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Introduction

What is Machine Learning?

“A field of study that gives computers the ability to learn
without being explicitly programmed” (Arthur Samuel, 1959).
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Introduction

What is Machine Learning?

Machine Learning (ML) exists since the appearance of the first
computers in the 1950’s, but it has recently gained considerable
interest because of new applications such as

Search engines
Social networks
E-commerce (recommendation systems)
Robotic perception, autonomous vehicles
Natural language recognition, etc.

ML skills are in high demand by IT companies.
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Introduction

Objectives of this course

Understand the basic principles of ML
Get working knowledge of the main ML techniques

Linear regression and classification (LDA, logistic regression)
Model selection: regularization (ridge regression, lasso), variable
selection, linear feature extraction
Splines and additive models
Decision trees, random forests, bagging
Gaussian Mixture Models, EM algorithm
Kernel-based methods for classification (SVM), regression, novelty
detection, clustering
Neural networks and deep learning

Master the R software environment for data analysis and ML
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Introduction Examples

Overview

1 Introduction
Examples
Supervised vs. unsupervised learning
Recommended readings

2 Some basic concepts
The regression function
Nonparametric vs. parametric estimation
Regression: Bias-Variance trade-off
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Identify the numbers in a handwritten ZIP code, from a digitized
image.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
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Introduction Examples

Movie Box Office data

Questions: Which factors influence the commercial success of a
movie? Can we predict the box-office success before the movie has
been released?
Dataset about 62 movies released in 2009 (from Econometric Analysis,
Greene, 2012)
Response variable (to be predicted): Box Office receipts
11 predictors:

MPAA (Motion Picture Association of America) rating (G, PG, PG13)
Budget
Star power
Sequel (yes or no)
Genre (action, comedy, animated, horror)
Internet buzz
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Introduction Examples

Box Office data
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Identify the numbers in a handwritten ZIP code, from a digitized
image.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
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Introduction Examples

Handwritten ZIP code

Problem: read handwritten ZIP codes on envelopes from U.S. postal
mail.

The images are 16× 16 eight-bit
grayscale maps, with each pixel
ranging in intensity from 0 to
255.
The task is to recognize, from
the matrix of pixel intensities,
the digit in each image
(0, 1, · · · , 9) quickly and
accurately.

Importance of uncertainty assessment (the task can be handed over to
a human operator if the uncertainty is too high).
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Identify the numbers in a handwritten ZIP code, from a digitized
image.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
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Introduction Examples

Spam detection

Goal: build a customized spam filter.
Data from 4601 emails sent to an individual (named George, at HP
labs, before 2000). Each is labeled as spam or email.
Predictors: relative frequencies of 57 of the most commonly occurring
words and punctuation marks in these email messages.

george you hp free ! edu remove
spam 0.00 2.26 0.02 0.52 0.51 0.01 0.28
email 1.27 1.27 0.90 0.07 0.11 0.29 0.01

Average percentage of words or characters in an email message equal to the
indicated word or character. We have chosen the words and characters showing
the largest difference between spam and email.
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Identify the numbers in a handwritten ZIP code, from a digitized
image.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
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Introduction Examples

Factors influencing wages

Which factors influence wages? Are observations consistent with
economic theories?
Data: Income survey data for males from the central Atlantic region of
the USA
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Introduction Examples

Examples of learning problems

Predict the box office receipt of a movie from the genre, budget, star
power, buzz, etc.
Identify the numbers in a handwritten ZIP code, from a digitized
image.
Customize an email spam detection system.
Establish the relationship between salary and demographic variables in
population survey data.
Recognize the expression on a face.
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Introduction Examples

Expression recognition

joy     surprise sadness 

disgust anger   fear    
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Introduction Examples

Learning

Projec'on	in	a	5D	
subspace	(LDA)	

Logis'c	
Regression	 decision	

216 images 70× 60 (36 per expression)
144 for learning, 72 for testing
5 features extracted by linear
discriminant analysis
Test error rate: 23.6% (random: 83.3%)
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Introduction Examples

Results
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Introduction Examples

Results
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Introduction Examples

Results
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Introduction Supervised vs. unsupervised learning

Overview

1 Introduction
Examples
Supervised vs. unsupervised learning
Recommended readings

2 Some basic concepts
The regression function
Nonparametric vs. parametric estimation
Regression: Bias-Variance trade-off
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Introduction Supervised vs. unsupervised learning

Supervised learning
Definitions

Each observation consists of
A response variable Y (also called output, target, outcome)
A vector of p predictors X (also called inputs, features, attributes,
explanatory variables).

Supervised learning tasks:
Regression: Y is quantitative (e.g., price, blood pressure).
Classification: Y is nominal/categorical, i.e., it takes values in a finite,

unordered set C (survived/died, digit 0-9, facial
expression, etc.).

Ordinal regression/classification: Y is ordinal, i.e., it takes values in a
finite, ordered set C (example: “small”, “medium”,
“large”)

We have training/learning data L = {(x1, y1), . . . , (xn, yn)}. These are
observations (examples, instances) of these variables.
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Introduction Supervised vs. unsupervised learning

Supervised learning
Objectives

On the basis of the training data we would like to:
1 Accurately predict unseen test cases
2 Understand which predictors affect the response, and how
3 Assess the quality of our predictions and inferences
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Introduction Supervised vs. unsupervised learning

Unsupervised learning

No response variable, just a collection of variables (features) observed
for a set of instances.
Unsupervised learning tasks:
Clustering: Find groups of observations that behave similarly

Feature extraction: Find a small number of new features that contain
as much relevant information as possible

Novelty detection: Learn a rule to detect data from a previously
unseen distribution (outliers, new states, etc.)

Unsupervised learning is sometimes useful as a pre-processing step
prior to supervised learning.
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Introduction Supervised vs. unsupervised learning

Semi-supervised learning

Same task as supervised learning, but the response variable is only
observed for a subset of the learning data.
The learning set has the following form:

L = {(xi , yi )}nsi=1︸ ︷︷ ︸
labeled data

∪ {xi}ni=ns+1︸ ︷︷ ︸
unlabeled data

.

A common situation, as data labeling is usually very costly.
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Introduction Recommended readings

Overview
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Introduction Recommended readings

Course texts

“An Introduction to Statistical Learning” (ISLR):
emphasis on basic principles and application, no
mathematical details. Available at http:
//faculty.marshall.usc.edu/gareth-james/ISL

“The Elements of Statistical Learning” (ESL): more
mathematically advanced and theoretical. Available at
http://statweb.stanford.edu/~tibs/ElemStatLearn
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Introduction Recommended readings

Course texts (continued)

“Pattern Recognition and Machine Learning” (PRML):
same level as ESL, covers some other topics.

“Deep Learning”: recent textbook on neural networks.
Available at http://www.deeplearningbook.org
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Some basic concepts

A regression problem

2 3 4 5

13
14

15
16

17
18

log Budget

lo
g 

bo
x 

of
fic

e

−3 −2 −1 0 1 2 3 4

13
14

15
16

17
18

Buzz

lo
g 

bo
x 

of
fic

e 
($

)

G PG PG13 R

13
14

15
16

17
18

MPAA Rating code

lo
g 

bo
x 

of
fic

e

Shown are the log of box office receipt vs log of budget, rating and
buzz index for 62 2009 movies, with red linear-regression line fits.
Can we predict box office receipt using any single predictor?
Perhaps we can do better using a model

Box office ≈ f (Budget,Buzz,Rating)

Thierry Denœux ACE - Introduction Spring 2022 29 / 58



Some basic concepts

Notation

Here ‘Box office’ is a response that we wish to predict. It is denoted as
Y (variables are usually denoted by capital letters).
‘Budget’ is a predictor; we name it X1. Likewise name ‘Buzz’ as X2,
and so on.
We can refer to the input vector collectively as

X =

X1
X2
X3


Now we write our model as

Y = f (X ) + ε

where ε captures measurement errors and other discrepancies (sources
of variation of Y not explained by X ).
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Some basic concepts

What is f (X ) good for?

With a good f we can make predictions of Y at new points X = x .
We can understand which components of X = (X1,X2, . . . ,Xp) are
important in explaining Y , and which are irrelevant.
Depending on the complexity of f , we may be able to understand how
each component Xj of X affects Y .
Is there an optimal function f ?
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Some basic concepts The regression function

Overview
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Some basic concepts The regression function

Regression function

What is a good value for f (X ) at any selected value of X , say X = 4?
There can be many Y values at X = 4. A typical value is

f (4) = E(Y | X = 4)

where E(Y |X = 4) is the expected value of Y given X = 4.
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Some basic concepts The regression function

Optimality of the regression function

Definition (Regression function)

Function f (x) = E(Y | X = x) is called the regression function.

We will show that the regression function is, in some sense, optimal.
Assume that we predict Y at X = x by some value g(x), and the
quality of the prediction is measured by the squared error (y − g(x))2.
We want to find the best function g , i.e., the function g that
minimizes the mean squared error (MSE):

MSE(g) = EX ,Y

[
(Y − g(X ))2

]
= EX

{
EY

[
(Y − g(X ))2 | X = x

]}
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Some basic concepts The regression function

Optimality of the regression function (continued)

We can write

EY [(Y − g(X ))2 | X = x ] = Var(Y | X = x) + (f (x)− g(x))2 (1a)

= Var(ε | X = x) + (f (x)− g(x))2 (1b)

Proof.

The regression function f minimizes E[(Y − g(X ))2|X = x ] for all x :
consequently, it minimizes MSE(g). We write

f = argmin
g

MSE(g)

The regression function is the best possible prediction function
(according to the MSE).
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Some basic concepts The regression function

Reducible vs. irreducible error

In practice, we never know the true f , but we can estimate it by some
function f̂ .
The MSE at X = x is then

EY [(Y − f̂ (X ))2 | X = x ] = (f (x)− f̂ (x))2︸ ︷︷ ︸
reducible

+Var(ε | X = x)︸ ︷︷ ︸
irreducible

Even if we knew f (x), we would still make prediction errors, because
of the second term Var(ε|X = x), which cannot be reduced.
A learning method will try to minimize the reducible component
(f (x)− f̂ (x))2 of the error.
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Some basic concepts Nonparametric vs. parametric estimation

Overview
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Some basic concepts Nonparametric vs. parametric estimation

How to estimate f ?

Learning set: L = {(x1, y1), . . . , (xn, yn)}
Typically we have few if any data points with xi = 4 exactly. So, how
can we estimate E(Y | X = x)?
Solution: we can compute the mean value of Y in a neighborhood
N (x) of x :

f̂ (x) = Ave{yi : xi ∈ N (x)}
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Some basic concepts Nonparametric vs. parametric estimation

Nearest neighbor averaging

The neighborhood N (x) can be defined as the region containing the
K nearest neighbors (NN) of x in the training data.
To define the neighbors, we often use the Euclidean distance

d(x , xi ) = ‖x − xi‖ =

 p∑
j=1

(xj − xij)
2

1/2

We then have

f̂ (x) =
1
K

K∑
i=1

y(i),

where y(1), . . . , y(K) are the values of Y for the K NN of x .
Nearest neighbor averaging can be pretty good for small p – i.e.,
p ≤ 4 and n not too small.
We will discuss smoother versions, such as spline smoothing later in
the course.
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Some basic concepts Nonparametric vs. parametric estimation

Curse of dimensionality

Nearest neighbor methods can perform badly when p is large.
Reason: nearest neighbors tend to be far away in high dimensions.
This is called the curse of dimensionality.
We need to use a reasonable fraction of the n values of Y in the
average to bring the variance down – e.g. 10%.
A 10% neighborhood in high dimensions may no longer be local, so we
lose the spirit of estimating E(Y | X = x) by local averaging.
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Some basic concepts Nonparametric vs. parametric estimation

Curse of dimensionality (continued)
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Some basic concepts Nonparametric vs. parametric estimation

Parametric models

A parametric model assumes that f belongs to a parametrized family
of functions with a simple form. (In contrast, the NN averaging
method is said to be nonparametric).
The linear model assumes the following form for f :

f (x) = β0 + β1x1 + β2x2 + . . .+ βpxp

It is specified in terms of a vector of p + 1 parameters
β = (β0, β1, β2, . . . , βp)

T .
We estimate the parameters by fitting the model to training data.
Although it is almost never correct, a linear model often serves as a
good and interpretable approximation to the unknown true function
f (x).
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Some basic concepts Nonparametric vs. parametric estimation

Linear vs. quadratic

A linear model f̂ (x) = β̂0 + β̂1x gives a reasonable fit here

A quadratic model f̂ (x) = β̂0 + β̂1x + β̂2x
2 fits slightly better.
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Some basic concepts Nonparametric vs. parametric estimation

Simulated example
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Red points are simulated values for income from the model

income = f (education, seniority) + ε

f is the blue surface.
Thierry Denœux ACE - Introduction Spring 2022 44 / 58



Some basic concepts Nonparametric vs. parametric estimation

Linear regression model fit
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A linear model does not fit the data very well, but it provides a simple
description of the effect of the two predictors on the response.
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Some basic concepts Nonparametric vs. parametric estimation

More flexible regression model
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More flexible regression model fit to the simulated data. Here we used a
technique called a thin-plate spline to fit a flexible surface.
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Some basic concepts Nonparametric vs. parametric estimation

Even more flexible spline regression model

Years of Education

S
en

io
rit

y

In
c
o
m

e

Here an even more flexible spline regression model interpolates the data
points (it makes no errors on the training data)! Also known as overfitting.
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Some basic concepts Nonparametric vs. parametric estimation

Interpretability/flexibility trade-off

Flexibility
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Support Vector Machines

Neural networks
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Some basic concepts Regression: Bias-Variance trade-off
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Some basic concepts Regression: Bias-Variance trade-off

Assessing Model Accuracy

Suppose we have a regression problem. We fit a model f (x) to some
learning data L = {(xi , yi )}ni=1 and we wish to see how well it
performs.
We could compute the average squared prediction error over L:

MSE(L) = 1
n

n∑
i=1

[
yi − f̂ (xi )

]2
This may be biased toward more overfit models.
Instead we should, if possible, compute it using fresh test data
T = {(x ′i , y ′i )}mi=1:

MSE(T ) = 1
m

m∑
i=1

[
y ′i − f̂ (x ′i )

]2
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Some basic concepts Regression: Bias-Variance trade-off

Learning and test errors for 3 models
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The most flexible model (with more parameters) does not perform best.
Why?
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Some basic concepts Regression: Bias-Variance trade-off

Another example
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Red line is truth. Blue
and green lines
correspond, respectively,
to a linear model and a
polynomial of degree 10.

The linear model is stable but biased. The polynomial model is more
flexible, so it is less biased, but it is unstable. Bias and variance both
account for prediction error.
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Some basic concepts Regression: Bias-Variance trade-off

Bias-variance decomposition

Let f̂ be the estimated regression function learnt from data set L.
If the true model is Y = f (X ) + ε, with f (x) = E(Y |X = x), then the
MSE averaged over all learning sets L conditionally on X = x is

EL,Y
[(

Y − f̂ (X )
)2
| X = x

]
=

VarL(f̂ (x))︸ ︷︷ ︸
variance

+
[
EL[f̂ (x)]− f (x)

]2
︸ ︷︷ ︸

bias2

+VarY (ε | X = x)︸ ︷︷ ︸
irreducible error

(2)

Proof.
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Some basic concepts Regression: Bias-Variance trade-off

Bias-variance trade-off

Typically as the flexibility of f̂ increases, its variance increases, and its
bias decreases.
So choosing the flexibility based on average test error amounts to a
bias-variance trade-off.
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Some basic concepts Regression: Bias-Variance trade-off

Graphical illustration

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

2 5 10 20

0
5

1
0

1
5

2
0

Flexibility

MSE
Bias
Var

MSE

variancebias2

Irreducible
error

Thierry Denœux ACE - Introduction Spring 2022 55 / 58



Appendix: proofs

Proof of Equation (1)

EY [(Y − g(X ))2 | X = x ] = EY [(Y − f (x) + f (x)− g(x))2 | X = x ]

= EY [(Y − f (x))2 | X = x ]︸ ︷︷ ︸
Var(Y |X=x)

+(f (x)− g(x))2

+ 2(f (x)− g(x))EY [Y − f (x) | X = x ]︸ ︷︷ ︸
E[Y |X=x]−f (x)=0

Given X = x ,
Y = f (x) + ε,

so
Var(Y | X = x) = Var(ε | X = x)

Back
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Appendix: proofs

Proof of Equation (2) I

First, we insert EL[f̂ (X ) | X = x ] = EL[f̂ (x)]:

EL,Y
[(

Y − f̂ (X )
)2
| X = x

]
=

EL,Y
[(

Y − EL[f̂ (x)] + EL[f̂ (x)]− f̂ (X )
)2
| X = x

]
=

EY

[(
Y − EL[f̂ (x)]

)2
| X = x

]
︸ ︷︷ ︸

A

+

EL
[(

f̂ (x)− EL[f̂ (x)]
)2
]

︸ ︷︷ ︸
B=VarL[f̂ (x)]

+

2EL,Y
[
(Y − EL[f̂ (x)])(EL[f̂ (x)]− f̂ (X )) | X = x

]
︸ ︷︷ ︸

C
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Appendix: proofs

Proof of Equation (2) II

We have already seen from Eq. (1) that A can be written as

EY

[(
Y − EL[f̂ (x)]

)2
| X = x

]
=
[
EL[f̂ (x)]− f (x)

]2
︸ ︷︷ ︸

bias2

+VarY (ε | X = x)︸ ︷︷ ︸
irreducible error

In C , the first term in the product depends only on Y and the second term
depends only on L. As Y and L are independent, we can write

C = 2EY

[
Y − EL[f̂ (x)] | X = x

]
EL
[
EL[f̂ (x)]− f̂ (X ) | X = x

]
︸ ︷︷ ︸

=EL[f̂ (x)]−EL[f̂ (x)]=0

QED
Back
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