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Neural networks

A class of learning methods that was developed in AI with inspiration
from neuroscience.
The central idea is to learn simultaneously

New predictors (activation of “hidden neurons”) and
A linear regressor or classifier in the predictor space.

The result is a powerful learning method, with widespread applications
in many fields. In recent years, there has been a surge of interest in
deep networks/learning, with applications to computer vision and
natural language processing.
There exist many neural network models. In this chapter we describe
the most widely used multilayer feedforward neural networks:

Multilayer perceptrons
Deep convolutional networks
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Neural networks within AI
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Historical perspective

Three phases:
1 Perceptron (1955-1965)
2 Multi-layer neural networks (1985-1995)
3 Deep networks (2010-)
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McCulloch-Pitts Model

W. S. McCulloch and W. Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical
Biophysics, 5(4):115-133, 1943.
Main idea: biological neurons modeled as simple logic gates with
binary outputs.
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Perceptron

F. Rosenblatt. The perceptron, a perceiving and recognizing
automaton (Project PARA). Cornell Aeronautical Laboratory, 1957.
Main idea: an algorithm to learn weights so as to solve binary
classification tasks. (Mark 1 perceptron: custom-built hardware designed
for image recognition with an array of 400 photocells, randomly connected
to the “neurons”. Weights were encoded in potentiometers, and weight
updates during learning were performed by electric motors.)

Thierry Denœux ACE - Neural networks July-August 2019 6 / 144



Perceptron algorithm
Error function

The perceptron learning algorithm tries to find a separating hyperplane
with equation xTβ + β0 = 0 by minimizing the distance of
misclassified points to the decision boundary
A response yi ∈ {−1, 1} is misclassified if yi (xTi β + β0) < 0. The goal
is to minimize

D(β, β0) = −
∑
i∈M

yi (x
T
i β + β0),

whereM indexes the set of misclassified points
The quantity is nonnegative and proportional to the distance of the
misclassified points to the decision boundary.
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Perceptron algorithm
Learning rule

The gradient (assumingM is fixed) is given by

∂D(β, β0)

∂β
= −

∑
i∈M

yixi ,
∂D(β, β0)

∂β0
= −

∑
i∈M

yi

The algorithm in fact uses stochastic gradient descent: rather than
computing the sum of the gradient contributions of each observation
followed by a step in the negative gradient direction, a step is taken
after each observation is visited.
The misclassified observations are visited in some sequence and the
parameters β are updated via(

β
β0

)
←
(
β
β0

)
+ η

(
yixi
yi

)
,

where the learning rate η can be taken to be 1 without loss in
generality.
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Perceptron algorithm
Properties

If the classes are linearly separable, it can be shown that the algorithm
converges to a separating hyperplane in a finite number of steps
However, there are a number of problems with this algorithm:

The “finite” number of steps can be very large. The smaller the gap,
the longer the time to find it.
When the data are not separable, the algorithm will not converge, and
cycles develop. The cycles can be long and therefore hard to detect.
The perceptron algorithm does not generalize readily to K > 2 classes.

Thierry Denœux ACE - Neural networks July-August 2019 9 / 144



Multilayer neural networks

D. E. Rumelhart, G. E. Hinton and R. J. Williams (1986). Learning
representations by back-propagating errors. Nature, 323
(6088):533–536.
Main ideas: train neural networks with (one or two) hidden layers
using an efficient algorithm for computing the gradient of the error
(back-propagation algorithm).
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inputs	 outputs	
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Deep networks

Y. LeCun, Y. Bengio and G. Hinton (2015). Deep learning. Nature,
521:436–444.
Main idea: train neural networks with many hidden layers that encode
more and more abstract features.
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Increase of neural network size

Since the introduction of hidden units, artificial neural networks have
doubled in size roughly every 2.4 years.

1: Perceptron; 4: Early back-propagation network; 8: LeNet-5 (LeCun et
al., 1998b); 20: GoogLeNet
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Multilayer feedforward neural networks

Overview

1 Multilayer feedforward neural networks
Hidden units
Output units
Architecture

2 Learning

3 Complexity control

4 Convolutional networks
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Multilayer feedforward neural networks

Definition

A multilayer feedforward neural network (multilayer perceptron, MLP)
is composed of computational units (neurons) arranged in layers: one
input layer, one or several hidden layers and one output layer
Neurons in each layer (expect the input one) are connected to all
neurons in the previous layers through weighted connections.
The information flows from the input layer to the output layer.
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Multilayer feedforward neural networks Hidden units

Overview

1 Multilayer feedforward neural networks
Hidden units
Output units
Architecture

2 Learning

3 Complexity control

4 Convolutional networks
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Multilayer feedforward neural networks Hidden units

Equation of hidden units

Each hidden neuron m computes a weighted sum of its inputs

zm =

p∑
j=1

wmjxj + wm0 = wT
m x + wm0

where wmj is the connection weight between input unit j and hidden
unit m, wm is the vector of weights of unit m, and wm0 is a bias term
(which may be seen as the weight of a connection from an input unit
with constant input 1).
The output of unit m is

hm = g(zm),

where g is a nonlinear activation function.
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Multilayer feedforward neural networks Hidden units

Sigmoid activation functions

The first generation of multi-layer networks used logistic sigmoid
activation functions

g(z) = σ(z) =
1

1 + e−z
∈ [0, 1]

taking values in [0, 1], or hyperbolic tangent activation functions

g(z) = tanh(z) =
ez − e−z

ez + e−z
= 2σ(2z)− 1 ∈ [−1, 1]

Sigmoidal units saturate across most of their domain, and are only
strongly sensitive to their input when z is near 0. The widespread
saturation of sigmoidal units can make gradient-based learning very
difficult. For this reason, their use as hidden units in feedforward
networks is now discouraged.
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Multilayer feedforward neural networks Hidden units

Sigmoid activation functions
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Multilayer feedforward neural networks Hidden units

Rectified linear units

Rectified linear units (ReLU) use the activation function

g(z) = max(0, z).

Rectified linear units are easy to optimize because they are similar to
linear units: the only difference is that a rectified linear unit outputs
zero across half its domain. This makes the derivatives through a
rectified linear unit remain large whenever the unit is active.
Variation: leaky ReLU have an activation of the form

g(z) = max(0, z) + αmin(0, z),

where α takes a small value such as 0.01.
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Multilayer feedforward neural networks Hidden units

Rectified linear unit activation functions
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Multilayer feedforward neural networks Hidden units

Maxout units

Maxout units generalize rectified linear units.
Assume that the previous layer has M linear units with outputs
z = (z1, . . . , zM)

Instead of applying an element-wise function g(z), maxout units
divide z into groups of k values. Each maxout unit then outputs the
maximum element of one of these groups

g(z)i = max
j∈G(i)

zj

= max
j∈G(i)

wT
j x + wj0

where G (i) is the set of indices into the inputs for group i.
Maxout units can approximate arbitrary convex functions by piecewise
linear functions.
They can thus be seen as learning the activation function itself rather
than just the relationship between units.
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Multilayer feedforward neural networks Hidden units

Convex function approximation by maxout units
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Multilayer feedforward neural networks Hidden units

Radial basis function (RBF) units

In a radial basis function (RBF) unit, the output is computed as a
function of the distance (typically, Euclidean) between x and the unit’s
weight vector wm:

hm = g(−γm‖x − wm‖),

where γm > 0 is a scaling parameter.
Usually, g(0) = 1 and limd→∞ g(d) = 0, such as

g(d) = exp(−d2)

This kind of unit becomes more active as x approaches a template or
prototype wm. Because it saturates to 0 for most x , it can be difficult
to optimize.
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Multilayer feedforward neural networks Output units

Overview

1 Multilayer feedforward neural networks
Hidden units
Output units
Architecture

2 Learning

3 Complexity control

4 Convolutional networks
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Multilayer feedforward neural networks Output units

Output units for regression

A neural network can be used for regression or classification.
For regression, typically K = 1 and there is only one output unit.
However, we can easily generalize the model to K > 1 outputs.
The k-th output is computed as

zk =
M∑

m=1

wkmhm + wk0 = wT
k h + wk0

The output units are similar to hidden units, except that their
activation function is linear.
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Multilayer feedforward neural networks Output units

Output units for binary classification

For binary classification, we usually have one output unit with a
sigmoid activation function:

ŷ = σ

(
M∑

m=1

wmhm + w0

)
= σ(wTh + w0),

This output can be made to approximate the conditional probability
P(Y = 1|x).
This is exactly the transformation used in the binary logistic regression
model: binary logistic regression correspond to a neural network
without hidden units.
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Multilayer feedforward neural networks Output units

Output units for c-class classification

For c-class classification, there are K = c output units with the kth
unit modeling the probability of class k . We use the softmax function

ŷk = gk(z) =
exp(zk)∑K
`=1 exp(z`)

with zk = wk0 + wT
k h and z = (z1, . . . , zK ).

This is exactly the transformation used in the multi-class logistic
regression model; it produces positive probability estimates that sum
to one.
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Multilayer feedforward neural networks Architecture
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Multilayer feedforward neural networks Architecture

Architecture design

A key design consideration for neural networks is determining the
architecture, i.e., the overall structure of the network: how many units
it should have and how these units should be connected to each other.
Most neural networks architectures arrange groups of units (layers) in
a chain structure, with each layer being a function of the layer that
preceded it. The vector of outputs from the 1st layer is

h(1) = g (1)
(
W (1)x + w

(1)
0

)
,

the second-layer output vector is

h(2) = g (2)
(
W (2)h(1) + w

(2)
0

)
,

and so on. Here, W (l) is the matrix of weights for connections into
hidden layer l .
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Multilayer feedforward neural networks Architecture

Universal approximation properties

Proposition (Universal approximation theorem)

A feedforward network with a linear output layer and one hidden layer with
any “squashing” activation function (such as the logistic sigmoid activation
function) can approximate any continuous function on a closed and
bounded input subset of Rp with any desired non-zero amount of error,
provided that the network is given enough hidden units.

A neural network may also approximate any function mapping from
any finite dimensional discrete space to another.
Universal approximation theorems have also been proved for a wider
class of activation functions, including the now commonly used
rectified linear unit.
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Multilayer feedforward neural networks Architecture

Example: function approximation

Four functions approximated from n = 50 points using a neural network
with M = 3 sigmoidal hidden units and K = 1 linear output unit.
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Multilayer feedforward neural networks Architecture

Example: classification

Two-class classification using a neural network with two inputs, M = 2 hidden
units and a single output having a logistic sigmoid activation function. The
dashed blue lines show the h = 0.5 contours for each of the hidden units, and the
red line shows the ŷ = 0.5 decision surface for the network. The green line
denotes the Bayes decision boundary.
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Multilayer feedforward neural networks Architecture

Practical utility of deep networks

A feedforward network with a single layer is sufficient to represent any
function, but the layer may be infeasibly large and may fail to learn
and generalize correctly.
In many circumstances, using deeper models can reduce the number of
units required to represent the desired function and can reduce the
amount of generalization error.
Empirical results show that deeper models tend to perform better, not
merely because the model is larger.
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Multilayer feedforward neural networks Architecture

Example

This experiment from Goodfellow et al. (2014) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is
not nearly as effective at increasing test set performance. We observe that
shallow models in this context overfit at around 20 million parameters while deep
ones can benefit from having over 60 million.
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Learning

Overview

1 Multilayer feedforward neural networks

2 Learning
Loss functions
Back-propagation
Optimization algorithms
Weight initialization
NNs with R

3 Complexity control

4 Convolutional networks
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Learning Loss functions
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Learning Loss functions

Gradient-based learning

Designing and training a neural network is not much different from
training any other machine learning model by minimizing a loss (cost,
error) function.
The largest difference between the models we have seen so far and
neural networks is that the nonlinearity of a neural network causes
most interesting loss functions to become non-convex.
This means that neural networks are usually trained using iterative,
gradient-based optimization algorithms that merely drive the cost
function to a local minimum.
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Learning Loss functions

Loss function

We first need to define a loss function L(ŷ , y).
Given a learning set {(xi , yi )}ni=1, we then minimize the average loss

J(θ) =
1
n

n∑
i=1

L(f (xi ; θ), yi ),

where θ denote the vector of all connection weights (the learnable
parameters) and f (x ; θ) the vector of outputs for input x .
This is an estimate of the expected loss

EX ,YL(f (X ; θ),Y )

Thierry Denœux ACE - Neural networks July-August 2019 38 / 144



Learning Loss functions

Loss function for regression

For regression, we often use the sum-of-squares loss function:

L(f (x ; θ), y) = ‖y − f (x ; θ)‖2

=
K∑

k=1

(yk − fk(x ; θ))2

Minimizing J(θ) is equivalent to maximizing the conditional likelihood,
assuming a Gaussian error model

Y = f (x ; θ) + ε, ε ∼ N (0, σ2I )

Thierry Denœux ACE - Neural networks July-August 2019 39 / 144



Learning Loss functions

Loss function for classification

For classification we use cross-entropy (deviance):

L(f (x ; θ), y) = −
c∑

k=1

yk log fk(x ; θ),

where yk = 1 if the learning example belongs to class k and yk = 0
otherwise. The corresponding classifier is C (x) = argmaxk fk(x ; θ).
If fk(x ; θ) is a model of P(Y = k | X = x), then J(θ) equals minus
the log-likelihood `(θ).
With the logistic (c = 2) or softmax (c > 2) activation function and
the cross-entropy error function, the neural network model is exactly a
logistic regression model in the hidden units, and all the parameters
are estimated by maximum likelihood.
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Learning Back-propagation

Overview

1 Multilayer feedforward neural networks

2 Learning
Loss functions
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4 Convolutional networks
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Learning Back-propagation

Principle

The generic approach to minimizing J(θ) is by gradient descent.
The gradient of the error J(θ) can be easily derived using the chain
rule for differentiation.
The corresponding algorithm is called back-propagation (BP).
For ease of exposition, we present the BP algorithm in the case of one
hidden layer. Generalization to multiple hidden layers is
straightforward.
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Learning Back-propagation

Propagation equations and loss function

Propagation equations:

zm =

p∑
j=1

wmjxj + wm0, m = 1, . . . ,M

hm = g(zm), m = 1, . . . ,M

zk =
M∑

m=1

wkmhm + wk0, k = 1, . . . ,K

ŷk = gk(z1, . . . , zK ), k = 1, . . . ,K
= fk(x , θ)

Loss function:

J(θ) =
1
n

n∑
i=1

L(f (xi ; θ), yi ).
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Learning Back-propagation

Derivatives w.r.t to the hidden-to-output weights

We compute the gradient of L(f (x ; θ), y).
The derivatives w.r.t to the hidden-to-output weights wkm can be
computed as

∂L(f (x ; θ), y)

∂wkm
=
∂L(f (x ; θ), y)

∂zk

∂zk
∂wkm

= δkhm

with

δk =
∂L(f (x ; θ), y)

∂zk
=

K∑
k ′=1

∂L(f (x ; θ), y)

∂ŷk ′

∂ŷk ′

∂zk

With the sum-of-squares criterion and linear output units (ŷk = zk),
we simply have

δk = 2(ŷk − yk)
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Learning Back-propagation

Derivatives w.r.t to the input-to-hidden weights

The derivatives w.r.t to the input-to-hidden weights wmj can be obtained as

∂L(f (x ; θ), y)

∂wmj
=
∂L(f (x ; θ), y)

∂zm

∂zm
∂wmj

= δmxj

with

δm =
∂L(f (x ; θ), y)

∂zm
=

K∑
k=1

∂L(f (x ; θ), y)

∂zk︸ ︷︷ ︸
δk

∂zk
∂hm︸︷︷︸
wkm

∂hm
∂zm︸︷︷︸
g ′(zm)

= g ′(zm)
K∑

k=1

δkwkm
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Learning Back-propagation

Back-propagation algorithm

wmj	 wkm	

δk	
δm	

hm	

xj	

propaga-on	

back-propaga-on	

1 Apply an input vector xi to the
network and forward propagate
through the network to find the
activations of all the hidden and
output units.

2 Evaluate the δk for all the
output units.

3 Backpropagate the δk ’s to
obtain δm for each hidden unit
in the network.

4 Evaluate the required
derivatives.
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Learning Back-propagation

Advantage of back-propagation

The advantage of back-propagation is its local nature: each hidden
unit passes and receives information only to and from units that share
a connection.
Hence it can be implemented efficiently on a parallel architecture
computer.
Each gradient evaluation requires O(NW ) operations, where NW is
the number of weights in the network. Consequently, the algorithm
can be applied to large networks.
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Learning Optimization algorithms

Overview
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Learning Optimization algorithms

Batch learning with gradient descent

The simplest approach to using gradient information is to choose the
weight update to comprise a small step in the direction of the negative
gradient, so that

θ(t+1) = θ(t) − ηt
∂J(θ(t))

∂θ

= θ(t) − ηt
1
n

n∑
i=1

∂L(f (xi , θ
(t)), yi )

∂θ

Coefficient ηt is called the learning rate.
The error function is defined with respect to a training set, and so
each step requires that the entire training set be processed in order to
evaluate the gradient. This is called called batch learning.
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Learning Optimization algorithms

Learning rate tuning and optimization algorithms

The learning rate ηt for batch learning was originally taken to be a
constant; it can also be optimized by a line search that minimizes the
error function at each update.
Faster learning can be achieved using more powerful optimization
algorithms.
The Newton-Raphson method cannot be used, because the second
derivative matrix of J (the Hessian) can be very large.
Quasi-Newton methods are based on approximations of the Hessian.
For instance, a diagonal approximation can be computed in O(NW )
time. Other methods like the BFGS algorithm update the Hessian
estimate by analyzing successive gradient vectors.
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Learning Optimization algorithms

Stochastic gradient descent

Batch learning is not feasible with very large learning sets. Learning
can then be carried out online – processing each observation one at a
time, updating the gradient after each training case, and cycling
through the training cases many times.
In this case, the update equation become

θ(t+1) = θ(t) − ηt
∂L(f (xt , θ

(t)), yt)

∂θ

where (xt , yt) is the training example presented at iteration t.
Online training (also called stochastic gradient descent – SGD) allows
the network to handle very large training sets, and also to update the
weights as new observations come in.
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Learning Optimization algorithms

Minibatch

In practice, we often average the gradient over a randomly selected
subset of ν � n learning examples {(xi1 , yi1), . . . , (xin , yiν )} called a
minibatch.
The update equation is then

θ(t+1) = θ(t) − ηt
1
ν

ν∑
j=1

∂L(f (xij , θ
(t)), yij )

∂θ

A minibatch is randomly selected before each weight update.
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Learning Optimization algorithms

SGD algorithm

Require: Learning rate η
Require: Initial parameter θ

while stopping criterion not met do
Sample a minibatch {(xi1 , yi1), . . . , (xin , yiν )} of ν examples from the
training set

Compute gradient estimate ĝ = 1
n

∑ν
j=1

∂L(f (xij ,θ
(t)),yij )

∂θ
Apply update: θ ← θ − ηĝ

end while
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Learning Optimization algorithms

Learning rate

In practice, it is necessary to gradually decrease the learning rate over
time, so we now denote the learning rate at iteration t as ηt .
A sufficient condition to guarantee convergence of SGD is that

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2
t <∞

In practice, it is common to decay the learning rate linearly until
iteration τ :

ηt =

{
(1− γ)η0 + γητ if t < τ

ητ if t ≥ τ

with γ = t/τ .
Usually τ may be set to the number of iterations required to make a
few hundred passes through the training set.

Thierry Denœux ACE - Neural networks July-August 2019 54 / 144



Learning Optimization algorithms

Momentum

While stochastic gradient descent remains a very popular optimization
strategy, learning with it can sometimes be slow.
The method of momentum is designed to accelerate learning,
especially in regions of high curvature (where the direction of the
gradient changes a lot between two weight updates).
The method of momentum accumulates an exponentially decaying
moving average of past gradients and continues to move in their
direction:

∆θ ← α∆θ − η 1
ν

ν∑
j=1

∂L(f (xij , θ
(t)), yij )

∂θ

θ ← θ + ∆θ
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Learning Optimization algorithms

Momentum

The red path is the path followed by the momentum learning rule as it
minimizes this function. At each step along the way, we draw an arrow
indicating the step that gradient descent would take at that point.
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Learning Optimization algorithms

Setting α

In the method of momentum, the size of the step depends on how
large and how aligned a sequence of gradients are.
If the gradient g is constant, the norm of the weight update follows an
arithmetico-geometric sequence

‖∆θt‖ = α‖∆θt−1‖+ η‖g‖

Its limit is
lim
t→∞

‖∆θt‖ =
η‖g‖
1− α

It is thus helpful to think of the momentum hyperparameter in terms
of 1/(1− α). For example, α = .9 corresponds to multiplying the
maximum speed by 10 relative to the gradient descent algorithm.
Common values of α used in practice include .5, .9, and .99.
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Learning Weight initialization

Overview
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Learning Weight initialization

Importance of starting values

Most learning algorithms are strongly affected by the choice of
initialization. The initial point can determine whether the algorithm
converges at all, with some initial points being so unstable that the
algorithm encounters numerical difficulties and fails altogether.
The initial parameters need to “break symmetry” between different
units: If two hidden units with the same activation function are
connected to the same inputs, then these units must have different
initial parameters.
Typically, we set the biases for each unit to heuristically chosen
constants, and initialize only the weights randomly.
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Learning Weight initialization

Some heuristics

Some heuristics are available for choosing the initial scale of the
weights.
One heuristic is to initialize the weights of a fully connected layer with
m inputs and n outputs by sampling each weight from

U
(
− 1√

m
,+

1√
m

)
.

Other authors suggest using the normalized initialization:

wij ∼ U

(
−
√

6
m + n

,+

√
6

m + n

)
.

It is best to standardize all inputs to have mean zero and standard
deviation one, or to belong to [0, 1].
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Learning NNs with R

Shallow NN training using the nnet package

library(’MASS’)
mcycle.data<-data.frame(mcycle,x=scale(mcycle$times))
test.data<-data.frame(x=seq(-2,3,0.01))

library(’nnet’)

nn1<- nnet(accel ˜ x, data=mcycle.data, size=5, linout = TRUE)
pred1<- predict(nn1,newdata=test.data)

nn2<- nnet(accel ˜ x, data=mcycle.data, size=5, linout = TRUE)
pred2<- predict(nn2,newdata=test.data)

nn3<- nnet(accel ˜ x, data=mcycle.data, size=5, linout = TRUE,)
pred2<- predict(nn2,newdata=test.data)
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Learning NNs with R

Results
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Learning NNs with R

Deep NN training using the keras package

library(keras)

model <- keras_model_sequential()

model %>% layer_dense(units = 30, activation = ’relu’, input_shape = 1) %>%
layer_dense(units = 20, activation = ’relu’,name="cache1") %>%
layer_dense(units = 5, activation = ’relu’,name="cache2") %>%
layer_dense(units = 1, activation = ’linear’,name="sortie")

model %>% compile(loss = ’mean_squared_error’, optimizer = optimizer_rmsprop())

history <- model %>% fit(mcycle.data$x, mcycle.data$accel,
epochs = 2000, batch_size = 30)

x=seq(-2,3,0.01)
pred <- predict(model, x)
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Learning NNs with R

Training error

plot(history$metrics$loss,type="l",lwd=3„xlab="epochs",ylab="loss")
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Learning NNs with R

Result
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Complexity control

Necessity of complexity control

Because of the universal approximation property of neural network, the
training error can, in principle, be made arbitrarily small by increasing
the number of hidden units.
However, a large neural network will be prone to overfitting and will
typically have bad generalization performance.
We need to control the complexity of the model. Many approaches
have been proposed. We will review some of these approaches:

1 Exploring different architectures
2 Early stopping
3 Regularization
4 Dropout
5 Weight sharing, as implemented in convolutional networks
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Complexity control Exploring different architectures
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Complexity control Exploring different architectures

Optimizing the number of hidden units

The most basic approach is to explore different architectures.
If we limit ourselves to shallow networks with one hidden layer, a
simple way to define a family of nested models is consider networks
with different values M of hidden units.
For each network, the generalization error is estimated using a
validation set or using cross-validation, and the best value of M is
selected.
However, we have seen that better results may be often be obtained
with deeper architectures. Considering architectures with different
numbers of hidden layer considerably enlarges the search space.
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Complexity control Exploring different architectures

Example
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Complexity control Exploring different architectures

Sum-of-squares test error as a function of M

Plot of the sum-of-squares test-set error for a polynomial data set versus
the number of hidden units in the network, with 30 random starts for each
network size, showing the effect of local minima.
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Complexity control Regularization
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Complexity control Regularization

Weight decay

An alternative approach to control the complexity of a neural network
is to choose a relatively large value for M and to add a norm penalty
term (regularizer) to the error function.
The simplest regularizer is the quadratic (L2), giving a regularized error

J̃(θ) = J(θ) + λθT θ

This regularizer is also as weight decay. It is similar to ridge
regression. The regularization coefficient λ is usually determined by
cross-validation.
This regularizer can be interpreted as the negative logarithm of a
zero-mean Gaussian prior distribution over the weight vector θ.
Other regularizer choices, such as L1 (Lasso) correspond to a different
prior (Laplace).
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Complexity control Regularization

Example 1: classification
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Complexity control Regularization

Heat maps of estimated weights
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Complexity control Regularization

Example 2: regression

Model Y = f (X ) + ε with

f (X ) = σ(aT1 X ) + σ(aT2 X ),

X = (X1,X2), a1 = (3, 3), a2 = (3,−3), Var(f (X ))/Var(ε) = 4.
Training sample of size 100, a test sample of size 10,000.
Neural networks with weight decay and various numbers of hidden
units.
Average test error for each of 10 random starting weights.
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Complexity control Regularization

Results without and with weight decay
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Complexity control Regularization

Influence of the weight decay hyper-parameter
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Complexity control Regularization

Generalization

More generally, we can penalize each layer of weights with a different
coefficient.
For instance, in the case of one hidden layer, we have

λ1

M∑
m=1

p∑
j=1

w2
mj + λ2

K∑
k=1

M∑
m=1

w2
km

This corresponds to the Gaussian prior

p(w | λ1, λ2) ∝ exp

−λ1

M∑
m=1

p∑
j=1

w2
mj − λ2

K∑
k=1

M∑
m=1

w2
km


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Complexity control Regularization

Shallow NN training with weight decay using nnet

library(’MASS’)
mcycle.data<-data.frame(mcycle,x=scale(mcycle$times))
test.data<-data.frame(x=seq(-2,3,0.01))

library(’nnet’)

nn1<- nnet(accel ˜ x, data=mcycle.data, size=2, linout = TRUE, decay=0)
pred1<- predict(nn1,newdata=test.data)

nn2<- nnet(accel ˜ x, data=mcycle.data, size=10, linout = TRUE, decay=0)
pred2<- predict(nn2,newdata=test.data)

nn3<- nnet(accel ˜ x, data=mcycle.data, size=10, linout = TRUE, decay=1)
pred3<- predict(nn3,newdata=test.data)
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Complexity control Regularization

Results
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Complexity control Regularization

Selection of λ by 10-fold cross-validation
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Complexity control Regularization

Deep NN training with weight decay using keras

library(’keras’)

model <- keras_model_sequential()
model %>%
layer_dense(units = 50, activation = ’relu’, input_shape = 1,
kernel_regularizer = regularizer_l2(l=0.1)) %>%
layer_dense(units = 30, activation = ’relu’,name="cache1",
kernel_regularizer = regularizer_l2(l=0.1)) %>%
layer_dense(units = 20, activation = ’relu’,name="cache2",
kernel_regularizer = regularizer_l2(l=0.1)) %>%
layer_dense(units = 1, activation = ’linear’,name="sortie")

model %>% compile(loss = ’mean_squared_error’,optimizer = optimizer_rmsprop())
history <- model %>% fit(mcycle.data$x, mcycle.data$accel, epochs = 2000,

batch_size = 30)
pred <- predict(model, x)
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Complexity control Regularization

Results
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Complexity control Early stopping
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Complexity control Early stopping

Early stopping

An alternative to regularization as a way of controlling the effective
complexity of a network is early stopping: we train the model only for
a while, and stop well before we approach the global minimum.

Since the weights start at a
highly regularized (linear)
solution, this has the effect of
shrinking the final model toward
a linear model
A validation dataset is useful for
determining when to stop, since
we expect the validation error to
start increasing.
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Complexity control Early stopping

Example

Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or
epochs). Observe that the training objective decreases consistently over
time, but the validation set average loss eventually begins to increase
again, forming an asymmetric U-shaped curve.
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Complexity control Dropout
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Complexity control Dropout

Dropout as a substitute of bagging

Dropout provides a computationally inexpensive but powerful method
of regularizing a broad family of models.
To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.
Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of runtime and memory.
Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural networks.
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Complexity control Dropout

Principles of the dropout method

To train with dropout, we use a minibatch-based learning algorithm
that makes small steps, such as SGD.
Each time we load an example into a minibatch, we randomly sample
a different binary mask to apply to all of the input and hidden units in
the network. The mask for each unit is sampled independently from all
of the others.
The probability of sampling a mask value of one (causing a unit to be
included) is a hyperparameter fixed before training begins. Typically,
an input unit is included with probability 0.8 and a hidden unit is
included with probability 0.5.
We then run forward propagation, back-propagation, and the learning
update as usual.
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Complexity control Dropout

Example
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Complexity control Dropout

Formal analysis

More formally, suppose that a mask vector µ specifies which units to
include, and J(θ,µ) defines the cost of the model defined by
parameters θ and mask µ.
Then dropout training consists in minimizing EµJ(θ,µ).
The expectation contains exponentially many terms but we can obtain
an unbiased estimate of its gradient by sampling values of µ.
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Complexity control Dropout

Illustration of dropout
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Complexity control Dropout

Difference with bagging

Dropout training is not quite the same as bagging:

Bagging Dropout
Models are all independent Models share parameters, with each

model inheriting a different subset of
parameters from the parent neural net-
work

Each model is trained to
convergence on its respective
training set

Only a tiny fraction of the possible
sub-networks are each trained for a
single step, and the parameter sharing
causes the remaining sub-networks to
arrive at good settings of the parame-
ters

Beyond these differences, dropout follows the bagging algorithm. For
example, the training set encountered by each sub-network is indeed a
subset of the original training set sampled with replacement.
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Complexity control Dropout

Prediction

To make a prediction, a bagged ensemble must accumulate votes from
all of its members. In the case of dropout, this is impractical because
there are exponentially many models.
A good heuristic is to evaluate the output of one model: the model
with all units, but with the weights going out of unit i multiplied by
the probability of including unit i . The motivation for this
modification is to capture the right expected value of the output from
that unit. We call this approach the weight scaling inference rule.
Because we usually use an inclusion probability of 1/2, the weight
scaling rule usually amounts to dividing the weights by 2 at the end of
training.
There is not yet any theoretical argument for the accuracy of this
approximate inference rule in deep nonlinear networks, but empirically
it performs very well.
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Complexity control Dropout

Example: MNIST dataset

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a
test set of 10,000 images.
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Complexity control Dropout

Input/output formatting

library(’keras’)

mnist <- dataset_mnist()
X_train <- mnist$train$x
Y_train <- mnist$train$y
X_test <- mnist$test$x
Y_test <- mnist$test$y

# reshape
x_train <- array_reshape(X_train, c(nrow(X_train), 784))
x_test <- array_reshape(X_test, c(nrow(X_test), 784))

# rescale
x_train <- x_train / 255
x_test <- x_test / 255

y_train <- to_categorical(Y_train, 10)
y_test <- to_categorical(Y_test, 10)
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Complexity control Dropout

Model definition and learning

model <- keras_model_sequential()

model %>%
layer_dense(units = 256, activation = ’relu’, input_shape = 784) %>%
layer_dropout(rate = 0.4)%>%
layer_dense(units = 128, activation = ’relu’) %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = ’softmax’)

model %>% compile(
loss = ’categorical_crossentropy’,
optimizer = optimizer_rmsprop(),
metrics = c(’accuracy’))

history <- model %>% fit( x_train, y_train,
epochs = 50, batch_size = 128, validation_split = 0.2)

Thierry Denœux ACE - Neural networks July-August 2019 99 / 144



Complexity control Dropout

Learning curves
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Complexity control Dropout

Results

model %>% evaluate(x_test, y_test)

$loss
0.1159833

$acc
0.982
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Complexity control Weight sharing

Parameter sharing

While a parameter norm penalty is one way to regularize parameters to
be close to one another, the more popular way is to use constraints: to
force sets of parameters to be equal.
This method of regularization is often referred to as parameter/weight
sharing, because we interpret the various models or model components
as sharing a unique set of parameters.
A significant advantage of parameter sharing over regularizing the
parameters via a norm penalty is that only a subset of the parameters
(the unique set) need to be stored in memory.
In certain models – such as convolutional neural networks – this can
lead to significant reduction in the memory requirement of the model.
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Convolutional networks

Convolutional neural networks

Convolutional networks, also known as convolutional neural networks
or CNNs, are designed to process data that have a known, grid-like
topology.
Examples include time-series data, which can be thought of as a 1D
grid taking samples at regular time intervals, image data, which can
be thought of as a 2D grid of pixels, and videos, which are 3D data
(2D grid of pixels + time).
Convolutional networks have been tremendously successful in practical
applications.
Convolutional networks are simply neural networks that use
convolution (a specialized kind of linear operation) in place of general
matrix multiplication in at least one of their layers.
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Convolutional networks Convolution

Convolution (1D)

Let f (t) and K (t) be two functions from R to R.
Their convolution is the function s(t) = (f ∗ K )(t) defined as

s(t) = (f ∗ K )(t) =

∫ +∞

−∞
f (τ)K (t − τ)dτ.

The first argument (in this example, the function f ) to the
convolution is often referred to as the input and the second argument
(in this example, the function K ) as the kernel.
The convolution of f with kernel K can be described as a weighted
average of the function f (τ) where the weighting is given by K (−τ)
simply shifted by amount t.
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Convolutional networks Convolution

Illustration of 1D convolution
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Convolutional networks Convolution

1D convolution (continued)

Commutativity: f ∗ K = K ∗ f . Proof: let u = t − τ . We have

(f ∗ K )(t) =

∫ +∞

−∞
f (τ)K (t − τ)dτ

=

∫ −∞
+∞

f (t − u)K (u)(−du)

=

∫ +∞

−∞
K (u)f (t − u)du = (K ∗ f )(t)

Discrete version: for functions f and K from Z to R,

(f ∗ K )(i) =
+∞∑

n=−∞
f (n)K (i − n)
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Convolutional networks Convolution

Convolution (2D)

In machine learning applications, the input is usually a
multidimensional array (tensor) of data and the kernel is usually a
tensor of parameters that are adapted by the learning algorithm.
These functions are zero everywhere but the finite set of points for
which we store the values.
If we use a two-dimensional image I as our input, we use a
two-dimensional kernel K :

S(i , j) = (I ∗ K )(i , j) =
∑
m,n

I (m, n)K (i −m, j − n),

Thanks to commutativity, we can write equivalently

S(i , j) = (K ∗ I )(i , j) =
∑
m,n

I (i −m, j − n)K (m, n),
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Convolutional networks Convolution

Cross-correlation

The commutative property of convolution arises because we have
flipped the kernel relative to the input, in the sense that as m
increases, the index into the input increases, but the index into the
kernel decreases. The only reason to flip the kernel is to obtain the
commutative property.
Many neural network libraries actually implement a related function
called the cross-correlation, which is the same as convolution but
without flipping the kernel:

S(i , j) = (K ∗ I )(i , j) =
∑
m,n

I (i + m, j + n)K (m, n),

In practice, whether we flip the kernel or not is immaterial.
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Convolutional networks Convolution

Computation of 2-D convolution

An example of 2-D convolution without kernel-flipping. In this case we
restrict the output to only positions where the kernel lies entirely within the
image, called “valid” convolution in some contexts.
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Convolutional networks Convolution

Implementation

In the convolutional layer the units are organized into planes, each of
which is called a feature map.
Units in a feature map each take inputs only from a small subregion of
the image called a receptive field, and all of the units in a feature map
are constrained to share the same weight values.
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Convolutional networks Convolution

A more realistic convolutional network

Each rectangular image is a feature map corresponding to the output for
one of the learned features, detected at each of the image positions.
Information flows bottom up, with lower-level features acting as oriented
edge detectors, and a score is computed for each image class in output.
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Convolutional networks Convolution

Motivation

Convolution leverages three important ideas that can help improve a
machine learning system:

1 Sparse connectivity
2 Parameter sharing and
3 Equivariance to translation
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Convolutional networks Convolution

Sparse connectivity

When processing an image, the input image might have thousands or
millions of pixels, but we can detect small, meaningful features such as
edges with kernels that occupy only tens or hundreds of pixels.
As a consequence, computing the output requires fewer operations. If
there are m inputs and n outputs, then matrix multiplication requires
m × n parameters and the algorithms used in practice have O(m × n)
runtime (per example). If we limit the number of connections each
output may have to k , then the sparsely connected approach requires
only k × n parameters and O(k × n) runtime.
For many practical applications, it is possible to obtain good
performance on the machine learning task while keeping k several
orders of magnitude smaller than m.
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Convolutional networks Convolution

Sparse connectivity (continued)

We highlight one output unit, s3, and the input units in x that affect this
unit. These units are known as the receptive field of s3. (Top) When s is
formed by convolution with a kernel of width 3, only three inputs affect s3.
(Bottom) When s is formed by matrix multiplication, connectivity is no
longer sparse, so all of the inputs affect s3.
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Convolutional networks Convolution

Sparse connectivity (continued)

In a deep convolutional network, units in the deeper layers may indirectly
interact with a larger portion of the input. This allows the network to
efficiently describe complicated interactions between many variables by
constructing such interactions from simple building blocks that each
describe only sparse interactions.
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Convolutional networks Convolution

Parameter sharing

Parameter sharing refers to using the same parameter for more than
one function in a model.
In a feature map, all units share the same weight vector (corresponding
to the kernel of the convolution). Instead of learning a separate set of
parameters for every unit in the map, we learn only one set.
This does not affect the runtime of forward propagation – it is still
O(k × n) – but it does further reduce the storage requirements of the
model to k parameters.
Convolution is thus dramatically more efficient than dense matrix
multiplication in terms of the memory requirements and statistical
efficiency.
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Convolutional networks Convolution

Parameter sharing
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Convolutional networks Convolution

Equivariance to translation

To say a function is equivariant means that if the input changes, the
output changes in the same way. Specifically, a function f (x) is
equivariant to a function g if f (g(x)) = g(f (x)).
In the case of convolution, if we let g be any function that translates
the input, i.e., shifts it, then the convolution function is equivariant to
g .
For example, let I be a function giving image brightness at integer
coordinates. Let g be a function mapping one image function to
another image function, such that I ′ = g(I ) is the image function with
I ′(x , y) = I (x − 1, y). This shifts every pixel of I one unit to the right.
If we apply this transformation to I , then apply convolution, the result
will be the same as if we applied convolution to I ′, then applied the
transformation g to the output.
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Equivariance to translation (continued)

When applied to images, convolution creates a 2-D map of where
certain features appear in the input. If we move the object in the
input, its representation will move the same amount in the output.
This is useful when we know that some function of a small number of
neighboring pixels is useful when applied to multiple input locations.
For example, it is useful to detect edges in the first layer of a
convolutional network. The same edges appear more or less
everywhere in the image, so it is practical to share parameters across
the entire image.
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Edge detection example



10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0
10 10 10 0 0 0

 ∗
1 0 −1
1 0 −1
1 0 −1

 =


0 30 30 0
0 30 30 0
0 30 30 0
0 30 30 0




0 10 10 10 0 0
0 10 10 10 0 0
0 10 10 10 0 0
0 10 10 10 0 0
0 10 10 10 0 0
0 10 10 10 0 0

 ∗
1 0 −1
1 0 −1
1 0 −1

 =


−30 0 30 30
−30 0 30 30
−30 0 30 30
−30 0 30 30


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3D convolution

In many applications, the input is not just a grid of real values.
Rather, it is a grid of vector-valued observations.
For example, a color image has a red, green and blue intensity at each
pixel.
In a multilayer convolutional network, the input to the second layer is
the output of the first layer, which usually has the output of many
different convolutions at each position.
When working with images, we usually think of the input and output of
the convolution as being 3-D tensors, with one index into the different
channels and two indices into the spatial coordinates of each channel.
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Example
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Zero-padding

Without zero-padding, the width of the representation shrinks by one pixel less
than the kernel width at each layer. Zero padding the input allows us to control
the kernel width and the size of the output independently.
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Overview

1 Multilayer feedforward neural networks

2 Learning

3 Complexity control

4 Convolutional networks
Convolution
Pooling
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Components of a CNN layer

A typical layer of a convolutional network consists of three stages:
1 In the first stage, the layer performs several convolutions in parallel to

produce a set of linear activations.
2 In the second stage, each linear activation is run through a nonlinear

activation function, such as the rectified linear activation function.
This stage is sometimes called the detector stage.

3 In the third stage, we use a pooling function to modify the output of
the layer further.
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Components of a CNN layer
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Pooling

A pooling function replaces the output of the net at a certain location
with a summary statistic of the nearby outputs.
For example, the max pooling operation reports the maximum output
within a rectangular neighborhood.
Other popular pooling functions include

The average of a rectangular neighborhood
The L2 norm of a rectangular neighborhood, or
Weighted average based on the distance from the central pixel.
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Max pooling introduces invariance to translation

In the bottom figure, the input has been shifted to the right by one pixel. Every
value in the bottom row has changed, but only half of the values in the top row
have changed, because the max pooling units are only sensitive to the maximum
value in the neighborhood, not its exact location.
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Pooling with down-sampling

Because pooling summarizes the responses over a whole
neighborhood, it is possible to use fewer pooling units than detector
units, by reporting summary statistics for pooling regions spaced k
pixels apart rather than 1 pixel apart.
This improves the computational efficiency of the network because the
next layer has roughly k times fewer inputs to process.
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Pooling with down-sampling (continued)

Here we use max-pooling with a pool width of three and a stride between
pools of two. This reduces the representation size by a factor of two, which
reduces the computational and statistical burden on the next layer. Note
that the rightmost pooling region has a smaller size, but must be included
if we do not want to ignore some of the detector units.
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Handling inputs of varying sizes

For many tasks, pooling is essential for handling inputs of varying size.
For example, if we want to classify images of variable size, the input to
the classification layer must have a fixed size. This is usually
accomplished by varying the size of an offset between pooling regions
so that the classification layer always receives the same number of
summary statistics regardless of the input size.
For example, the final pooling layer of the network may be defined to
output four sets of summary statistics, one for each quadrant of an
image, regardless of the image size.
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Examples of architectures
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Explanation of the previous figure

1 (Left) A CNN that processes a fixed image size. After alternating
between convolution and pooling for a few layers, the tensor for the
convolutional feature map is reshaped to flatten out the spatial
dimensions. The rest of the network is an ordinary feedforward
network classifier.

2 (Center) A CNN that processes a variable-sized image, but still
maintains a fully connected section. This network uses a pooling
operation with variably-sized pools but a fixed number of pools, in
order to provide a fixed-size vector of 576 units to the fully connected
portion of the network.

3 (Right) A CNN that does not have any fully connected weight layer.
Instead, the last convolutional layer outputs one feature map per class.
The model learns a map of how likely each class is to occur at each
spatial location. Averaging a feature map down to a single value
provides the argument to the softmax classifier at the top.
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Example: CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes,
with 6000 images per class. There are 50000 training images and 10000
test images.
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Data preparation

library(’keras’)

cifar10 <- dataset_cifar10()

# Image display
library(’imager’)
i<-sample(50000,1)
plot(permute_axes(as.cimg(cifar10$train$x[i„,]),"yxzc"),axes=FALSE)

# Feature scale RGB values in test and train inputs
x_train <- cifar10$train$x/255
x_test <- cifar10$test$x/255
y_train <- to_categorical(cifar10$train$y, num_classes = 10)
y_test <- to_categorical(cifar10$test$y, num_classes = 10)
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Model definition

model <- keras_model_sequential()
model %>%

# Start with hidden 2D convolutional layer being fed 32x32 pixel images
layer_conv_2d(
filter = 32, kernel_size = c(3,3), padding = "same",
input_shape = c(32, 32, 3)
) %>%
layer_activation("relu") %>%

# Second hidden layer
layer_conv_2d(filter = 32, kernel_size = c(3,3)) %>%
layer_activation("relu") %>%

# Use max pooling
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_dropout(0.25) %>%
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Model definition (continued)

# 2 additional hidden 2D convolutional layers
layer_conv_2d(filter = 32, kernel_size = c(3,3), padding = "same") %>%
layer_activation("relu") %>%
layer_conv_2d(filter = 32, kernel_size = c(3,3)) %>%
layer_activation("relu") %>%

# Use max pooling once more
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_dropout(0.25) %>%

# Flatten max filtered output into feature vector and feed into dense layer
layer_flatten() %>%
layer_dense(512) %>%
layer_activation("relu") %>%
layer_dropout(0.5) %>%

# Outputs from dense layer are projected onto 10 unit output layer
layer_dense(10) %>%
layer_activation("softmax")

Thierry Denœux ACE - Neural networks July-August 2019 140 / 144



Convolutional networks Pooling

Model summary
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Compilation and training

opt <- optimizer_rmsprop(lr = 0.0001, decay = 1e-6)
model %>% compile(
loss = "categorical_crossentropy",
optimizer = opt,
metrics = "accuracy"
)

# Training ––––––––––––––––––––––––––––––––

model %>% fit(
x_train, y_train,
batch_size = 32,
epochs = 200,
validation_data = list(x_test, y_test),
shuffle = TRUE
)
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Final remarks

Since the early 2000’s, CNNs have been applied with great success to
the detection, segmentation and recognition of objects and regions in
images. These were all tasks in which labelled data was relatively
abundant, such as traffic sign recognition, the detection of faces, text,
pedestrians and human bodies in natural images. A major recent
practical success of CNNS is face recognition.
Importantly, images can be labelled at the pixel level, which has
applications in technology, including autonomous mobile robots and
self-driving cars. Other applications gaining importance involve natural
language understanding and speech recognition.
Recent CNN architectures have 10 to 20 layers of ReLUs, hundreds of
millions of weights, and billions of connections between units.
Whereas training such large networks could have taken weeks only two
years ago, progress in hardware, software and algorithm parallelization
have reduced training times to a few hours.
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Final remarks (continued)

The performance of CNN-based vision systems has caused most major
technology companies, including Google, Facebook, Microsoft, IBM,
Yahoo!, Twitter and Adobe, as well as a quickly growing number of
start-ups to initiate research and development projects and to deploy
CNN-based image understanding products and services.
CNNs are easily amenable to efficient hardware implementations in
chips. A number of companies such as NVIDIA, Mobileye, Intel,
Qualcomm and Samsung are developing CNN chips to enable real-time
vision applications in smartphones, cameras, robots and self-driving
cars.
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