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Me, myself and I

2005-2008: PhD student
Main topic: uncertainty modelling and treatment in nuclear safety

2009-2011: research engineer in agronomical research institute
Main topic: aid-decision in agronomical production chains

2011- ?: researcher at Centre National de la Recherche
Scientifique (CNRS), in the Heudiasyc joint unit research

Main (current) topics: reliability analysis and machine learning

Only common point: the modelling and handling of uncertainty
(including an imprecision component)
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Tutorial goals and contents

What you will find in this tutorial

Mostly practical considerations about uncertainty

An overview of "mainstream" uncertainty theories

Elements and illustrations of their use to

build or learn uncertainty representations
make inference (and decision)

A "personal" view about those things

What you will not find in this tutorial

A deep and exhaustive study of a particular topic

Elements about other important problems (learning models, information
fusion/revision)
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Introductory elements

Plan

1 Introductory elements

2 How to represent uncertainty?

3 How to draw conclusions from information and decide?

4 Some final comments
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Introductory elements

Section goals: it’s all about basics

Introduce a basic framework
Give basic ideas about uncertainty
Introduce some basic problems
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Introductory elements

A generic framework

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

model describes a relation in data space
singular information: concern a particular situation/individual
generic information: describe a general relationship, the behaviour
of a population, . . .
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Introductory elements

Uncertainty origins

Uncertainty: inability to answer precisely a question about a quantity

Can concern both:
Singular information

items in a data-base, values of some logical variables, time before
failure of a component

Generic information
parameter values of classifiers/regression models, time before
failure of components, truth of a logical sentence ("birds fly")

Main origins

Variability of a population→ only concerns generic information
Imprecision due to a lack of information
Conflict between different sources of information (data/expert)
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Introductory elements

Some examples

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

Classification
Data space=input features X× (structured) classes Y
model: classifier with parameters
Uncertainty: mostly about model parameters
Common problem: predict classes of individuals (singular
information)
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Introductory elements

Some examples

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

Risk and reliability analysis
Data space=input variables X× output variable(s) Y
Model: transfer/structure function f : X → Y
Uncertainty: very often about X (sometimes f parameters)
Common problem: obtain information about Y, either generic
(failure of products) or singular (nuclear power plant)
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Introductory elements

Some examples

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

Data mining/clustering

Data space=data features
Model: clusters, rules, . . .
Uncertainty: mostly about model parameters
Common problem: obtain the model from data {ω1, . . . , ωn}
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Introductory elements

Some examples

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

Data base querying

Data space=data features
Model: a query inducing preferences over observations
Uncertainty: mostly about the query, sometimes data
Common problem: retrieve and order interesting items in
{ω1, . . . , ωn}
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Introductory elements

Some examples

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

Propositional logic

Data space=set of possible interpretations
Model: set of sentences of the language
Uncertainty: on sentences or on the state of some atoms
Common problem: deduce the uncertainty about the truth of a
sentence S from facts and knowledge
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Introductory elements

Handling uncertainty

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

Common problems in one sentence

Learning: use singular information to estimate generic information
Inference: interrogate model and observations to deduce information on
quantity of interest
Information fusion: merge multiple information pieces about same
quantity
Information revision: merge new information with old one
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How to represent uncertainty?

Plan

1 Introductory elements

2 How to represent uncertainty?

3 How to draw conclusions from information and decide?

4 Some final comments

Sébastien Destercke (CNRS) SUM tutorial SUM 2012 10 / 56



How to represent uncertainty?

Section goals

Introduce main ideas of theories
Provide elements about links between them
Illustrate how to get uncertainty representations within each
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How to represent uncertainty?

Basic framework

Quantity S with possible exclusive states S = {s1, . . . , sn}
B S: data feature, model parameter, . . .

Basic tools

A confidence degree µ : 2|S| → [0,1] is such that
µ(A): confidence S ∈ A
µ(∅) = 0, µ(S) = 1
A ⊆ B ⇒ µ(A) ≤ µ(B)

Uncertainty modelled by 2 degrees µ, µ : 2|S| → [0,1]:
µ(A) ≤ µ(A) (monotonicity)
µ(A) = 1− µ(Ac) (duality)
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How to represent uncertainty?

Probability

Basic tool
A probability distribution p : S → [0,1] from which

µ(A) = µ(A) = µ(A) =
∑

s∈A p(s)

µ(A) = 1− µ(Ac): auto-dual

Main interpretations

Frequentist [3]: µ(A)= number of times A observed in a
population
B only applies when THERE IS a population

Subjectivist [1]: µ(A)= price for gamble giving 1 if A happens, 0 if
not
B applies to singular situation and populations
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How to represent uncertainty?

Probability and imprecision: short comment

Probability often partially specified over S
Probability on rest of S usually imprecise

A small example

S = {s1, s2, s3, s4}
p(s1) = 0.1,p(s2) = 0.4
we deduce p(si) ∈ [0,0.5] for i = 3,4
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How to represent uncertainty?

Probability and imprecision: short comment

Probability often partially specified over S
Probability on rest of S usually imprecise

Another (logical) example
q, r two propositional variables
P(¬q ∨ r) = α, P(q) = β

we deduce P(r) ∈ [β − 1 + α, α]
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How to represent uncertainty?

Sets

Basic tool
A set E ⊆ S with true value S ∈ E from which

E ⊆ A→ µ(A) = µ(A) = 1 (certainty truth in A)
E ∩ A 6= ∅,E ∩ Ac 6= ∅ → µ(A) = 0, µ(A) = 1 (ignorance)
E ∩ A = ∅ → µ(A) = µ(A) = 0 (truth cannot be in A)

µ, µ are binary→ limited expressiveness

Classical use of sets:
Interval analysis [2] (E is a subset of R)
Propositional logic (E is the set of models of a KB)

Other cases: robust optimisation, decision under risk, . . .

Sébastien Destercke (CNRS) SUM tutorial SUM 2012 15 / 56



How to represent uncertainty?

In summary

Probabilities . . .
(+) very informative quantification (do we need it?)
(-) need lots of information (do we have it?)
(-) if not enough, requires a choice (do we want to do that?)
use probabilistic calculus (convolution, stoch. independence, . . . )

Sets . . .
(+) need very few information
(-) very rough quantification of uncertainty (Is it sufficient for us?)
use set calculus (interval analysis, Cartesian product, . . . )

→ Need of frameworks bridging these two
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How to represent uncertainty?

Possibility theory

Basic tool
A distribution π : S → [0,1], usually with si such that π(si) = 1, from
which

µ(A) = maxs∈A π(s) (Possibility measure)
µ(A) = 1− µ(Ac) = mins∈Ac (1− π(s)) (Necessity measure)

Sets E captured by π(s) = 1 if s ∈ E , 0 otherwise

[µ, µ] as
confidence degrees of possibility theory [9]
bounds of an ill-known probability µ⇒ µ ≤ µ ≤ µ [10]
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How to represent uncertainty?

A nice characteristic: Alpha-cut [5]

Definition

Aα = {s ∈ S|π(s) ≥ α}
µ(Aα) = 1− α

If β ≤ α, Aα ⊆ Aβ

Simulation: draw α ∈ [0,1] and associate Aα

1

S

π

α
Aα

β
Aβ

⇒ Possibilistic approach ideal to model nested structures
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How to represent uncertainty?

A basic distribution: simple support

A set E of most plausible values
A confidence degree α = µ(E)

Two interesting cases:
Expert providing most
plausible values E
E set of models of a formula φ

Both cases extend to multiple
sets E1, . . . ,Ep:

confidence degrees over
nested sets [36]
hierarchical knowledge bases
[33]

pH value ∈ [4.5,5.5] with

α = 0.5 (∼ "more probable than")

π

3 4 4.5 5.5 6 7
0

0.2
0.4
0.6
0.8
1.0
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How to represent uncertainty?

A basic distribution: simple support

A set E of most plausible values
A confidence degree α = µ(E)

Two interesting cases:
Expert providing most
plausible values E
E set of models of a formula φ

Both cases extend to multiple
sets E1, . . . ,Ep:

confidence degrees over
nested sets [36]
hierarchical knowledge bases
[33]

variables p,q
Ω = {pq,¬pq,p¬q,¬p¬q}

µ(p ⇒ q) = 0.9
(∼ "almost certain")

E = {pq,p¬q,¬p¬q}

π(pq) = π(p¬q) = π(¬p¬q) = 1

π(¬pq) = 0.1

pq p¬q ¬pq ¬p¬q
0

0.2
0.4
0.6
0.8
1.0
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How to represent uncertainty?

Normalized likelihood as possibilities [8] [26]

π(θ) = L(θ|x)/maxθ∈Θ L(θ|x)

Binomial situation:
θ = success probability
x number of observed
successes

x= 4 succ. out of 11
x= 20 succ. out of 55

θ

1
π

4/11
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How to represent uncertainty?

Partially specified probabilities [25] [32]

Triangular distribution: [µ, µ]
encompass all probabilities with

mode/reference value M
support domain [a,b].

Getting back to pH
M = 5
[a,b] = [3,7]

1

pH

π

5 73
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How to represent uncertainty?

Other examples

Statistical inequalities (e.g., Chebyshev inequality) [32]
Linguistic information (fuzzy sets) [28]
Approaches based on nested models
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How to represent uncertainty?

Possibility: limitations

µ(A) > 0⇒ µ(A) = 1

µ(A) < 1⇒ µ(A) = 0

⇒ interval [µ(A), µ(A)] with one trivial bound

Does not include probabilities as special case:

⇒ possibility and probability at odds
⇒ respective calculus hard (sometimes impossible?) to reconcile
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How to represent uncertainty?

Going beyond

Extend the theory
⇒ by complementing π with a lower distribution δ (δ ≤ π ) [11], [31]
⇒ by working with interval-valued possibility/necessity degrees [4]
⇒ by working with sets of possibility measures [7]

Use a more general model

⇒ Random sets and belief functions
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How to represent uncertainty?

Random sets and belief functions

Basic tool

A positive distribution m : 2|S| → [0,1], with
∑

E m(E) = 1 and usually
m(∅ = 0), from which

µ(A) =
∑

E∩A6=∅m(E) (Plausibility measure)
µ(A) =

∑
E⊆A m(E) = 1− µ(Ac) (Belief measure)

m(E1)

m(E2)

m(E3)

m(E4)

m(E5)

A

µ(A) = m(E1) + m(E2)

µ(A) = m(E1) + m(E2) +

m(E3) + m(E5)

[µ, µ] as
confidence degrees of evidence theory [16], [17]
bounds of an ill-known probability µ⇒ µ ≤ µ ≤ µ [14]
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How to represent uncertainty?

special cases

Measures [µ, µ] include:
Probability distributions: mass on atoms/singletons
Possibility distributions: mass on nested sets

E1

E2

E3

E4
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How to represent uncertainty?

Frequencies of imprecise observations

Imprecise poll: "Who will win the next Wimbledon tournament?"
N(adal) F(ederer) D(jokovic) M(urray) O(ther)

60 % replied {N,F ,D} → m({N,F ,D}) = 0.6
15 % replied "I do not know" {N,F ,D,M,O} → m(S) = 0.15
10 % replied Murray {M} → m({M}) = 0.1
5 % replied others {O} → m({O}) = 0.05
. . .
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How to represent uncertainty?

P-box [34]

A pair [F ,F ] of cumulative
distributions

Bounds over events [−∞, x ]

Percentiles by experts;
Kolmogorov-Smirnov bounds;

Can be extended to any
pre-ordered space [30], [37]⇒
multivariate spaces!

Expert providing percentiles

0 ≤ P([−∞,12]) ≤ 0.2

0.2 ≤ P([−∞,24]) ≤ 0.4

0.6 ≤ P([−∞,36]) ≤ 0.8

0.5

1.0

6 12 18 24 30 36 42
E1

E2

E3

E4

E5
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How to represent uncertainty?

Other means to get random sets/belief functions

Extending modal logic: probability of provability [18]
Parameter estimation using pivotal quantities [15]
Statistical confidence regions [29]
Modify source information by its reliability [35]
. . .
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How to represent uncertainty?

Limits of random sets

Not yet satisfactory extension of Bayesian/subjective approach
Still some items of information it cannot model in a simple way,
e.g.,

probabilistic bounds over atoms si (imprecise histograms, . . . ) [27];
comparative assessments such as 2P(B) ≤ P(A)

6 12 18 24 30 36 42
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How to represent uncertainty?

Imprecise probabilities

Basic tool
A set P of probabilities on S or an equivalent representation

µ(A) = supP∈P P(A) (Upper probability)

µ(A) = infP∈P P(A) = 1− µ(Ac) (Lower probability)

[µ, µ] as
subjective lower and upper betting rates [23]
bounds of an ill-known probability measure
µ⇒ µ ≤ µ ≤ µ [19] [24]
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How to represent uncertainty?

Means to get Imprecise probabilistic models

Include all representations seen so far . . .
. . . and a couple of others

probabilistic comparisons
density ratio-class
expectation bounds
. . .

fully coherent extension of Bayesian approach

P(θ|x) = L(θ|x)P(θ)

→ often easy for "conjugate prior" [22]
make probabilistic logic approaches imprecise [21, 20]
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How to represent uncertainty?

A crude summary

Possibility distributions
+: very simple, natural in many situations (nestedness), extend
set-based approach
-: at odds with probability theory, limited expressiveness

Random sets
+: include probabilities and possibilities, include many models
used in practice
-: general models can be intractable, limited expressiveness

Imprecise probabilities
+: most consistent extension of probabilistic approach, very
flexible
-: general models can be intractable
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How to represent uncertainty?

A not completely accurate but useful picture

Imprecise
probability

Random sets

Possibility

Sets

Probability

Incompleteness tolerantAble to model variability

E
xp

re
ss

iv
ity

/fl
ex

ib
ili

ty

G
eneraltractability(scalability)
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How to draw conclusions from information and decide?

Plan

1 Introductory elements

2 How to represent uncertainty?

3 How to draw conclusions from information and decide?

4 Some final comments
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How to draw conclusions from information and decide?

Section goals

Introduce the inference problem
Introduce the notion of joint models
Introduce how (basic) decision can be done
Give some basic illustrations, mainly from
regression/classification/reliability
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How to draw conclusions from information and decide?

The problem

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

uncertain Input: marginal pieces of information on a part of the
data space and the model
Step 1: build a joint model from marginal information
Step 2: deduce information (by propagation, conditioning, . . . ) on
data
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How to draw conclusions from information and decide?

Closeness requirement

+ modeldatum: ω
data (population):
{ω1, . . . , ωn}

singular information generic information

partial/marginal pieces of information are x
joint model is x
deduced information is x

where x ∈ {Prob. distribution, Poss. distribution, Belief function, Prob.
set}
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How to draw conclusions from information and decide?

Straight ahead

y = ax + b

No uncertainty: a = 2.5,b = 3.5→ joint: 2.5× 3.5

Infer y when x = 3

x

y

10

20

1 2 3 4
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How to draw conclusions from information and decide?

Straight ahead

y = ax + b

Imprecision: a ∈ [2,3],b ∈ [3,4]→ joint: [2,3]× [3,4]

Infer y when x = 3

x

y

10

20

1 2 3 4
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How to draw conclusions from information and decide?

Joint models: possibilistic illustration

1

a

π

2 3 41

1

b

π

5 4 32

b

a

π

1
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How to draw conclusions from information and decide?

Fuzzy straight ahead

y = ax + b

Possibilistic uncertainty on a and b

Infer y when x = 3

x

y

10

20

1 2 3 4

Sébastien Destercke (CNRS) SUM tutorial SUM 2012 41 / 56



How to draw conclusions from information and decide?

Fuzzy straight ahead

y = ax + b

Possibilistic uncertainty on a and b

Infer y when x = 3

x

y

10

20

1 2 3 4

Sébastien Destercke (CNRS) SUM tutorial SUM 2012 41 / 56



How to draw conclusions from information and decide?

Reliable or not?

Model: structure function φ : C1 × C2 → S

C1 : {0,1}

C2 : {0,1}

S : {0,1}

p(0)=0.1
p(1)=0.9

p(0)=0.1
p(1)=0.9

p(0) = 0.01
p(1) = 0.99

p(0× 0) = 0.01
p(0× 1) = 0.09
p(1× 0) = 0.09
p(1× 1) = 0.81

m({0}) = 0.05
m({1}) = 0.75
m({0,1}) = 0.2

m({0}) = 0.05
m({1}) = 0.75
m({0,1}) = 0.2

m({0}) = 0.0025
m({1}) = 0.9575
m({0,1}) = 0.04

m({0} × {0}) = 0.025
m({1} × {1}) = 0.5625
m({0} × {0,1}) = 0.01

m({0,1} × {0,1}) = 0.04
. . .
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How to draw conclusions from information and decide?

Reliable or not?

Model: structure function φ : C1 × C2 → S

C1 : {0,1}

C2 : {0,1}

S : {0,1}

p(0)=0.1
p(1)=0.9

p(0)=0.1
p(1)=0.9

p(0) = 0.01
p(1) = 0.99

p(0× 0) = 0.01
p(0× 1) = 0.09
p(1× 0) = 0.09
p(1× 1) = 0.81

m({0}) = 0.05
m({1}) = 0.75
m({0,1}) = 0.2

m({0}) = 0.05
m({1}) = 0.75
m({0,1}) = 0.2

m({0}) = 0.0025
m({1}) = 0.9575
m({0,1}) = 0.04

m({0} × {0}) = 0.025
m({1} × {1}) = 0.5625
m({0} × {0,1}) = 0.01

m({0,1} × {0,1}) = 0.04
. . .
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How to draw conclusions from information and decide?

Two kinds of decision

Binary: whether to take an action or not
risk/reliability analysis (take the risk or not)
logic (decide if a sentence is true)
binary classification

Non-binary: decide among multiple choices
classification
control, planing, . . .

Introducing imprecision ' allowing for incomparability
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How to draw conclusions from information and decide?

Binary case

A threshold τ , two decisions {1,−1}

0 1

τ

Decide {−1} Decide {1}

µ(a)

µ(a) µ(a)µ(a) µ(a)

Decision: -1

No winner : -1,1
Maximin : -1
Maximax : 1

Sébastien Destercke (CNRS) SUM tutorial SUM 2012 44 / 56



How to draw conclusions from information and decide?

Binary case

A threshold τ , two decisions {1,−1}

0 1

τ

Decide {−1} Decide {1}

µ(a)

µ(a) µ(a)

µ(a) µ(a)

Decision: -1

No winner : -1,1
Maximin : -1
Maximax : 1
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How to draw conclusions from information and decide?

Binary case

A threshold τ , two decisions {1,−1}

0 1

τ

Decide {−1} Decide {1}

µ(a)µ(a) µ(a)

µ(a) µ(a)

Decision: -1

No winner : -1,1
Maximin : -1
Maximax : 1
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How to draw conclusions from information and decide?

Multiple choice case

µ

Y

1

2

3

4

5

y1 y2 y3 y4 y5
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How to draw conclusions from information and decide?

Multiple choice case

µ

Y

1

2

3

4

5

y1 y2 y3 y4 y5

Dominates Dominates
Dominates

Dominance: {y1, y3, y5}
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How to draw conclusions from information and decide?

Multiple choice case

µ

Y

1

2

3

4

5

y1 y2 y3 y4 y5

Maximin: {y3}
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How to draw conclusions from information and decide?

Multiple choice case

µ

Y

1

2

3

4

5

y1 y2 y3 y4 y5

Maximax: {y1}
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Some final comments

Plan

1 Introductory elements

2 How to represent uncertainty?

3 How to draw conclusions from information and decide?

4 Some final comments
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Some final comments

Why modelling uncertainty (outside intellectual
satisfaction)?

Because . . .
. . . you should (risk/reliability analysis)
. . . it solves existing issues (non-monotonic reasoning)
. . . it gives better/more robust results with acceptable
computational burden
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Some final comments

Scalability

Adding flexibility to the model→ increases scalability issue
already true for probability and intervals
only get worse if model more complex

How to solve it? As in other domains
approximation, model reduction, . . .→ make things as simple as
possible (but not simpler) to answer your question
sampling
use flexibility only where you need it
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Some final comments

One advantage of incompleteness

Using approximations: choice between outer/inner approximation
x1

x2 x3
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Some final comments
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