can see that the fraction of the mass mΩ
S ({ω1}) which is transferred to Ω is equal

to α2 = 1 − β2, where β2 is the degree of belief in R conditionally on ω2. When

mΩ
S (∅) = 0 and α1 = α2, then contextual discounting is, in this case, equivalent to

classical discounting. This is not true, however, for K = 3. In general, contextual

discounting transfers each mass mΩ
S (A) to all supersets of A, and not only to Ω as

does classical discounting.

Table 2: Generalization matrix associated with the contextual discounting in the case

K = 2.
A \ B ∅ {ω1} {ω2} Ω

∅ β1β2

{ω1} α1β2 β2

{ω2} β1α2 β1

Ω α1α2 α2 α1 1

Example 2 Continuing Example 1, let us assume that a sensor provides a BBA mΩ
S

such that mΩ
S ({a}) = 0.5 and mΩ

S ({r}) = 0.5, and let us now consider the following

states of belief regarding the reliability of the sensor:

Case 1: The plausibility α1 that the sensor is not reliable when the source is an

airplane is equal to 0.4, whereas the sensor is known to be fully reliable (α2 = α3 = 0)

when the target is a helicopter or a rocket. The corresponding discount rate vector is

α1 = (0.4, 0, 0). The generalization matrix α1G is (with the subsets of Ω ordered as

13



Table 3: Generalization matrix associated with the contextual discounting in the case

K = 3.
A \ B ∅ {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} Ω

∅ β1β2β3

{ω1} α1β2β3 β2β3

{ω2} β1α2β3 β1β3

{ω1, ω2} α1α2β3 α2β3 α1β3 β3

{ω3} β1β2α3 β1β2

{ω1, ω3} α1β2α3 β2α3 α1β2 β2

{ω2, ω3} β1α2α3 β1α3 β1α2 β1

Ω α1α2α3 α2α3 α1α3 α3 α1α2 α2 α1 1

in Tables 1 and 3):

α1G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.6 0 0 0 0 0 0 0

0.4 1 0 0 0 0 0 0

0 0 0.6 0 0 0 0 0

0 0 0.4 1 0 0 0 0

0 0 0 0 0.6 0 0 0

0 0 0 0 0.4 1 0 0

0 0 0 0 0 0 0.6 0

0 0 0 0 0 0 0.4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the dicounted BBA α1m is

α1mΩ
Y ({a}) = 0.5, α1mΩ

Y ({r}) = 0.5 × 0.6 = 0.3, α1mΩ
Y ({a, r}) = 0.5 × 0.4 = 0.2 .

We can see that a fraction 0.4 of the mass initially assigned to {r} has been transferred

to {a, r}, which can be interpreted as follows: if the target is an airplane, then the

source is not reliable, and it may erroneously declare it as a rocket; consequently, when

the source reports a rocket, it may actually be a rocket or an airplane.

Case 2: The plausibility α2 that the sensor is not reliable when the source is a

helicopter is equal to 0.6, whereas the sensor is known to be fully reliable (α1 = α3 = 0)

14



when the target is an airplane or a rocket. The corresponding discount rate vector is

α2 = (0, 0.6, 0). The generalization matrix α2G is:

α2G =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4 0 0 0 0 0 0 0

0 0.4 0 0 0 0 0 0

0.6 0 1 0 0 0 0 0

0 0.6 0 1 0 0 0 0

0 0 0 0 0.4 0 0 0

0 0 0 0 0 0.4 0 0

0 0 0 0 0.6 0 1 0

0 0 0 0 0 0.6 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the dicounted BBA α2m is

α2mΩ
Y ({a}) = 0.5 × 0.4 = 0.2, α2mΩ

Y ({a, h}) = 0.5 × 0.6 = 0.3,

α2mΩ
Y ({r}) = 0.5 × 0.4 = 0.2, α2mΩ

Y ({h, r}) = 0.5 × 0.6 = 0.3 .

The interpretation is similar to that of Case 1: this time, the masses given to {a} and

{r} are partially transferred, respectively, to {a, h} and {h, r}, to account for the low

reliability of the source when the target is actually helicopter.

Case 3: We both have α1 = 0.4 and α2 = 0.6, meaning that the sensor has plau-

siblity 0.4 of not being reliable when the target is an airplane, and 0.6 when it is a

helicopter. As before, the sensor is assumed to be fully reliable when the target is a

rocket. The discount rate vector is this α = (0.4, 0.6, 0). The generalization matrix
αG is then:

αG =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.24 0 0 0 0 0 0 0

0.16 0.4 0 0 0 0 0 0

0.36 0 0.6 0 0 0 0 0

0.24 0.6 0.4 1 0 0 0 0

0 0 0 0 0.24 0 0 0

0 0 0 0 0.16 0.4 0 0

0 0 0 0 0.36 0 0.6 0

0 0 0 0 0.24 0.6 0.4 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and the BBA αmY is

αmΩ
Y ({a}) = 0.2, αmΩ

Y ({a, h}) = 0.3,

αmΩ
Y ({r}) = 0.12, αmΩ

Y ({a, r}) = 0.08,

αmΩ
Y ({h, r}) = 0.18, αmΩ

Y (Ω) = 0.12.

It can be checked that, as a consequence of Proposition 3, we have

αG = α1G α2G = α2G α1G,

and αmΩ
Y = α1(α2mΩ

Y ) = α2(α1mΩ
Y ). Contextual discounting with discount rate vector

α = (0.4, 0.6, 0) is thus equivalent to contextual discounting with rate vector α1 =

(0.4, 0, 0) as in Case 1, followed by contextual discounting with rate vector α2 =

(0, 0.6, 0) as in Case 2. For instance the mass αmΩ
Y (Ω) = 0.12 can be explained by

the transfer of 40 % of the mass mΩ
S ({r}) = 0.5 to {a, r}, of which 60% are then

transferred to Ω.

4 Contextual Discounting Based on a Coarsening

In the previous section, we have assumed that the reliability of a source of information

can be assessed conditionally on each ωk ∈ Ω. In some situations, however, such

detailed information will not be available. Nevertheless, we can still assume that we

can assess the reliability of the source, for each element of a coarsening of Ω. As

will be shown in this section, this assumption results in a new family of operations,

generalizing both classical and contextual discounting.

4.1 Basic Assumptions

Let Θ = {θ1, . . . , θL} be a coarsening of Ω, which means that θ1, . . . , θL form a parti-

tion of Ω. Let mR
Y [θk] denote the BBA on R quantifying our belief in the reliability

of the source, when we know that the actual value of x is in θk (θk then constitutes a

more general context than considered in the previous section). We assume that each

mR
Y [θk], k = 1, . . . , L is of the following form:

⎧⎨
⎩

mR
Y [θk]({R}) = βk,

mR
Y [θk](R) = αk,

(24)
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where, as before, βk = 1 − αk.

As in Section 3.1, we want to combine these L conditional belief functions with

mΩ
Y [R], which can be done by computing all the ballooning extensions, combining

them using the CRC, and marginalizing on Ω:

mΩ
Y

[
mΩ

S ,mR
Y [θ1], . . . ,mR

Y [θL]
]

=
(
mΩ

Y [R]⇑Ω×R ∩©mR
Y [θ1]⇑Ω×R ∩© . . . ∩©mR

Y [θL]⇑Ω×R
)↓Ω

. (25)

The result of this combination only depends on mΩ
S , Θ, and vector α = (α1, . . . , αL)

of discount rates. It will be noted α
ΘmΩ, and the transformation mΩ

Y → α
ΘmΩ

Y will

be referred to as the Θ-contextual discounting operation, with discount rate vector

α. Note that the contextual discounting defined in Section 3.2 corresponds to the

special case where L = K and θk = {ωk}, k = 1, . . . ,K; it will be called Ω-contextual

discounting for short. As will be shown later, Θ-contextual discounting also generalizes

classical discounting, which corresponds to the case where Θ = {Ω}.

4.2 Expression of α
ΘmΩ

For any A ⊆ Ω , let

A∗ =
⋃

{θ∈Θ,θ⊆A}
θ,

A∗ =
⋃

{θ∈Θ,θ∩A �=∅}
θ,

and

C = {A ⊆ Ω | ∃I ⊆ {1, . . . , L}, A =
⋃
i∈I

θi}.

A∗ and A∗ are thus, respectively, the largest element of C included in A, and the

smallest element of C that contains A.

With these notations, we have the following propositions, which generalize the

results obtained in Section 3.2:

Proposition 6 Let mΩ
S denote a BBA on Ω, Θ = {θ1, . . . , θL} a coarsening of Ω, and

α = (α1, . . . , αL) ∈ [0, 1]L. The Θ-contextually discounted BBA α
ΘmΩ

Y with discount

rate vector α is given by

α
ΘmΩ(A) =

∑
B⊆A

α
ΘG(A,B)mΩ

S (B), ∀A ⊆ Ω, (26)
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with:

α
ΘG(A,B) =

⎧⎪⎪⎨
⎪⎪⎩

∏
∪θk=(A\B)∗

αk

∏

∪θ�=A
∗
β� if ∃C ∈ C, B ∪ C = A,

0 otherwise.

(27)

Proof: See Section A.3. �

Proposition 7 α
ΘmΩ

Y is the disjunctive combination of mΩ
S with a bbm mΩ

0 defined by

mΩ
0 (C) =

⎧⎪⎪⎨
⎪⎪⎩

∏
∪θk=C

αk

∏

∪θ�=C

β� if C ∈ C,

0 otherwise.

(28)

Proof: See Section A.3. �

As in the case of Ω-contextual discounting considered in Section 3.2, the BBA mΩ
0

of Proposition 7 and the generalization matrix α
ΘG of Proposition 6 both admit simple

decompositions, as described in the following two propositions.

Proposition 8 The BBA mΩ
0 defined in Proposition 7 can be rewritten as:

mΩ
0 = mΩ

1 ∪©mΩ
2 ∪© . . . ∪©mΩ

L,

where the mΩ
� (� = 1, . . . , L) are defined by:

mΩ
� (∅) = β�,

mΩ
� (θ�) = α�.

Proof: Obvious from (28) and the definition of the DRC (2). Each BBA mΩ
� corre-

sponds to a Θ-contextual discounting with discount rate vector α� with all components

equal to 0, except component � equal to α�. This shows that Θ-contextual discounting

with rate vector α = (α1, . . . , αL) can be decomposed into L Θ-contextual discount-

ings with rate vectors α1, . . . ,αL. �

Proposition 9 The generalization matrix α
ΘG, defined in Proposition 6, can be ex-

pressed as:

α
ΘG =

L∏
�=1

α�
Θ G,
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where generalization matrix α�
Θ G associated with BBA mΩ

� is defined by:

α�
Θ G(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if A = B and θ� ⊆ B,

β� if A = B and θ� �⊆ B,

α� if A �= B and A = θ� ∪ B,

0 otherwise.

(29)

Proof: Immediate from Proposition 8. Each generalization matrix α�
Θ G corresponds

to disjunctive combination with mΩ
� , and to Θ-contextual discounting with rate vector

α�. �

Proposition 10 Let α
ΘbΩ

Y and α
ΘplΩY be, respectively, the implicability and plausibility

functions associated with α
ΘmΩ

Y . They can be obtained from bΩ
S and plΩS , the corre-

sponding functions associated with mΩ
S , as:

α
ΘbΩ

Y (A) = bΩ
S (A)

∏

∪θ�=A
∗
β�, ∀A ⊆ Ω

and
α
ΘplΩY (A) = 1 − (1 − plΩS (A))

∏
∪θ�=A∗

β�, ∀A ⊆ Ω .

Proof: Let bΩ
� be the implicability function associated with BBA mΩ

� of Proposition

8, for � = 1, . . . , L. We have

bΩ
� (A) =

⎧⎨
⎩

β� if θ� �⊆ A

1 otherwise.

Now, from Propositions 7 and 8, we have α
ΘbΩ

Y = bΩ
S

∏L
�=1 bΩ

� , which yields the ex-

pression of α
ΘbΩ

Y . The expression of α
ΘplΩY is then easily obtained using the equality

α
ΘplΩY (A) = 1 − α

ΘbΩ
Y (A). �

As mentioned above, Θ-contextual discounting generalizes the contextual discount-

ing introduced in Section 3. Interestingly, it also generalizes the classical discounting

operation recalled in Section 2.5, as shown by the following proposition.

Proposition 11 Let Θ = {Ω} denote the trivial partition of Ω in one class. Then,

Θ-contextual discounting is identical to classical discounting.
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Proof: From Proposition 7, αmΩ is the disjunctive combination of mΩ
S with a BBA

mΩ
0 defined by mΩ

0 (∅) = 1− α and mΩ
0 (Ω) = α. Hence, from Remark 2, αmΩ is equal

to the classical discounting of mΩ
S . �

Example 3 Returning to Example 1, let us now assume that the agent has degrees of

belief equal to 0.4 and 0.9 that the source is reliable when the target is, respectively,

an airplane, and either a helicopter, or a rocket. The relevant coarsening here is

Θ = {θ1, θ2}, with θ1 = {a}, θ2 = {h, r}. Let α = (α1, α2). The generalization

matrix associated with this Θ-discounting is shown in Table 4 (where the notation

Ω = {ω1, ω2, ω3} is used to allow comparison with Table 3).

Here, we have α1 = 0.6 and α2 = 0.1. If, as before, the BBA provided by the

sensor is mΩ
S ({a}) = 0.5, mΩ

S ({r}) = 0.5, the result of the Θ-contextual discounted is

then:
α
ΘmΩ

Y ({a}) = 0.45, α
ΘmΩ

Y (Ω) = 0.05 + 0.03 = 0.08,

α
ΘmΩ

Y ({r}) = 0.18, α
ΘmΩ

Y ({a, r}) = 0.27, α
ΘmΩ

Y ({h, r}) = 0.02.

Table 4: Generalization matrix associated with Θ-contextual discounting in the case

K = 3 with Θ = {{ω1}, {ω2, ω3}}.
∅ {ω1} {ω2} {ω1, ω2} {ω3} {ω1, ω3} {ω2, ω3} Ω

∅ β1β2

{ω1} α1β2 β2

{ω2} β1β2

{ω1, ω2} α1β2 β2

{ω3} β1β2

{ω1, ω3} α1β2 β2

{ω2, ω3} β1α2 β1α2 β1α2 β1

Ω α1α2 α2 α1α2 α2 α1α2 α2 α1 1
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5 Learning of Discount Rates

In practice, the discount rates in the above Ω-contextual or Θ-contextual discount-

ing operations will have to be either elicited from experts or learnt from data. The

latter approach is considered in this section, generalizing the expert tuning method

introduced in [4] for learning the discount rates in classical discounting.

5.1 Single Sensor

Following [4], let us assume that we have a training set related to n objects o1, . . . , on.

Each object oi belongs to a class in Ω = {ω1, . . . , ωK}. The class of object oi is

encoded by K binary indicator variables δi,k, with δi,k = 1 if object oi belongs to class

ωk, and δi,k = 0 otherwise.

Assume that a sensor or expert S provides, for each object oi, a BBA mΩ
S{oi},

quantifying its belief concerning the class of object oi. Following previous work by

Zouhal and Denœux [19] in pattern classification, Elouedi et al. [4] proposed to find a

scalar discount rate α minimizing the following measure of discrepancy between beliefs

and observations:

Ebet(α) =
n∑

i=1

K∑
k=1

(αBetPΩ{oi}(ωk) − δi,k)2, (30)

where αBetPΩ{oi} is the pignistic probability distribution [18] associated with αmΩ,

defined as:
αBetPΩ{oi}(ωk) =

∑
{A⊆Ω,ωk∈A}

αmΩ{oi}(A)
(1 − mΩ{oi}(∅))|A| . (31)

The minimization of Ebet(α) is a scalar constrained nonlinear programming problem.

When all BBAs are normalized, i.e. mΩ{oi}(∅) = 0 for all i, then Ebet(α) is a quadratic

function of α, whose minimum can be found analytically, as shown in [4].

The above expert tuning approach can easily be generalized to contextual dis-

counting (only Ω-contextual discounting will be considered in this section, although

the same approach can be extended to Θ-contextual discounting, once a coarsening

Θ has been chosen). Let Ebet(α) be the same error function as defined in (30), where

contextual discounting with discount rate vector α = (α1, . . . , αK) is used in place of
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classical discounting. This is now a nonlinear K-dimensional function, whose mini-

mization with respect to α under the constraints 0 ≤ αk ≤ 1 can be performed using

a constrained nonlinear minimization procedure. The problem happens to be simpler

if we replace Ebet(α) by the following alternative error function:

Epl(α) =
n∑

i=1

K∑
k=1

(αplΩ{oi}({ωk}) − δi,k)2, (32)

which seems just as reasonable as (30). From Proposition 5, we can see that αplΩ{oi}({ωk})
is an affine function of αk:

αplΩ{oi}({ωk}) = 1 − (1 − plΩ{oi}({ωk}))βk

= αk(1 − plΩ{oi}({ωk})) + plΩ{oi}({ωk}).

Equation (32) can be written in matrix form as follows. Let

pli = (plΩ{oi}({ω1}), . . . , plΩ{oi}({ωK}))T

denote the K-dimensional column vector containing the plausibilites of the singletons

for object oi, diag(1 − pli) the K × K diagonal matrix whose diagonal elements are

the complements to one of the components of pli, and δi = (δi,1, . . . , δi,K)T the K-

dimensional column vector of 0-1 class indicator variables for object oi. Let

Q =

⎡
⎢⎢⎢⎣

diag(1 − pl1)
...

diag(1 − pln)

⎤
⎥⎥⎥⎦ , d =

⎡
⎢⎢⎢⎣

δ1 − pl1
...

δn − pln

⎤
⎥⎥⎥⎦ .

Then (32) can be writen as

Epl(α) = ‖Qα − d‖2. (33)

It is clear from the above formulation that the minimization of Epl(α) is a constrained

least-squares problem, which can be solved efficiently using standard iterative algo-

rithms.

Example 4 Let us consider again the target recognition problem used in Example

1, and the data of Table 5, taken from [4]. Four objects with known classification

have been classified by two sensors S1 and S2. Each sensor has provided, for each
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Table 5: Data of Example 4, taken from [4].

a h r {a, h} {a, r} {h, r} Ω ground truth

mS1{o1} 0 0 0.5 0 0 0.3 0.2 a

mS1{o2} 0 0.5 0.2 0 0 0 0.3 h

mS1{o3} 0 0.4 0 0 0.6 0 0 a

mS1{o4} 0 0 0 0 0.6 0.4 0 r

mS2{o1} 0 0 0 0.7 0 0 0.3 a

mS2{o2} 0.3 0 0 0.4 0 0 0.3 h

mS2{o3} 0.2 0 0 0 0 0.6 0.2 a

mS2{o4} 0 0 0 0 0 1 0 r

object, a BBA on Ω, as shown in Table 5. We first consider the use of this data to

optimize the discount rates to apply to each sensor individually. As reported in [4],

the expert tuning approach (with a single discount rate and minimization of (30))

yields α = 0.66 for sensor S1, and α = 0.52 for sensor S2. With our approach (three

contextual discount rates and minimization of (33)), we obtain α = (0.24, 0, 0) for

sensor S1, and α = (0.26, 0, 0) for sensor S2. With a larger training set, such a result

would indicate that both sensors are less reliable in the case where the target is an

airplane, and that S1 is slightly more reliable that S2 (smaller values of αk correspond

to higher reliability). However, it is clear that such an interpretation is not valid with

such a small training set, which is only used here as an illustration.

Remark 4 Note that, in this section, only the case of Ω-contextual discounting has

been addressed. The generalization to Θ-contextual discounting is straightforward as

long as the coarsening Θ is fixed. This seems a reasonable assumption in many appli-

cations where the choice of Θ is likely to be guided by the available meta-knowledge

regarding the reliability of the sensor. If such knowledge does not exist, then one

could consider searching for the optimal Θ, which is a completely different problem.

If the cardinality of Ω is small, then an exhaustive search for the optimal partition

may be feasable. The development of more efficient solutions to this problem is left
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for further study.

5.2 Multiple Sensors

When we have several sensors providing independent measurements, a usual strategy

is to discount each sensor, and then combine them conjunctively using the CRC.

In such a case, it seems preferable to optimize the performance of the combination,

instead of optimizing the performance of each sensor individually.

For simplicity, assume that we have two sensors S1 and S2. Let α1plΩS1
{oi} be

the plausibility provided by sensor S1 discounted with rates α1, and α2plΩS2
{oi} the

plausibility provided by sensor S2 discounted with rates α2. After conjunctive com-

bination, the plausibility of each singleton is equal to the product of the plausibilities

given by the two sources (this results from the fact that the plausibility of a singleton

is equal to its commonality). The plausibility of {ωk} is thus equal to

α1plΩS1
{oi}({ωk}) ×α2 plΩS2

{oi}({ωk}).

Discount rate vectors α1 and α2 can thus be determined so as to minimize the fol-

lowing error function:

Epl(α1,α2) =
n∑

i=1

K∑
k=1

(
α1plΩS1

{oi}({ωk}) ×α2 plΩS2
{oi}({ωk}) − δi,k

)2
. (34)

Note that this criterion is no longer quadratic. It can be minimized using a standard

constrained nonlinear optimization procedure.

Example 5 With the data of Table 5, we obtain α1 = (0.45, 0, 0) and α2 = (0.39, 1, 0).

Note that, as remarked in [4], this result should not be compared to the previous one:

in the first case, we optimized the performance of each sensor individually, whereas in

this second case we optimize the performances of the two sensors used in combination.

6 Conclusion

A new unary operation on discrete belief functions has been introduced. This con-

textual discounting operation is parameterized by a vector of discount rates repre-

senting degrees of belief in sensor reliability, conditionally on the variable of interest
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taking certain values or sets of values. These discount rates thus allow to express

meta-knowledge about sensor reliability, at a level of detail chosen by the user. The

classical discounting operation is recovered as a special case and corresponds to coarse

grained knowledge of sensor reliability.

Choosing which Θ-contextual discounting operation to apply in a given situation

will involve both selecting a suitable coarsening Θ of the frame of discernment, and

determining discount rates. Once Θ has been fixed, we have shown that discount rates

can be learnt automatically from labeled data by minimizing an error function. The

automatic determination of Θ from data, however, has been left for further study.

A Proofs

A.1 Proofs of Propositions 1 and 2

The ballooning extension of mR
Y [ωk] is:

mR⇑Ω×R
Y ({ωk} × {R} ∪ {ωk} × R) = βk, (35)

mR⇑Ω×R
Y (Ω ×R) = αk. (36)

Let mΩ×R
r be the conjunctive combination of the mR

Y [ωk]⇑Ω×R, k = 1, . . . ,K. Using

the following equality, for any k �= �:

({ωk}× {R} ∪ {ωk}×R)∩ ({ω�}× {R} ∪ {ω�}×R) = {ωk, ω�}× {R} ∪ {ωk, ω�}×R,

we easily obtain the expression of mΩ×R
r as:

mΩ×R
r (C × {R} ∪ C ×R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏

ωk∈C

αk

∏
ω�∈C

β� if C �= ∅ and C �= Ω,

K∏
k=1

αk if C = ∅,
K∏

�=1

β� if C = Ω.

(37)
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By exchanging the roles of C and C, we obtain:

mΩ×R
r (C × {R} ∪ C ×R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∏
ωk∈C

αk

∏

ω�∈C

β� if C �= ∅ and C �= Ω,

K∏
k=1

αk if C = Ω,

K∏
�=1

β� if C = ∅,

(38)

which can be noted more simply:

mΩ×R
r (C × {R} ∪ C ×R) =

∏
ωk∈C

αk

∏

ω�∈C

β�, ∀C ⊆ Ω. (39)

The above BBA must now be combined with mΩ
Y [R]⇑Ω×R:

αmΩ
Y =

(
mΩ

Y [R]⇑Ω×R ∩© mΩ×R
r

)↓Ω
(40)

The BBAs mΩ
Y [R]⇑Ω×R and mΩ×R

r have focal sets of the form B × {R} ∪ Ω × {NR}
and C ×{R}∪C ×R, respectively, with B,C ⊆ Ω. The intersection of two such focal

sets is:

(C × {R} ∪ C ×R) ∩ (B × {R} ∪ Ω × {NR}) = B × {R} ∪ C × {NR},

and it can be obtained only for a particular choice of B and C. Then:

mY [R]⇑Ω×R ∩© mΩ×R
r (B × {R} ∪ C × {NR}) =

⎡
⎣ ∏

ωk∈C

αk

∏

ω�∈C

β�

⎤
⎦ mΩ

S (B). (41)

Marginalizing this BBA on Ω gives:

αmΩ(A) =
∑

B∪C=A

⎡
⎣ ∏

ωk∈C

αk

∏

ω�∈C

β�

⎤
⎦mΩ

S (B), ∀A ⊆ Ω, (42)

which can also be written as:

αmΩ(A) =
∑
B⊆A

αG(A,B)mΩ
S (B), ∀A ⊆ Ω, (43)

with:
αG(A,B) =

∑
C:B∪C=A

∏
ωk∈C

αk

∏

ω�∈C

β� , ∀B ⊆ A ⊆ Ω, (44)
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and αG(A,B) = 0 if B �⊆ A. Now, we have

B ∪ C = A ⇔ ∃D ⊆ B, C = (A \ B) ∪ D

⇔ ∃D ⊆ B, C = A ∪ (B \ D),

and, consequently, for all A and B such that B ⊆ A:

αG(A,B) =
∑
D⊆B

∏
ωk∈(A\B)∪D

αk

∏

ω�∈A∪(B\D)

β�

=
∏

ωk∈A\B
αk

∏

ω�∈A

β�

∑
D⊆B

∏
ωk∈B\D

βk

∏
ω�∈D

α�

=
∏

ωk∈A\B
αk

∏

ω�∈A

β�

∏
ωk∈B

(αk + βk)

=
∏

ωk∈A\B
αk

∏

ω�∈A

β�,

which completes the proof of Proposition 1.

Proposition 2 is obvious from (42).

A.2 Solutions obtained by modifying Equation (18)

Case 1: Assume that (18) is replaced by
⎧⎨
⎩

mR
Y [ωk]({R}) = βk,

mR
Y [ωk]({NR}) = αk.

(45)

In this case, the ballooning extension of mR
Y [ωk] is:

mR⇑Ω×R
Y ({ωk} × {R} ∪ {ωk} × R) = βk, (46)

mR⇑Ω×R
Y ({ωk} × {NR} ∪ {ωk} × R) = αk. (47)

Let mΩ×R
r be the conjunctive combination of the mR

Y [ωk]⇑Ω×R, k = 1, . . . ,K. Using

the following equalities, for any k �= �:

({ωk} × {R} ∪ {ωk} × R) ∩ ({ω�} × {R} ∪ {ω�} × R) =

{ωk, ω�} × {R} ∪ {ωk, ω�} × R, (48)

({ωk} × {R} ∪ {ωk} × R) ∩ ({ω�} × {NR} ∪ {ω�} × R) =

{ωk} × {R} ∪ {ω�} × {NR} ∪ {ωk, ω�} × R. (49)
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we can obtain the expression of mΩ×R
r as:

mΩ×R
r (C × {R} ∪ C × {NR}) =

∏
ωk∈C

αk

∏

ω�∈C

β�, ∀C ⊆ Ω. (50)

Like before (40), the above BBA must now be combined with mΩ
Y [R]⇑Ω×R, whose

focal sets are of the form B ×{R}∪Ω×{NR}, with B ⊆ Ω. The intersection of focal

sets of mΩ
Y [R]⇑Ω×R and mΩ×R

r is:

(C × {R} ∪ C × {NR}) ∩ (B × {R} ∪ Ω × {NR}) = (B ∩ C) × {R} ∪ C × {NR}.

Then:

mY [R]⇑Ω×R ∩© mΩ×R
r ((B ∩C)×{R}∪C ×{NR}) =

⎡
⎣ ∏

ωk∈C

αk

∏

ω�∈C

β�

⎤
⎦ mΩ

S (B). (51)

Marginalizing this BBA on Ω gives:

αmΩ(A) =
∑

(B∩C)∪C=A

⎡
⎣ ∏

ωk∈C

αk

∏

ω�∈C

β�

⎤
⎦ mΩ

S (B), ∀A ⊆ Ω, (52)

=
∑

B∪C=A

⎡
⎣ ∏

ωk∈C

αk

∏

ω�∈C

β�

⎤
⎦ mΩ

S (B), ∀A ⊆ Ω, (53)

and, we recognize equation (42).

Case 2: Assume that (18) is replaced by
⎧⎨
⎩

mR
Y [ωk](R) = βk,

mR
Y [ωk]({NR}) = αk.

(54)

In this case, the ballooning extension of mR
Y [ωk] is:

mR⇑Ω×R
Y (Ω ×R) = βk, (55)

mR⇑Ω×R
Y ({ωk} × {NR} ∪ {ωk} × R) = αk. (56)

Let mΩ×R
r be the conjunctive combination of the mR

Y [ωk]⇑Ω×R, k = 1, . . . ,K. Using

the following equality, for any k �= �:

({ωk} × {NR} ∪ {ωk} × R) ∩ ({ω�} × {NR} ∪ {ω�} × R) =

{ωk, ω�} × {NR} ∪ {ωk, ω�} × R, (57)
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we obtain the expression of mΩ×R
r as:

mΩ×R
r (C × {NR} ∪ C ×R) =

∏
ωk∈C

αk

∏

ω�∈C

β�. (58)

The above BBA must now be combined with mΩ
Y [R]⇑Ω×R, whose focal sets are

of the form B × {R} ∪ Ω × {NR}, with B ⊆ Ω. The intersection of focal sets of

mΩ
Y [R]⇑Ω×R and mΩ×R

r is:

(C × {NR} ∪ C ×R) ∩ (B × {R} ∪ Ω × {NR}) = Ω × {NR} ∪ (C ∩ B) × {R}.

Thus, all focal sets of mΩ
Y [R]⇑Ω×R ∩© mΩ×R

r contain Ω × {NR}. When marginalizing

on Ω, the mass of each focal sets is then transferred to Ω, and

αmΩ
Y (Ω) =

(
mΩ

Y [R]⇑Ω×R ∩© mΩ×R
r

)↓Ω
(Ω) = 1. (59)

A.3 Proofs of Propositions 6 and 7

Let mΩ×R
r denote the conjunctive combination of the mR

Y [θk]⇑Ω×R, k = 1, . . . , L. A

similar line of reasoning as performed in the proof of Proposition 1 shows that the

focal elements of mΩ×R
r are of the form C × {R} ∪ C ×R with C ∈ C, and

mΩ×R
r (C × {R} ∪ C ×R) =

∏
∪θk=C

αk

∏

∪θ�=C

β�, (60)

which is the equivalent of (39).

After combination with mΩ
Y [R]⇑Ω×R and marginalization on Ω, we obtain:

α
ΘmΩ(A) =

∑
B∪C=A

mΩ×R
r (C × {R} ∪ C ×R)mΩ

S (B), ∀A ⊆ Ω

=
∑

B∪C=A

⎡
⎣ ∏
∪θk=C

αk

∏

∪θ�=C

β�

⎤
⎦ mΩ

S (B), ∀A ⊆ Ω (61)

=
∑
B⊆A

α
ΘG(A,B)mΩ

S (B), ∀A ⊆ Ω,

where α
ΘG(A,B) denotes a coefficient of the generalization matrix associated with the

Θ-contextual discounting:

α
ΘG(A,B) =

⎧⎪⎪⎨
⎪⎪⎩

∑
B∪C=A

∏
∪θk=C

αk

∏

∪θ�=C

β� if ∃C ∈ C, B ∪ C = A,

0 otherwise.

(62)
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Now, let A,B ⊆ Ω, and C ∈ C such that B ∪ C = A. For any θ ⊆ C, we have either

θ ⊆ B or θ ∩ (A \B) �= ∅. Hence, we have C = (A \B)∗ ∪D for some D ∈ C, D ⊆ B∗.

Similarly, if θ ⊆ C, we have either θ ⊆ (B\D), or θ∩A �= ∅. Hence, C = (B\D)∗∪A
∗.

We can thus write

α
ΘG(A,B) =

∑
D⊆B∗

∏
∪θk=(A\B)∗∪D

αk

∏

∪θ�=(B\D)∗∪A
∗
β�

=
∏

∪iθk=(A\B)∗
αk

∏

∪θ�=A
∗
β�

∑
D⊆B∗

∏
∪θk=D

αk

∏
∪θ�=(B\D)∗

β�

=
∏

∪θk=(A\B)∗
αk

∏

∪θ�=A
∗
β�

∏
∪θk=B∗

(αk + βk)

=
∏

∪θk=(A\B)∗
αk

∏

∪θ�=A
∗
β� ,

which completes the proof of Proposition 6.

Proposition 7 results directly from (61).
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