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Abstract—Dealing with uncertainty introduces an increased uncertainties in order to evaluate the system’s reliapilit
level of complexity to reliability analysis problems. The uncer- Fyrthermore, in many reliability studies, the failure o§gm’s
tainties associated to reliability studies usually arise from the .o nnonents are assumed to be independent. However, in re-
difficulty to account for incomplete or imprecise reliability data litv. diff tt fd d . be involved. imak
and complex failure dependencies. This paper introduces the ality, ditreren yp_es_(_) epen Qnmes can be _|nvo ve '"gi
Transferable Belief Model (TBM) to the reliability analysis so the results of reliability evaluations wrong. Fricks andvédi
that epistemic uncertainties can be taken into account as well [7] have proposed a classification of failure dependencies
as aleatory uncertainties. Two approaches are used to represen (Common Cause Failures (CCFs), standby dependencies, etc.
failure dependencies of components: an implicit and an explicit There are two principal methods to model failure dependsanci
approach. The TBM model is then compared to an interval- . tenm’ liabilit lvsis: implicit and licit rited
probability model by highlighting the different characteristics of In Sys em S r_e_la ity analysis. implicit and explici S
the results obtained. [8]. The implicit method corresponds to the case of the use of
Keywords: Transferable Belief Model (TBM), Dempster- joint probabilities, correlations values or conditionabipabil-
Shafer (D-S) theory, reliability analysis, epistemic unce ities [9]. In explicit methods, the causes of dependencies a

tainty, failures dependencies, interval-probability. explicitly included into the system’s logic model [9] as @tk
in Reliability Block Diagrams (RBDs) or a basic event in Raul
|. INTRODUCTION Trees (FTs). Here, it is proposed to use both approachegin th

Uncertainties are one of the most challenging problems TBM model reliability analysis.
reliability studies of complex systems [1]-[3]. They aresggnt  Section Il treats the related work using the Dempster-Shafe
in any reliability evaluation due to randomness in the failu theory in reliability analysis. Section Il presents thesiga
phenomena and difficulty to obtain failure data of composientotions of the TBM model. Next, the proposed TBM approach
with scarce failures. Uncertainties have been classifi¢d iris presented in section IV. In section V failure dependesicie
two subtypes: aleatory uncertainty and epistemic unggytai are treated using an implicit and explicit approach. The TBM
Aleatory uncertainty is also called irreducible and inimére and interval-probability models are applied and a comparis
uncertainty. It is the inherent variation associated wile t between both approaches is given. Finally, the paper figishe
physical system or the environment under considerationf4] with some conclusions and perspectives.
represents, for example, the inherent variability of fekiand
repair times of equipment. Epistemic uncertainty is subjec
and reducible because it arises from lack of knowledge orThe first work introducing D-S theory in reliability analgsi
data. It represents uncertainty of the outcome due to laskas presented by Dempster and Kong [10]. They proposed
of knowledge or information in any phase or activity othe use of a FT as a particular case of the tree of cliques to
the modeling process [4]. That's why it is important thapropagate beliefs through the tree. The prior beliefs ofcbas
aleatory and epistemic uncertainties are properly aceglunevents of the tree represent prior failure beliefs of conembs
for in reliability studies. The second work was presented by Guth in 1991 [11] and
Classical probability theory is adapted only for aleatonger- concerned FT analysis. Guth represented the belief thatia ba
tainty [5]. Epistemic uncertainty can be handled by pos$igibi event A happens with failure probability by three valued
theory, Dempster-Shafer (D-S) theory, interval analyaisd logic (True, False and unknown) and proposed truth tables
imprecise probabilities [6]. The possibility theory is afly  with the three valued logic in order to propagate the beliefs
employed to quantify only epistemic uncertainty. The Din FT. Chin et al. [12] proposed to use evidence theory to
S theory can be considered a generalization of classicalpture the non-specificity and conflict features in judgmen
probability theory and also as a generalization of posgibil experts. The beliefs are then propagated in a FT in order
theory [1]. The D-S theory has several interpretations agchto diagnose the fault distribution of web service process.
the Transferable Belief Model (TBM). Hence, in this workWalley [6] and Kozin et al. [13] turned out that in some
the TBM is proposed to handle both aleatory and epistermapplications the use of Dempster’s combination rule led to

Il. RELATED WORK



incorrect results. Almond [14] developed graphical modeB. Basic Probability Assignment (BPA)

using belief functions and applied this graphical model in A Basic Probability Assignment (BPA) of?, also called
FT analysis. Rakowsky et al. [15] have modeled uncertaintigasic Belief Assignment (BBA), is a functiomp® : 2% —
in Reliabili.ty_—.Centered Maintenance (RCM). They gsc_ad deli o 1], such that:

and p.Iau3|b|I|ty.measures to express.the uncertaintiesc-of e Z mH(A) = 1 1)
perts in reasoning. They also use weighted recommendations
during the RCM process. This approach was applied to a fire
detection and extinguishing system. Pashazadeh et al. [I6F numberm®(A) represents the belief value assigned to
proposed reliability assessment under epistemic unogytaithe subsetd of Q. The subsetst c Q such thatn®(4) > 0
using D-S and vague set theories. They eliminated the gai$ called focal sets afv”. A BPA having a singletor{z}
between the representation of combined evidence and the Way€ 2 as a unique focal set represents full knowledge.
of representing the components reliability in the Vague S8tBPA having only singletons as focal sets is equivalent to
theory. Simon et al. [17] have proposed to combine Bayesigfpbabilities. A BPA having) as a unigue focal set represents
networks and D-S theory to study the reliability of system@omplete ignorance and is called vacuous.

under imprecise reliability data. They used evidentialvogks C. Belief and plausibility functions

and junction tree inference algorithms.

Furthermore, there is very little work treating the use of\fB
theory to model failures dependencies in reliability stsdi
Almond [14] proposed to treat the problem of dependence Bel(4) =35, m*(B) @
between basic events by using pivotal variables and informa  PI(A) =" pr,9m*(B) YACQ, VBCQ

tion depend_e nee preaking theorem. WaI_Iey [6] p'roposed anBel(A) measures the total assignment of belief b
example which indicated that D-S theory is not suited tOtreg 4 all its subsets. The plausibility function measures the

dependency in the case of total ignorance of dependencig)aem to which we fail to disbelieve the hypothesis .0f

Hence, an original TBM reliability analysis is proposed iTBel(A) PI(A)] can be viewed as the confidence interval
order to take into account failures dependencies in rdiiabi which d’escribes the uncertainty of A

evaluations.
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The beliefBel and plausibilityPI functions for a subsetl
are defined as following:

D. Combination rules

[1l. BASIC NOTIONS OFTRANSFERABLEBELIEF MODEL Consider two distinct pieces of evidenge? andm? from
(TBM) two different sourceg and j. In TBM, the principal combi-
The TBM was introduced by Smets and Kennes [18] asration rules are the conjunctive and disjunctive combamati
subjectivist interpretation of D-S theory. The D-S the@lgo rules [20]. The Dempster rule of combination is defined as
called evidence theory, was first described by Dempsterdn tthe conjunctive combination of two normal BPAs followed by
1960's [19] with the study of upper and lower probabilitiesla normalization. This rule is also called the orthogonal sum o
extended by Shafer in 1976 [20]. The TBM represents a unigeeidence. It is defined as follows:
framework for representing and manipulating aleatory and
epistemic uncertainties. It is based on two levels: the alred Q Q
level, where available pieces of information are represint mih,; (H) = ZAQB:H’VA’?QQ;% (A)m;(B) (3)
by belief functions; and the pignistic or decision level,ex
belief functions are transformed into probability measure With: k=3, 5_gva 5co m?(A)m?(B)-
It was originally applied in information fusion [21], [22], The number defined by is called the conflict factor between
pattern recognition [23], [24] and diagnostic [25]. In a tini the two pieces of evidenceand ;.
discrete space, the TBM can be interpreted as a generatizaf\s mentioned by some reliability researchers [6], [13], [pem
of probability theory where probabilities can be assigned ster combination rule sometimes generates wrong concisisio
any subsets instead of singletons only. In this sectionicha# the case of serious conflict between evidences. In this, cas
notions, extended operations, and terminology of TBM aftis recommended to investigate the given information or to
explained. For a more detailed exposition see [18]-[20].  collect more information. Several combination rules haeerb
defined and they often differ by the way the evidence mass of
A. Frame of discernment an empty intersection is allocated [26], [27].

The frame of discernment? is the definition domain of £ operations on Joint Spaces

the variable of interest. It consists of all mutually exclusive Consider a BPAm?=% defined on the Cartesian product

elemen_tary propositions. It can be viewed as ,the sam e_Qy_ The marginal BPAn®= 1% on 0, is defined by:
space in probability theory. As an example, let's consider”

Q = {z1,z2} be a frame of discernment. Them; and z, m e (A) = 375 0 /Proj(Bio.)=a T (B)
are elementary propositions and mutually exclusive to each B
other. The power se2® is the set of all the subsets 61 VA CQ,

including itself, i.e.:2% = {{0}, {z1}, {x2}, Q}. (4)



WhereProj(B | Q,) = {z € Q. /3y € Q,, (z,y) € B}. The Table I: BPAs and reliability of parallel and series systems
inverse operation is a particular instance of vacuous sigen With 7 components
Consider a BPAn %= defined orf),. Its vacuous extension on

0,Q, is defined by: BPAs Parallel system
o . m*s {Fs} [[;=, m{F:}
m=19:9 (B) = { m(A) 0B = AxAy ms{Ws} L= T (L= m{W3))
0 otherwise. ) | P {Fs, W} | —TI, m{F;} + T, (1 — m{Wi})
Bel{Ws} 1- H:I:l(l - m{WZ})
vAc, PU{Ws} LI, miF)
Let m$=% denote a BPA onQ,Q, (with underlying BPAs Series system
variables(x,y)), andmj** the BPA on(,Q, with single | m"s{Fs} 1-TI (1= m{F..})
focal setQ,{y}. The conditional BPA ofx giveny = y is | m"${Ws} [L= m{Ws,}
defined as: m*{(Fs, W} | TIis, (1 —m{F,,}) — TTie, m{Wa, }
Bel{W, T om{W,,
i) = (m e @t tEe © | pir) I )

The conditioning operation for belief functions has the sam
meaning as in Probability Theory. However, it also admits an
inverse operation called the ballooning extension./uét [B]  expert's opinion and experimental data can be then explesse
denote the conditional BPAs dn,, given B. The ballooning py:
extension ofm$}[B] on Q,Q, is the least committed BPA,

whose conditioning orB yields m‘*=[y]. It is obtained as: m ({F,}) =fi ,
ms ({W;}) = w; ;o i=1,2 (8)
m[B]1%% (C) = 1 - m@=[B](A) m& (Wi, Fi}) =1—w; — f;

. . Using Eqg. (2), belief and plausibility functions of compo-

1o = { 1 i C= _(B x A)U (B x (L) (7) nents 1 and 2 are computed. For example, If component 1 is
0 otherwise. considered, thenBel({F1}) = m™ ({F}}) and PI({F}}) =

m ({F}) +m ({Fy, Wi }).

vVC C Q,Q,
| der t timize the TBM i q ing ti C. Evaluation of BPAs, beliefs and plausibility functiorfs o
n order to optimize the operations and saving timg '\ 0\ systers

and space, some computation algorithms were given in [14], o
First, the vacuous extension is used to extend' and

[28]. :
m 2 to the product spac@,Q,Qg. The resulting BPAs are
IV. THE PROPOSEDIBM RELIABILITY ANALYSIS combined using the Dempster combination rule. Then, the
019205

In this paper, both system and components are allowedtrﬁoS ulting BPAs are combined with ;. ,,,c; Which represents

take only two possible states: either working’) or failed € relation between the systefhand its components 1 and

(F) (Binary State assumption). Using BPAs of functioningz' Itis given by:

and failure of system components, the goal is to obtain the

LS (W1, Wa, W), (F1, Fa, Fig), (F1, Wa, W), (W1, Fa, W)}) =1 9)

reliability of the whole system in the case of a parallel egst ™ Paraue

To obtain BPAs of systeny, the final result is marginalized
on Q. Belief and plausibility functions are then computed
Due to the Binary State assumption, the frame of discerfltom mfs. Formally, the final BPA is defined as follows :
ment(; of a component is given by:Q; = {F;, W;}. F; and 9
W; represent respectively the failure and the working states "
of the component. The frame of discernment of componentshe system’s reliabilityRs is then given by:

1, 2 andS are then:Q, = {Fy, W1}, Qy = {F,,Ws} and
Qg = {Fs, Ws} Rs € [Bel({WS})aPl({WS})]

The results of BPAs related to parallel configuration are
given in Table I. These results can be generalized to a pérall
system ofn components with BPAs({F;}), m({W;}) and

BPA structure is more natural and intuitive way to express,({F;, W;}) = 1 — m({F;}) — m({W;}) with (1 < i < n).
one’s degree of belief in a hypothesis where only partigh an analogue way, the results for a series system are also
evidence is available. In reliability studies, based oneet® shown.
opinion and experimental data, BPAs of components are ) o
computed directly and this computation needs some reiliabilD- Numerical application: two cases
expert’s efforts. The BPAs assigned to system’s compor®nts « Case I: Aleatory uncertainty

A. Frame of discernment
s _ (mQITQIQZQS D szTQlQQQS o m9192QS)le

- Config

B. BPAs, belief and plausibility functions of system’s comp
nents



Table 1I: BPAs of component$ and 2 Implicit Approach

Case | Case I R B ARG G @ @ @i
Components  f; ‘ W; fi ‘ Wy 0.5 @ @ @ @ @ @ @ T
1 0.109]| 0.3 0.65
2 0.2 0.8 | 0.05 | 0.85 oo
R,
Consider a simple parallel system with componehts B e
and 2. The BPAs of components are given in Table Il.
Using belief and plausibility measures, the reliability of os} o Tovvias
the system iR, = 0.98. % TBM Without combining m{X,}
When there is no epistemic  uncertainty . e
(m® ({F;,W;}) = 0), the system’s reliability results . A
are identical to the results obtained in the classical
probability theory. Figure 1: Implicit approach: Results of TBM and Interval-
« Case ll: Aleatory and epistemic uncertainty probability models.
Here, let's consider epistemic uncertainty
(m®*({F;,Ww;}) > 0) for componentsl and 2 as
shown in Table II. In this case we obtain an interv

- a’i’he ballooning extension is used to decondition the BPAs
value for the reliabilityf, = [0.9475,0.985]. in Eg.10 to,Qs. Then, the BPAs obtained are extended to
V. MODELING FAILURE DEPENDENCIES INTBM AND 219205 and combined with the BPAs of the simple parallel
INTERVAL PROBABILITY APPROACHES configuration and the BPAs of componentand2. The final
A. Introduction result of the system’s reliability after marginalization Qg is
iven in Eq. 11 and can be observed in Figure 1 as a function

Nowadays, complex systems use redundant component%m%_ The factorv; can be viewed as a correlation factor

order to increase the overall SVSte”_‘S rellab|I|ty._ Howe_v%hich assigns an additional BPA to the failure of component
redundant systems are usually subject to multiple failure

dependencies [29]. CCFs were the most studied failure depgnknowmg failure of componer.

dencies models. Reliability researchers have usuallyiattpl Ry = w1+w2*1111i1]1€12*’}’1w1f2

integrated CCFs in the system’s reliability model (FT [8BIR Fo—1_ Fifotn fo— fowr—f1 f2) (11)

[30], stochastic Petri nets [7], etc.). Other failure degenties 1=k

were integrated implicitly by increasing the failure ratefs Where the conflict factok, is given by:k; = 1 fows.

components [9]. The use of BPAs is proposed to represen®) Interval-probability model: The idea of this approach

failure dependencies and extended operations defined in TBMto use the concepts of interval arithmetic to calculate

reliability analysis are used to obtain the whole systemtbe reliability. In this case, each probability is represein

reliability. Implicit and explicit approaches will be pessted. by an upper and a lower probability noted &X) and

The TBM model is compared with an interval-probability”(X) respectively [6]. Then, the probability can be noted as

model. The values of reliability of componerntsand 2 that P(X) = [P(X), P(X)]. It can be noted that thBel(X ) and

would be used from now on, are the same used for caseAl(X) corresponding to a BPA can be represented as coherent

shown in Table II. imprecise probabilitie$P(X), P(X)] = [Bel(X), PI(X)].

L Nevertheless, the opposite is not true, as there are some

B. The implicit approach coherent imprecise probabilities that cannot be defined wit

Let's consider a simple systefcomposed of two compo- corresponding BPA. The corresponding interval-probtédi

nents1 and2 in parallel. Reliability experts have mentionedo the BPAs of components and2 given in Eq. 12 are:
that in~, of system’s functioning tests, the failure of compo-

nent 2 had led to the failure of component 1. The faetois P(F;) = [fi, 1 — wi]
called the dependency factor. The objective is to evaluse t PW;) = [wi,1 = fi] for i=1,2
system’s reliability/zs under these assumptions in both TBM  The conditional BPAs in Eq. 10 corresponds in the interval-
and interval-probability approaches. probability approach to:
1) TBM model:In this approach, the BPAs of components
1 and 2 are given as stated in Eq. 8. The proposed TBM P(F1/Fy) = [m1,1]
approach is to CO(.j.e the dependence between components, application of Bayes'rule gives the system’s failurelpr
and 2 by the conditional BPAs: ability: P(Fg) = P(Fy N Fy) = P(Fy/Fy)P(F,). Then, the

mM B ({F}) =7 1 system’s reliability is given in Eqg. 12 and shown in Figure 1
m [ FB]({Wh, Fi}) =1-m (10) " a5 a function ofy;.



coded by the conditional BPAs:
§S = W2 (12)

Rs=1-nfs m 2 [B)({(F1, Fy), (Wi, Wa)}) = 1 (13)
3) Discussion: From the Eq. 12, we can see that the m™ [I|({(Fy, F2), (F1, Wa), (W1, W2), (W1, F2)}) =1
interval-probability approach is not sensible to the \ioia (14)

of f1 or wy. In this case, the reliability is based only onThe frame of discernment of/ is then given by:Q, =
the conditional probabilityP(F;/F,) = ~; and the values {£,[} and the BPAs related td/ are given in Eq. 15.

of fo and wy. The TBM approach does take into account Qum _
: : ) m' M ({E}) = 6
all the information about the system and its components as m@ ({I}) = &, (15)
it combines all the BPAs stated, but it introduces a conflict m (B, 1)) =1 — 8, — b
factor k that is caused by the introduction of the conditional ’
BPA (cf. Eq. 10). The factord; assigns an additional BPA to the fact that

To make a similar approach to interval-probability usin§omponentd and2 are either working or have failed when the
the TBM, a third approach was analyzed in which the BPXirtual component\/ is in the statet. The factord, assigns a
assigned to the componehtwas ignored. In this case, theremass value to the fact that the componentnd2 may have
is no conflict factor because information about componedll possible states.

1 is only taken into account one time with the conditional The BPAs of Eq.13 and Eq.14 are deconditioned to
BPA. The final BPA is obtained by only combining the2:192:9,. Then, the BPAs obtained and the BPAs of Eq.
BPAs assigned for the system configuration, comporientl5 are extended td2;$2:05Q,,. The obtained BPAs are
and dependency factor. Finally, we obtain the same valuestid¢n combined with the BPAs of the parallel structure. The
reliability as in the interval-probability model (Eq. 12). final results of the system’s reliability after marginatioa

It can be concluded that the advantage of the TBM moden {15 are given in Eq. 16 and can be seen in Figure 2 as a
is that it takes into account the reliability data of compune function ofé;. Note thats, doesn’t appear in the final solution,

1 which is not considered in the interval-probability appriva Which means that the epistemic uncertainty of the stateef th
due to the use of Baye’s rule. machineM doesn’t have any influence when the TBM model

is used. In this case, the BPA of Eg. 13 also introduces a
conflict factorky = 01 (f1ws + fowy)) due to the fact that for
the stateE, the eventy Fy, W) and (Wy, F») can’t happen.

In this approach, a virtual componehf with two statestZ  Thanks to this, when the BPAs are combined, there is a conflict
and[ is considered. The stat€ of M indicates the presencepetween the BPA's components and the conditional BPA.
of CCFs. In this case, the componertsand 2 are both in
failure state(Fi, F») or in working state(W,, Ws). The state R — witws—wiws oy (frwst frwn)
I indicates the absence of CCFs. In this case, comporents =8 = 1—ks
and2 may have all possible states. Rg = 1 — hlatliivfecfiws—fowi—2/1/2)

1—ko

C. The explicit approach

(16)

2) Interval-probability model:In this case, the values of

— Explicit Apporach P(F;) and P(W;) are the same used for the implicit approach.
[ g As §; and d, are variable and it is not known which one is
L PSP, greater than the other for a given combination of values, the
interval values ofP(E) and P(I) are expressed using the min

* and max functions as follows:

RS | ' P(E) = [min(8y,1 — 6), maz (81,1 — 5]

o P(I) = [min(d2,1 — 01), max(da,1 — 41)]

oo Also note thaty; + o < 1. For the conditional probability
P(Fy N Fy/E), the largest possible interval is used so that

o7} [-@ TBM Model ; every possible value is taken into account.

Interval-Probability 1
o 0.1 02 0.3 0.4 ’OYIS 0.6 0.7 0.8 09 1 P(Fl m F2/E> — [mln(f17 f2)’ max(]_ _ /LU17 1 _ wz)}

P(FyNFy/I) = P(F,)P(F,)
Figure 2: Explicit approach: Results of TBM and Interval-

probability models In this case, the total probability theorem is used to cateul

P(F):

1) TBM model:BPAs of componentd and?2 are given as P(F,) = P(F1 N Fy)
stated in Eq. 8. Furthermore, the two previous assumptims a  P(F;) = P(Fy N Fy/E)P(E) + P(Fy N Fy/I)P(I)



Finally, knowing that R, 1 — P(F,), the system’s [11]
reliability is given in Eq. 17 and shown in Figure 2 as a

function of 9. [12]

Re=1—mazx(l —wy,1 —wa)mazx(d,1 —dz)—
7(1 — wl)(l - wg)max(ég, 1-— 51)

RS =1- min(fl, fg)min(éh 1-— (52)— [14]
— f1famin(da, 1 — d1) [15]

3) Discussion:For the case analyzed, it can be noted that
the TBM model gives a more precise interval for the system’s
reliability. On the other hand, the interval-probabilityodel [16]
becomes much more imprecise &s grows. It can also be
seen that the results obtained with the TBM are included in
the results of the interval-probability model. (7]

[13]
a7

VI. CONCLUSIONS AND FUTURE WORK (18]

The TBM theory has recently attracted the attention of
reliability engineering community. This paper proposeBMT [19]
based model and compares it with an interval-probabiliselda [20]
model. It takes into account failure dependencies in riiigb
evaluations under both epistemic and aleatory uncereaintil>™
The proposed TBM reliability model was applied to evaluate
the reliability of a parallel system with two components an@?2l
the dependencies were implicitly and explicitly modeled. A
we can see from the results, with the TBM approach, thes)
epistemic uncertainties and the dependencies presentrin ou
systems can be modeled. As it combines all of the BPAs
obtain the results, it takes into account all of the inforiorat
known for the system. Future work would be focused on other
ways of coding the dependencies hypothesis and differézn‘rlJ
methods for incorporating them in the evaluation or religbi

of complex systems. [26]
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