IEEE TRANSACTIONS ON FUZZY SYSTEMS

A fuzzy probabilistic approach for determining
Safety Integrity Level

Mohamed Sallak, Christophe Simon, and Jean-Francois Aubry

Abstract— The process industry has always been faced with
the difficult task of determining the required integrity of safe-
guarding systems such as Safety Instrumented Systems (SIS). The
ANSI/ISA S84.01-1996 and IEC 61508 safety standards provide
guidelines for the design, installation, operation, maintenance,
and test of SIS. However, in the field, there is a considerable lack
of understanding of how to apply these standards to both deter-
mine and achieve the required Safety Integrity Level (SIL) for
SIS. Moreover, in certain situations, the SIL evaluation is further
complicated due to the uncertainty on reliability parameters of
SIS components. This paper proposes a new approach to evaluate
the “confidence” of the SIL determination when there is an
uncertainty about failure rates of SIS components. This approach
is based on the use of failure rates and fuzzy probabilities to
evaluate the SIS failure probability on demand and the SIL of
the SIS. Furthermore, we provide guidance on reducing the SIL
uncertainty based on fuzzy probabilistic importance measures.

Index Terms— Safety Instrumented Systems; Safety Integrity
Level; Failure rates; Fuzzy probabilities; Fuzzy probabilistic
importance measure; Uncertainty

I. INTRODUCTION

HE process industry tends to be technically complex and

has the potential to inflict serious harm to persons and
property if the trip cannot avoid harm or during a spurious trip
(i.e. the safety function is carried out without a demand from
the process). In spite of the application of a wide variety of
safeguarding measures, many accidents still happen. Experi-
ences gained from these accidents have led to the application
of a variety of technical and non-technical layers of protection,
such as Safety Instrumented Systems (SIS). The SIS consists
of instrumentation or controls that are implemented for the
purpose of mitigating a risk or bringing the process to a safe
state in the case of a process failure. Risk in process industry is
defined as a measure of human injury, environmental damage
or economic loss in terms of both the incident likelihood and
the magnitude of the injury, damage, or loss [1]. A SIS is
used for any process in which a process hazards analysis
(PHA) has determined that the mechanical integrity of the
process equipment, the process control, and other protective
equipments are insufficient to mitigate the potential risk.
The ANSI/ISA S84.01-1996 [2] and IEC 61508 [3] safety
standards provide guidelines for the design, installation, op-
eration, maintenance, and test of SIS. However, in the field
there is a considerable lack of understanding of how to apply
these standards to both determine and achieve the required
SIL. Thus, determining SIL for a SIS and its validation are
very important for compliance with the ANSI/ISA S84.01-
1996 [2] and IEC 61508 [3] standards. The SIL of a SIS is
defined by its probability to fail on demand (PFD). The PFD

represents the probability that the SIS will fail such that it
cannot respond to a potentially dangerous condition. PF' D,
is a term used to describe the average probability of failure
on demand. It depends on the period of exploitation of SIS
equipments. PF'D,, will not reach a steady state value if any
periodic inspection, test, and repair are done [4]. According
to safety standards [2], [3], PF'D,,4 is an appropriate metric
for measuring the effectiveness of a SIS if it is assumed
that the potentially dangerous condition is independent from
equipment failures in the SIS.

In the process industry, the operating conditions and environ-
ments can change for the same SIS component. The most
desirable information is to have sufficient plant specific data
about component failures to evaluate their failure rates. Due
to the lower solicitation of SIS in plant, SIS components have
not been operating long enough to provide statistical valid
failure data, and for new plant it is not possible to collect in-
house failure data [5], [6]. Laboratory data and generic data
are often used to provide failure data of SIS components [4],
[71, [8]. Point values from these data origins are generally used
to obtain an estimation of the failure rates of SIS components.
However, measuring and collecting failure data have uncer-
tainty associated with them, and borrowing data from labora-
tory and generic data sources involves uncertainty as well. As
mentioned by Kletz [9], failure data can deviate by a factor of 3
or 4, and a factor of 10 is not unusual. Wang et al. [5] discussed
the impact of data uncertainty in determining the PFD of SIS.
However, they do not propose a methodology to treat this
problem. They just underlined that more work is needed to
examine and justify the uncertainty about determining the PFD
of SIS in these cases.

The probabilistic approaches combined with Monte Carlo
simulation [3], [10]-[14] which evaluate the PFD of SIS from
the failure probabilities of its components might be inappro-
priate, since most of the available failure rates data are point
values without information about the probability distributions
of theses failure data. Some reliability databases [15]-[17]
provide upper bounds, lower bounds, and error factors of
failure rate data for safety components. Fuzzy methods can
use advantageously these uncertainty parameters to evaluate
the failure rates of components, and then to determine the
failure probabilities of SIS components and the PFD of SIS.
The purpose of this paper is to present a new approach to
evaluate the “confidence” of the SIL determination, when
there is an uncertainty about failure rates of SIS components.
This approach is based on the use of failure rates and fuzzy
probabilities to evaluate the fuzzy SIS PFD (SIS probability
to fail on demand), and the SIL of the SIS. Furthermore, we
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provide guidance on reducing the uncertainty of determining
SIL based on fuzzy probabilistic importance measures which
are used to identify the SIS critical components. Then we
modify the SIS configuration for reducing the SIL uncertainty
accordingly to the critical components.

This paper is organized as follows. Section 2 briefly describes
the procedure to achieve the safety target level of the process,
and reviews the risk analysis techniques that can be used
to comply with ANSI/ISA S84.01-1996 [2] and IEC 61508
[3] safety standards. In Section 3, we introduce the fuzzy
probabilistic approach to determine the SIL of the SIS and
evaluate the SIL uncertainty. Moreover, the fuzzy probabilis-
tic importance measure to reduce uncertainty is presented.
Section 4 concerns an example from the technical report
ISA-TR84.00.02-2002 [11] which illustrates the use of the
proposed approach and compares it to the conventional prob-
abilistic approach. Then, the reduction of the SIL uncertainty
is achieved by computing the fuzzy probabilistic importance
measures and modifying the configuration of the SIS critical
components accordingly. Finally, some concluding remarks
and perspectives are given in Section 5.

II. PROCEDURE TO ACHIEVE THE SAFETY TARGET LEVEL
OF THE PROCESS

This section focuses on qualitative and quantitative tech-
niques that can be used to evaluate the risk associated to
a process. After the risk has been evaluated, we have to
identify the necessary Safety Instrumented Function (SIF) (i.e.
a function that is a single set of actions that protects against a
single specific risk). Then we have to implement it on a SIS
in order to achieve the desired safety level for the process, and
verify that the SIS configuration meet the required SIL. All
these steps are required in order to comply with the ANSI/ISA
S84.01-1996 [2] and IEC 61508 [3] standards.

A. Performance-based safety standards

During the last years, great emphasis has been placed
on improving technological risk management in the process
industry. Process industry refers to those processes involved,
but not limited to the production, generation, manufacture,
treatment of oil, gas, wood, metals, food, plastics, petrochem-
icals, chemicals, steam, electric power, pharmaceutical, and
waste material. These efforts have resulted particularly in the
development of two performance-based safety standards from
the Instrument Society of America (ISA) ANSI/ISA S84.01-
1996 [2] and the International Electrotechnical Commission
(IEC) IEC 61508 [3].

B. Safety Instrumented System (SIS)

The SIS is a system composed of sensors, logic solver and
final elements for the purpose of taking the process to a safe
state when predetermined conditions are violated. The safety
performance of the SIS is defined in terms of SIL, which is
defined by its PF'Dg,,. The PFD,,, value is obtained by
combining the average failure probabilities of system compo-
nents. This combination is a function of the SIS configuration,

TABLE I
DEFINITION OF SIL FOR LOW AND HIGH DEMAND MODES

Solicitation ~ Low Demand = High Demand
SIL PFDgyg Failures/hour

1 [10=2,10"1] [107%,1077]

2 [1073,1072] [1077,1079]

3 [10=4,1073] [1078,1077]

4 [1075,1074] [1072,10~8]

the proof test interval, the common causes failures, and the
inspection and maintenance policies. The ANSI/ISA S84.01-
1996 [2], IEC 61508 [3], and ISA-TR84.00.02-2002 [11] rec-
ommend several techniques to determine the PF'D,,, value.
For safety functions with a low demand rate (for example
anti-lock braking), and safety functions with a high demand
rate or operate continuously (for example normal braking), the
standards recommend values presented in Table I. In the next
section, we will use these PFD values for the SIL evaluation.

C. Compliance with ANSI/ISA $84.01-1996 and IEC 61508
standards

The overall objective of these standards is to identify the
required safety functions, establish their SIL and implement
them on a SIS in order to achieve the desired safety level for
the process. The basic steps required to comply with are the
following:

« Identify the safety target level of the process;

« Evaluate the hazardous events that pose a risk higher than
the safety target level;

o Determine the safety functions that must be implemented
on a SIS to achieve the safety target level;

o Implement the safety functions on a SIS and evaluate its
SIL;

o Install, test, and commission the SIS;

o Verify that the installed SIS does reduce the process risk
to satisfy the safety target level.

The standards [2], [3] offer 3 methods of determining SIL
requirements:

e Qualitative methods;
o Semi-quantitative methods;
o Quantitative methods.

1) Qualitative methods: In qualitative methods, the risk
concept of likelihood and consequence is used even though no
explicit quantification is required. There are several techniques
published in the literature [2], [3], [11]. The risk graph method
is the widely used. It provides a SIL correlation based on four
factors [3]:

o Consequence (C);

o Frequency and exposure time (F);

« Possibility of avoiding the hazardous event (P);
« Probability of the unwanted occurrence (W).

This method is a qualitative technique that requires tools to
be developed to ensure that the four parameters listed above
are properly chosen. It focuses most of the evaluation on an
individual person’s risk. The four factors are evaluated from
the point of view of a theoretical person being in the incident
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Fig. 1. Example risk graph.

impact zone. The probability of the unwanted occurrence W is
based on the likelihood of the event, which should be evaluated
without taking into account any existing SIS. If a frequency
is involved in the evaluation of risk graph, the outcome W is
expressed as well in terms of a frequency or an expected fre-
quency. For this method, the likelihood and consequences are
determined by considering the independent protection layers
during the assessment. Independence of protection layers can
be guaranteed if the performance is unaffected by the failure
of another protection layer or by the conditions that caused
another protection layer to fail. The protection layers must also
be independent of the initiating cause of failure. Once these
factors are determined, the risk graph is used to determine the
minimum risk reduction level and associated SIL. An example
risk graph is shown in Fig. 1.

2) Semi-quantitative methods: A semi-quantitative ap-
proach can be used to assess process risk [10], [18]. It allows
a traceable path of how the accident scenario develops and
comprises the following steps:

o Identify the accident scenarios;

o Identify the basic events that comprise each accident
scenario. Basic events that involved failure or success of
safety systems are also taken into account;

o Assign a typical likelihood of occurrence for each event;

o Estimate the likelihood (approximate range of occur-
rence) of an accident scenario;

o Perform consequence analysis to understand the severity
of the accident scenario consequences;

« Assign the rate for the severity of the consequences;

« Evaluate the risk as a combination of the likelihood and
the consequences.

3) Quantitative methods: The quantitative approach to SIL
assignment is the most rigorous technique to use. The SIL
is assigned by determining the process demand or incident
likelihood quantitatively. The potential causes of the incident
are modeled using a quantitative risk assessment technique
[11], [12]. The quantitative technique is often used when

there is a very limited information database about the process.
So, the quantitative determination of likelihood is extremely
difficult. The method does require a thorough understanding of
the potential causes of the event and an estimated probability
of each potential cause. The technical report ISA-TR84.00.02-
2002 [11] presents three quantitative methods:

« Simplified equations.
o Fault tree analysis (FTA).
e Markov modeling.

The simplified equation technique involves determining the
average failure probability of the field sensors (FS), logic
solvers (LS), and final elements (FE). Once the individual
failure probabilities for each input, logic solver and output are
known, these probabilities are summed to compute the SIS
PFD.

Fault trees analysis can be actually used as either a quantitative
or a semi-quantitative method for modeling the SIS. Fault
tree symbols are used to show the failure logic of the SIS.
The graphical technique of fault tree analysis allows easy
visualization of failure paths. Since the actual failure logic is
modeled, diverse technologies, complex voting strategies and
interdependent relationships can be evaluated. However, fault
tree analysis is not suitable to SIS that have time dependent
failures. Therefore, Markov approaches can be used to model
the SIS and evaluate the SIS PFD.

4) Discussion: The qualitative technique is simple and
the limited resources required for its execution make it a
useful screening tool to identify safety areas concerned. The
drawback is the dependence on the expertise level of the
practitioners. Particulary, consistency may be a problem. The
semi-quantitative technique does provide a more systematic
approach to assess risk than qualitative methods. The quanti-
tative technique is resource intensive but does provide benefits
that are not provided in the other two approaches. The most
significant disadvantage of this technique is the need of credi-
ble data. In this work, we consider some imprecise information
about failure rates of SIS components. Also, it becomes
interesting to investigate the use of a quantitative method like
FTA, with an integration of the uncertainty involving a fuzzy
set approach.

III. DETERMINING SIL VIA A FUZZY PROBABILISTIC
FAULT TREE ANALYSIS

To determine SIL, the technical report ISA-TR84.00.02-
2002 [11] recommends the use of fault tree analysis in SIL2
and SIL3 SIS applications. The conventional fault tree analysis
which is based on the probabilistic approach has been used ex-
tensively in the past [12]-[14]. However, in order to use upper
and lower bounds of failure probabilities of SIS components
provided by some reliability databases [15]-[17], we propose
to use fuzzy fault trees which provide an interesting tool for
representing and analyzing these failure probabilities.

The pioneering work on fuzzy fault tree analysis belongs to
Tanaka et al. [19]. They treated basic events probabilities as
trapezoidal fuzzy numbers and applied the fuzzy extension
principle to compute the top event probability. Singer [20]
analyzed fuzzy reliability by using L-R fuzzy numbers. He
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considered the relative frequencies of basic events as fuzzy
numbers and used possibility instead of probability measures.
However, these approaches cannot be applied to a fault tree
with repeated events. In order to deal with repeated basic
events, Soman and Misra [21] provided a simple method
for fuzzy FTA based on the a-cut method, also known as
resolution identity. Other results on fuzzy FTA are reported in
[22]-[27].

Our approach is to quantitatively evaluate the performances
of a SIS. But, as mentioned previously, studies are under
uncertainty. The goal of the paper is to take into account these
uncertainties in the evaluation. So, we investigate the use of
fuzzy set theory to determine the SIL of the SIS.

A. Fuzzy numbers

Let = be a continuous variable restricted to a distribution
function p(z) € [0,1], which satisfy the following assump-
tions:

x) is a piecewise continuous;
x) is a convex fuzzy set;
o p(x) is a normal fuzzy set.

o 1
o
A fuzzy set which satisfies these requirements is called a fuzzy
number.

Obviously, computational efficiency is important in any practi-
cal application of fuzzy numbers. But, the operation implied in
the extension principle requires extensive computation. From
the previous studies made by Kaufman and Gupta [28], it is
shown that the computational effort with operation on fuzzy
numbers can be reduced by composing the membership func-
tions into a-levels and by conducting mathematical operations
on these intervals [29], [30].

For any fuzzy number A which has the membership function
tg(z), an interval bounded by two points at each a-level
(0 < a < 1) can be obtained using the «-cut method.
The symbols A(La) and Ag?) have been used in this paper to
represent the /1 g() left-end-point and right-end-point of this
interval.

_As it is shown in Fig. 2, we can express a fuzzy number
A, using the following form:

A=A A o0<ac<i

The wider the support of the membership function, the
higher the uncertainty. The higher the value of ¢, the higher the
confidence in the parameter represented by the fuzzy number
[31]. For each a-level of the fuzzy number which represents
a parameter, the model is run to determine the minimum and
maximum possible values of the output. This information is
then directly used to construct the corresponding membership
function of the output which is used as a measure of uncer-
tainty. If the output is monotonic with respect to the dependent
fuzzy numbers, the process is rather simple since only two
simulations will be enough for each a-level (one for each
boundary). Otherwise, optimization routines have to be carried
out to determine the minimum and maximum values of the
output for each a-level.

B. Fuzzy probabilities

A fuzzy probability, i.e. a fuzzy set defined in probability

space, is represented by a fuzzy number between 0 and 1
assigned to the probability of an event occurrence [19], [26],
[32].
One can choose depending upon the suitability different types
of membership function for fuzzy probability; the more con-
fident portion is given value 1 and other portions are given
values between [0,1]. Our goal is to use fuzzy probabilities
to describe occurrence probabilities of events. To this end,
we follow the standard approach proposed by Soman and
Misra [21] to describe the probabilities of various unions,
intersections, and complements of these events occurrences.

C. Fuzzy probabilistic fault tree analysis

In this paper, the fault tree analysis is based on fuzzy

set theory. So, we can allocate a degree of uncertainty to
each value of the failure probability. The fuzzy probability
of system failure (top event occurrence) is determined from
the fuzzy probabilities of components failure.
For example, in the fault tree shown in Fig. 3, if we assume
that the events X; are independent, and have low failure
probabilities (rare-event approximation), the fuzzy probability
of top event occurrence can be expressed by:

PT(y) = SUP{y=pa: +pA2}min{PA1 (pAl)a PA2 (pAQ)}

where:

Par(y) = supgy—p,pymin{ Px, (p1), Px, (p2)}
f)AQ(y) = Sup{y:p3p4}min{ﬁX3 (P3)7 ﬁX4 (p4)}

where ?T is the fuzzy probability of system failure (top event
occurrence), and Py, is the fuzzy probability of a component
failure.

D. Fuzzy probabilistic importance measure

The methods to evaluate the relative influence of compo-
nents availability on reliability or availability of the entire
system provide useful information about the importance of
these elements. Many measures are available in conventional
probabilistic approaches [33]-[35]. These measures are based
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Fig. 3. Fault tree example.
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Fig. 5. Schematic SIS configuration of the example [11].

on the evaluation of the contribution of components failure
probabilities to the system failure probability. However, prob-
abilistic importance measures are not suitable for the fuzzy
approach proposed in this paper, because they are defined
for crisp values or probability distributions. Therefore, fuzzy
importance measures were introduced by Furuta and Shiraishi
[36]. They have proposed a fuzzy importance measure equiv-
alent to structural importance. Liang and Wang [37] proposed
a fuzzy importance index based on a ranking method of
triangular fuzzy numbers with maximizing and minimizing
sets. Guimarees et al. [38] proposed a fuzzy importance
measure based on the euclidian distance between two fuzzy
sets.

Here, we introduce a fuzzy probabilistic importance measure
v; defined by [39]:

vi = defuz(;) (1

where defuz is the center of area method of defuzzification
used to obtain a crisp value from the fuzzy probability ~;
which is given by:

Y =P P @)
where P is the fuzzy probability of system failure when
the component ¢ is available (the failure probability of the
component i is equal to 0), and P’ is the fuzzy probability

of system failure when the component 7 is not available (the
failure probability of the component ¢ is equal to 1).

IV. APPLICATION EXAMPLE
A. Process

In order to illustrate the approach proposed in this paper,
let us consider a process composed of a pressurized vessel

containing volatile flammable liquid. The example process is
defined in the technical report ISA-TR84.00.02-2002 [11]. The
engineered systems available are:

e An independent pressure transmitter to initiate a high
pressure alarm and alert the operator to take an appropri-
ate action to stop inflow of material.

¢ In case the operator fails to respond, a pressure relief
valve releases material in the environment and thus re-
duces the vessel pressure and prevents its failure.

The safety target level for the vessel is: no release to the
atmosphere with a frequency of occurrence greater than 103
in one year. An HAZOP (Hazard and Operability) analysis was
performed to evaluate hazardous events that have the potential
to release material in the environment. The results of HAZOP
study identify that an overpressure condition could result in a
release of flammable material in the environment, and a risk
analysis technique indicates that the safety function required
to protect against the overpressure condition needs a SIL2.
As a SIS is used to perform the safety target level for the
vessel, our goal is to evaluate its PF'D,,4, and make certain
that this SIS meets the SIL2. The example process with the
implemented SIS (see Fig. 4), the schematic SIS configuration
(see Fig. 5), and the reliability data (failure probabilities of
components which are computed from the failure rates) are
defined in the technical report ISA-TR84.00.02-2002 [11]. The
error factor values of failure probabilities were chosen between
1.1 and 1.7 which is very realistic according to Kletz [9]. A
fuzzy probabilistic fault tree analysis is used to evaluate the
SIL of the SIS by determining its PF' D, . The results will
be compared to those obtained by a conventional probabilistic
fault tree analysis. Finally, we provide guidance on reducing
the SIL uncertainty based on a fuzzy probabilistic importance
measure.

B. Uncertainty fault tree analysis

Fault tree analysis consists of two major parts: construction
and evaluation. Here, we are only concerned with the evalua-
tion of occurrence probability of fault tree top event. The fault
tree model of SIS failure on demand is shown in Fig. 6.
Firstly, we propose to compare fuzzy probabilistic and conven-
tional probabilistic approaches to evaluate the SIS PFD from
the components failure probabilities.

1) Assumptions:

« The basic events of the fault tree are independent;

o The failure probabilities represent the average failure

probabilities per year.

o The failure probabilities of SIS components are computed

from their failure rates.

2) Fuzzy probabilistic approach: In the proposed method,
the uncertainty of components failure probabilities is treated
by taking fuzzy probabilities. The failure probabilities of SIS
components are computed from their failure rates. Figure 7
provides representation of a fuzzy probability of a component
failure. The parameter a; is the lower bound, the parameter
m; is the modal value, and the parameter b; is the upper
bound for each fuzzy probability of components failure. These
parameters are given in Table II. We choose the triangular
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Fig. 4. Process diagram of the example [11].
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Fig. 6. Fault tree of the example.

shapes because of their mathematical simplicity. However, our
approach can be applied for any shape (trapezoidal, peak,
normal, ...).

In the fault tree shown in Fig. 6, there are 11 minimal cut-sets
(cf. Table III). Since basic events have low failure probabilities,
we can use the rare-event approximation. Then, we determine
the fuzzy probability of the top event occurrence (fuzzy SIS
PFD) from the fuzzy probabilities of components failure.
Figure 8 gives the fuzzy probability of the top event occurrence

il

Level switch Level switch
1fails 2fails
X14 X13

O O

(fuzzy SIS PFD). Table IV gives lower and upper bound values
obtained in each a-level.

3) Conventional probabilistic approach: The present prob-
abilistic approach to determine the SIS PFD consists in treat-
ing the components failure probabilities as random variables
represented by a specified distributions (log-normal, normal,
log-uniform...). In this paper, the uncertainty of each failure
probability will be represented by a log-triangular distribution
which is defined by a median m; and an error factor e;
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TABLE IV
LOWER AND UPPER BOUND VALUES FOR FUzzY SIS PFD

1
a—level Lower bound(x10~2)  Upper bound(x10~2)
0 0.862 2.42
© 0.1 0.914 2.37
s 0.2 0.972 2.24
s 0.3 1.03 2.18
0.4 1.11 1.91
0.5 1.17 1.78
0.6 1.23 1.72
0 0.7 1.26 1.65
0.8 1.32 1.60
0.9 1.36 1.46
1 1.4 1.4
Pxi
1
Fig. 7. Fuzzy probability of a component failure.
o)
TABLE I §
PARAMETERS OF FUZZY PROBABILITIES g
SIS components a;(x1072)  m;(x1072)  b;(x10~2)
X1, X2: Pressure transmitters 2.13 3.2 4.8
X3: Logic solver 0.5 0.6 0.72 0 1
X4, X5, X6: Flow transmitters 1.31 1.7 2.21
X9, X11: Solenoids valves 1.65 2.8 4.76
X7, X8: Temperature switches 3.64 4 4.4 PXi
X10, X12: Block valves 1.65 2.8 4.76
X13, X14: Level switches 3.07 3.99 5.19 . . R .
Fig. 9. Frequency probability distribution of a component failure.
TABLE TII (e; = bi/m; = m;/a;) [37] given in Table V. We choose a

FAULT TREE MINIMAL CUT-SETS

Minimal Cut-sets
C1 ={X3}
Co ={X1,X2}
C3 = {X10,X11}
Cy = {X10,X12}
Cs = {X13,X14}

Cs = {X4,X5}
Cr = {X4,X6}
Cs = {X5,X6}
Cy = {X7,X8}

Cio = {X9,X11}
C11 = {X9, X12}

0 0.005 0.01 0.015 0.02 0.025

Fig. 8. Fuzzy SIS PFD.

log-triangular distribution because it is similar to the triangular
shape used in the fuzzy probabilistic approach. The log-
triangular probability distribution of components failure is
shown in Fig. 9. The software (© FAULT TREE + developed by
ISOGRAPH company has been used for generating minimal
cut-sets and top event failure probability estimation. It uses
Monte-Carlo sampling simulations to repeatedly sample com-
ponents failure probabilities from the appropriate distributions,
calculate and record the top event failure probability. Fig. 10
gives the frequency distribution of the top event occurrence
probability (SIS PFD).

C. Comparison between the two approaches

In order to do a comparison between the fuzzy probabilistic
and the conventional probabilistic approaches, we use three
measures for each approach.

In the fuzzy probabilistic approach, we use the following
measures:

TABLE V
UNCERTAINTY PARAMETERS OF COMPONENTS FAILURE PROBABILITIES

SIS components m;(x1072)  e;

X1, X2: Pressure transmitters 3.2 1.5
X3: Logic solver 0.6 1.2

X4, X5, X6: Flow transmitters 1.7 1.3
X9, X11: Solenoids valves 2.8 1.7
X7, X8: Temperature switches 4 1.1
X10, X12: Block valves 2.8 1.7

X13, X14: Level switches 3.99 13
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Fig. 10. Frequency probability distribution of SIS PFD.

o Modal value: The peak of the fuzzy SIS PFD is called the
modal value. This value is the element with the highest
confidence in the fuzzy SIS PFD. In this example, the
modal value is the 1.4 x 10~2 which corresponds to SIL1.

o Average index: We use the index proposed by Yager [40]
which is defined by:

'l
I(PFD) = / §(PFD% + PFD%)do
0

3)

Where PFD¢ and PF D¢ represent the left-end-point
and the right-end-point of the interval corresponding to
the a—level. We choose this index because it is assumed
that we have an unbiased approach to making a decision.
In this study, the average index is 1.39 x 1072 which
corresponds to SIL1.

o Knowledge interval: The knowledge interval is obtained
by the O—level of the fuzzy SIS PFD. It represents
the maximum interval within where a true value may
exist. In this example, the knowledge interval is [8.62 x
1073,2.42 x 10~2] which falls into SIL1 or SIL2.

In the conventional probabilistic approach, we use the follow-
ing three measures:

e Median: The median is the value that each result
has a 50% probability of exceeding. In this example:
frequency(PF D5y, ) = 1.405 x 10~2 which corresponds
to SIL1. The modal value in the fuzzy probabilistic
approach can be compared to the median value in the
conventional probabilistic approach.

e Mean: The mean value is defined by:

PFDgyg = Z frequency(PFD;).PFD; = 1.428% 1072

i=1

“4)
where n represents the number of samples of Monte Carlo
simulations. The average index in the fuzzy probabilistic
approach can be compared to the mean value in the
conventional probabilistic approach.
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Fig. 11. Fuzzy probabilistic importance measures.

¢ Maximum and minimum values: These values can be
compared to the knowledge interval, and they are given
by:
— Minimum value (5%) = 1.124 x 103 which corre-
sponds to SIL2.
— Maximum value (95%) = 1.589 x 10~2 which cor-
responds to SIL1.

This study shows that the differences between results ob-
tained using either approach with respect to two measures
(modal value vs. median and average index vs. mean) are very
small, and the SIL obtained in each approach is the same.
The width of the support defined by the knowledge interval in
the fuzzy approach is higher than the width of the support in
the minimum and maximum values in the conventional proba-
bilistic approach. However, in the conventional probabilistic
approach the obtained probability values can lie anywhere
between 0 and 1.

D. Fuzzy probabilistic importance measures

According to the results above, we have to reduce the
uncertainty about determining the SIL of the SIS. That’s why,
we propose to compute the importance of SIS components.
We use the fuzzy probabilistic importance measure y; defined
in (1). The fuzzy probability 7; is given by:

— i

5 = PFD — PFD

&)

where PFD is the fuzzy SIS PFD when the component ¢ is
available (the failure probability of the component ¢ is equal

to 0), and PFDl is the fuzzy SIS PFD when the component
1 is not available (the failure probability of the component i
is equal to 1).

The results of fuzzy probabilistic importance measures calcu-
lations for SIS components are summarized in Fig. 11. We note
that the most critical component to system failure is related
to the logic solver with an importance value of 0.99. The
relatively higher value of 7yrqgicSoiver indicates that a small
variation in the logic solver configuration causes a relatively
greater change in the estimate of the SIS PFD and may be
caused a significant change in the SIL of the SIS. These results
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allow us to make effort on the logic solver configuration to
reduce uncertainty.

E. Reducing uncertainty

We aim to reduce uncertainty about determining the SIL.

That’s why we modify the SIS configuration. Since, the fuzzy
probabilistic importance measures have identified the logic
solver as the most critical component in the SIS, we propose
to modify the logic solver configuration. We add another logic
solver in the SIS in order to evaluate the impact of this
change on the SIL uncertainty. Then we have two possible
configurations: the 1loo2 (i.e. the SIS will fail if the two
logic solvers fail), and the 2002 (i.e. the SIS will fail if one
of the two logic solvers fails). We compute the fuzzy SIS
PFD of each SIS configuration (cf. Fig. 12). The 2002 voting
configuration is superior to others voting configurations (1lool
and 1002) for reducing the SIL uncertainty. In the 2002 voting
configuration, we are certain that the SIL is 1.
The benefit of this method is providing to the decision-
maker a good picture of reducing the SIL uncertainty, by
modifying the configuration of the most critical components,
or trying to reduce the uncertainty about these components re-
liability parameters. Other considerations, such as components
availability, and maintenance policies, could also drive the
decision towards reducing the SIL uncertainty and achieving
the required SIL.

V. CONCLUSION

Evaluating Safety Integrity Level of Safety Instrumented
Systems is crucial to achieve the safety target level of the
process. However, the uncertainty of reliability parameters of
SIS components is not taken into account in the methods
proposed by safety standards [2], [3]. In this paper, we have
proposed a fuzzy probabilistic approach to evaluate the SIL of
the SIS, when there is an uncertainty about the components
failure probabilities. This approach is based on the use of fuzzy
probabilities to evaluate the SIS PFD and the SIL of the SIS.
To demonstrate the efficiency of our approach, we have
applied it to a process example from the technical report
ISA-TR84.00.02-2002 [11], and compared it to a conventional
probabilistic approach. The results justify the effectiveness of

the proposed methodology in evaluating the SIL of the SIS.
Moreover, the approach we proposed offers a guidance on
reducing the SIL uncertainty based on a fuzzy probabilistic
importance measure which is used to identify the SIS critical
components. These critical components are then used to mod-
ify the SIS configuration for reducing the SIL uncertainty.

It is interesting as further research to incorporate the issues of
maintenance and repair strategies into the fuzzy probabilistic
approach in order to perform the trade-off between the main-
tenance cost and the required SIL for the SIS.
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