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Introduction

Introductory example

Data about diabetes in the population of Pima Indians leaving near
Phoenix, Arizona, USA.
All 768 patients were females and at least 21 years old.
Variables:

1 Number of times pregnant
2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3 Diastolic blood pressure (mm Hg)
4 Triceps skin fold thickness (mm)
5 2-Hour serum insulin (mu U/ml)
6 Body mass index (weight in kg/(height in m)2)
7 Diabetes pedigree function
8 Age (years)
9 Positive (1) or negative (0) of diabetes

Problem: predict the onset of diabetes for the 8 predictors.
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Introduction

Introductory example (continued)

pregnant
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Introduction

Introductory example (continued)

insulin
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Introduction

Classification problems

In classifcation problems, the response variable Y is qualitative – e.g.,
diagnosis of diabetes is one in C = {positive, negative}, email is one of
C = {spam, email}, digit class is one of C = {0, 1, . . . , 9}, etc.
Our goals are to:

Build a classifier C (X ) that assigns a class label from C to a future
unlabeled observation X .
Assess the uncertainty in each classification
Understand the roles of the different predictors among
X = (X1,X2, . . . ,Xp).

Is there an ideal C(X)?
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Introduction Bayes’ rule

Conditional class probabilities

Suppose the c elements in C are numbered 1, 2, . . . , c . Let

Pk(x) = P(Y = k | X = x), k = 1, 2, . . . , c.

These are the conditional class probabilities at x ; e.g. see little barplot
at x = 5.
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Introduction Bayes’ rule

The Bayes classifer

The conditional error probability for classifier C (X ) is

P(error | X = x) = P(C (X ) 6= Y | X = x)

= 1− P(C (X ) = Y | X = x)

If C (X ) = k , then

P(error | X = x) = 1− P(Y = k | X = x) = 1− Pk(x)

To minimize P(error | X = x), we must choose k such that Pk(x) is
maximum.
The corresponding classifier C ∗(x) is called the Bayes classifier. It has
the lowest error probability.
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Introduction Bayes’ rule

Bayes error rate

For X = x , the Bayes classifier predicts class k∗ such that
Pk∗(x) = maxk Pk(x), and the conditional error probability

1− Pk∗(x) = 1−max
k

Pk(x)

The error probability of the Bayes classifier (averaged over all values of
X ) is

ErrB = E
[
1−max

k
Pk(X )

]
=

∫ [
1−max

k
Pk(x)

]
pX (x)dx

This probability is called the Bayes error rate. It is the lowest error
probability that can be achieved by a classifier. It characterizes the
difficulty of the classification task.
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Introduction Voting K -nearest-neighbor rule

Voting K -nearest-neighbor rule

Nearest-neighbor averaging can be used as in regression: we can define

P̂k(x) = Ave{I (Y = k) | X ∈ NK (x)}
where NK (x) is the set of the K nearest neighbors of x in the training
set.
The corresponding classifier is called the voting K -nearest neighbor
(K -NN) classifier. (It also breaks down as dimension grows. However,
the impact on C (x) is less than that on P̂k(x), k = 1, . . . , c).
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Introduction Voting K -nearest-neighbor rule

Properties of the k-nearest-neighbor rule

Let Err1 be the asymptotic (as N → +∞) error probability of the
1-NN rule. It can be shown that it is at most equal to twice the Bayes
error rate:

ErrB ≤ Err1 ≤ 2 ErrB .

We can say that half of the information provided by the training set is
contained in the nearest neighbor (asymptotically).
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Introduction Voting K -nearest-neighbor rule

Error rate estimation

Typically, we measure the performance of a classifier C (x) using the
test misclassification error rate:

ErrTe = Avei∈Te I [yi 6= C (xi )],

where Te is a test dataset.
The test error rate allows us to select the best model in a set of
candidate models (more on this later).
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Introduction Voting K -nearest-neighbor rule

Example: simulated data and Bayes decision boundary
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Introduction Voting K -nearest-neighbor rule

Decision boundaries for K = 1 and K = 100
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Introduction Voting K -nearest-neighbor rule

Training and test error rates vs. 1/K
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Introduction Voting K -nearest-neighbor rule

Decision boundary for the best value of K
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Introduction Linear classification

Linear classification

In this chapter we focus on linear methods for classification.
Since our classifier C (x) takes values in a discrete set C, we can
always divide the input space into a collection of decision regions
labeled according to the classification.
As we have just seen, the boundaries of these regions can be rough or
smooth, depending on the prediction function.
For an important class of procedures, these decision boundaries are
linear; this is what we will mean by linear methods for classification.
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Introduction Linear classification

Example
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Introduction Linear classification

Generative vs. discriminative models

To approximate Bayes’ rule, we need to estimate the conditional
probabilities Pk(x).
We can distinguish two kinds of models for classification:
Generative models describe the joint distribution of the inputs X and

the label Y . Using Bayes’ theorem, we then get the
conditional class probabilities Pk(x), and we pick the
most likely class label k .

Discriminative models represent the conditional probabilities Pk(x)
directly, or a direct map from inputs x to C.

In this chapter, we will focus on two classifiers (and some variants):
1 A linear classifier based on a generative model: Linear Discriminant

Analysis (LDA).
2 A linear classifier based on a generative model: Logistic regression.
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Linear Discriminant Analysis Model
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Linear Discriminant Analysis Model

Bayes’ theorem

We have seen that the Bayes rule with minimum classification error
selects the class with the highest conditional probability.
Consequently, we need to know the conditional class probabilities
Pk(x), k = 1, . . . , c , for optimal classification.
Suppose pk(x) is the class-conditional density of X in class Y = k ,
and let πk = P(Y = k) be the prior probability of class k , with∑K

k=1 πk = 1.
A simple application of Bayes’ theorem gives us

Pk(x) =
pk(x)πk∑c
`=1 p`(x)π`

, k = 1, . . . , c

Linear and quadratic discriminant analysis use multivariate normal
densities for pk(x).
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Linear Discriminant Analysis Model

Model

Suppose that we model each class density as a multivariate Gaussian

pk(x) =
1

(2π)p/2|Σk |1/2
exp
{
−1
2

(x − µk)TΣ−1
k (x − µk)

}
,

where µk = E(X | Y = k) and Σk = Var(X | Y = k).

x1x1

x 2x 2

Linear discriminant analysis (LDA) arises in the special case when we
assume that the classes have a common covariance matrix

Σk = Σ, for all k.
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Linear Discriminant Analysis Model

Linear boundaries

In comparing two classes k and `, it is sufficient to look at the
log-ratio, and we see that

log
Pk(x)

P`(x)
= log

pk(x)

p`(x)
+ log

πk
π`

= log
πk
π`
− 1

2
(µk + µ`)

TΣ−1(µk − µ`)

+ xTΣ−1(µk − µ`),

an equation linear in x .
This linear log-odds function implies that the decision boundary
between classes k and ` (the set of points such that both conditional
probabilities are equal) is linear in x ; in p dimensions it is a hyperplane.
This is true for any pair of classes, so all the decision boundaries are
linear.
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Linear Discriminant Analysis Model

Example

Left: contours of constant density enclosing 95% of the probability in each
case. The Bayes decision boundaries between each pair of classes are
shown (broken straight lines), and the Bayes decision boundaries separating
all three classes are the thicker solid lines. Right: a sample of 30 vectors
drawn from each distribution, and the fitted LDA decision boundaries.
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Linear Discriminant Analysis Parameter estimation
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Linear Discriminant Analysis Parameter estimation

Likelihood function

The model parameters are πk , µk (k = 1, . . . , c) and the common
covariance matrix Σ. Let θ be the vector of all parameters.
The likelihood function is

L(θ) =
n∏

i=1

p(xi , yi ) =
N∏
i=1

p(xi | yi )p(yi )

=
n∏

i=1

c∏
k=1

pk(xi )
yikπyikk

=
n∏

i=1

c∏
k=1

φ(xi ;µk ,Σ)yikπyikk

where yik = I (yi = k) and φ(x ;µk ,Σ) is the normal density with
mean µk and variance Σ.
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Linear Discriminant Analysis Parameter estimation

Maximum likelihood estimates

The maximum likelihood estimates are

π̂k =
nk
n
, µ̂k =

1
nk

n∑
i=1

yikxi , and Σ̂ =
1
n

c∑
k=1

nkΣ̂k

where Σ̂k is the empirical variance matrix in class k :

Σ̂k =
1
nk

n∑
i=1

yik(xi − µ̂k)(xi − µ̂k)T ,

with yik = I (yi = k) and nk =
∑n

i=1 yik .

It can be shown that Σ̂ is biased. An unbiased estimator of Σ is

S =
n

n − c
Σ̂.
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Linear Discriminant Analysis Parameter estimation

Example: Letter recognition dataset

Source: P. W. Frey and D. J. Slate, Machine Learning, Vol 6 #2,
March 91.
“The objective is to identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital letters in the English
alphabet. The character images were based on 20 different fonts and
each letter within these 20 fonts was randomly distorted to produce a
file of 20,000 unique stimuli.”

Thierry Denœux ACE - Linear Classification July 2019 32 / 71



Linear Discriminant Analysis Parameter estimation

LDA in R

letter <- read.table("letter-recognition.data",header=FALSE)
n<-nrow(letter)

library(MASS)

napp=15000
ntst=n-napp
train<-sample(1:n,napp)
letter.test<-letter[-train,]
letter.train<-letter[train,]

lda.letter<- lda(V1˜.,data=letter.train)

pred.letters<-predict(lda.letter,newdata=letter.test)

perf <-table(letter.test$V1,pred.letters$class)
1-sum(diag(perf))/ntst
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Linear Discriminant Analysis Parameter estimation

Confusion matrix and test error rate
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Linear Discriminant Analysis Case c = 2
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Linear Discriminant Analysis Case c = 2

Case c = 2: fixing the threshold

In the case of c = 2 classes, LDA assigns x to class 2 if

xT Σ̂
−1

(µ̂2 − µ̂1) > s,

where the threshold s depends on the estimated prior probabilities π̂1
and π̂2.
If the prior probabilities cannot be estimated, or if the model
assumption are not verified, a different threshold may give better
result.
The Receiver Operating Characteristic (ROC) curve describes the
performance of the classifier for any value of s.

Thierry Denœux ACE - Linear Classification July 2019 36 / 71



Linear Discriminant Analysis Case c = 2

Confusion matrix (c = 2)

Assuming c = 2, call one class “positive” and the other one “negative”.
For a given threshold s, we get a confusion matrix such as

predicted
true P N
P true positive (TP) false negative (FN)
N false positive (FP) true negative (TN)

The true positive rate (sensitivity) and false positive rate (1-
specificity) are defined, respectively, as

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

If we decrease s, we increase both the TPR and the FPR.
The ROC curve is a plot of the TPR as a function of the FPR, for
different values of s.
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Linear Discriminant Analysis Case c = 2

LDA in R

pima<-read.csv(’pima-indians-diabetes.data’,header=FALSE)
names(pima)<-c("pregnant","glucose","BP","skin","insulin","bmi","diabetes",
"age","class")
n<-nrow(pima)
napp=500
ntst=n-napp
train<-sample(1:n,napp)
pima.test<-pima[-train,]
pima.train<-pima[train,]
lda.pima<- lda(class˜.,data=pima.train)
pred.pima<-predict(lda.pima,newdata=pima.test)
table(pima.test$class,pred.pima$class)
> perf

0 1
0 152 15
1 45 56

Here, the TPR is 56/(45+56)=0.55, and the FPR is 15/(152+15)=0.089.
The error rate is (15 + 45)/268 ≈ 0.22.
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Linear Discriminant Analysis Case c = 2

LDA in R

library(pROC)
roc_curve<-roc(pima.test$V9,as.vector(pred.pima$x))
plot(roc_curve)
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Linear Discriminant Analysis Related models

Overview

1 Introduction
Bayes’ rule
Voting K -nearest-neighbor rule
Linear classification

2 Linear Discriminant Analysis
Model
Parameter estimation
Case c = 2
Related models

3 Logistic regression
Model (case c = 2)
Parameter estimation
Multinomial logistic regression

Thierry Denœux ACE - Linear Classification July 2019 40 / 71



Linear Discriminant Analysis Related models

Discriminant functions

x	

δ1(x)	

δ2(x)	

δc(x)	

C(x)	…
	

	 max	

Discriminant functions are functions
δk(x) such that classifier C(x) can be
written as

C (x) = argmax
k
δk(x).

They can be obtained by computing the log of Pk(x), and dropping
the terms that are constant for all classes. We get

δk(x) =
(
Σ−1µk

)T
x − 1

2
µTk Σ

−1µk + log πk .

The LDA classifier can thus be implemented using linear discriminant
functions.
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Linear Discriminant Analysis Related models

Quadratic Discriminant Analysis (QDA)

If the Σk are not assumed to be equal, then the quadratic terms do
not cancel out, and we get quadratic discriminant functions:

δk(x) = log pk(x) + log πk

= −1
2

(x − µk)TΣ−1
k (x − µk)− 1

2
log |Σk |+ log πk

To apply this rule, we plug-in the ML estimates µ̂k , π̂k and Σ̂k .
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Linear Discriminant Analysis Related models

Example

Two methods for fitting quadratic boundaries. The left plot shows the
quadratic decision boundaries obtained using LDA in the five-dimensional
space X1, X2, X1X2, X 2

1 , X
2
2 . The right plot shows the quadratic decision

boundaries found by QDA. The differences are small, as is usually the case.
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Linear Discriminant Analysis Related models

Application of QDA to the letter recognition data

qda.letter<- qda(V1˜.,data=letter.train)
pred.letters<-predict(qda.letter,newdata=letter.test)

perf <-table(letter.test$V1,pred.letters$class)
1-sum(diag(perf))/ntst

0.1218
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Linear Discriminant Analysis Related models

Naive Bayes classifiers

Starting from the QDA model, we get a simpler model by assuming
that the covariance matrices Σk are diagonal:

Σk = diag(σ2
k1, . . . , σ

2
kp),

where σ2
kj = Var(Xj | Y = k).

This assumption means that the predictors are conditionally
independent given the class variable Y , i.e., for all k ∈ {1, . . . , c},

pk(x1, . . . , xp) =

p∏
j=1

pkj(xj)

Remark: conditional independence does not imply independence.
(Example: Height and vocabulary of kids are not independent; but
they are conditionally independent given age).
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Linear Discriminant Analysis Related models

Naive Bayes classifiers (continued)

To estimate Σk under the conditional independence assumption, we
simply set the off-diagonal in Σ̂k to 0. The variance σ2

kj of Xj

conditionally on Y = k is estimated by

σ̂2
kj =

1
nk

n∑
i=1

yik(xij − µ̂kj)2.

A further simplification is achieved by assuming that the covariance
matrices are diagonal and equal:

Σ1 = · · · = Σc = Σ = diag(σ2
1, . . . , σ

2
p).

In spite of their simplicity, naive Bayes classifiers often (but not
always) have very good performances.
Can accommodate mixed feature vectors (qualitative and
quantitative). If Xj is qualitative, replace pkj(xj) with probability mass
function (histogram) over discrete categories.
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Linear Discriminant Analysis Related models

Naive Bayes classifier in R

library(naivebayes)
naive.letter<- naive_bayes(V1˜.,data=letter.train)
pred.letters.naive<-predict(naive.letter,newdata=letter.test)

perf.naive <-table(letter.test$V1,pred.letters.naive)
1-sum(diag(perf.naive))/ntst

0.3474
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Linear Discriminant Analysis Related models

Comparison of the different models

QDA is the most general model. However, it does not always yield the
best performances, because it has the biggest number of parameters.
Although LDA also has a number of parameters proportion to p2, it is
usually much more stable than QDA. This method is recommended
when n is small.
Naive Bayes classifiers have a number of parameters proportional to p.
They usually outperform other methods when p is very large.

Model Number of parameters

QDA c
(
p + p(p+1)

2

)
+ c − 1

naive QDA 2cp + c − 1
LDA cp + p(p+1)

2 + c − 1
naive LDA cp + p + c − 1
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Linear Discriminant Analysis Related models

Example

We consider c = 2 classes with p = 3 normally distributed input
variables, with the following parameters

π1 = π2 = 0.5

µ1 = (0, 0, 0)T , µ2 = (1, 1, 1)T

Σ1 = I3, Σ2 = 0.7I3.

LDA and QDA classifiers were trained using training sets of different
sizes between 30 and 20,000, and their error rate was estimated using
a test set of size 20,000.
For each training set size, the experiment was repeated 20 times. The
next figure shows themean error rates over the 20 replications.
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Linear Discriminant Analysis Related models

Result

50 100 200 500 1000 2000 5000 20000

0.
17

0.
18

0.
19

0.
20

0.
21

Training set size

Te
st

 e
rr

or
 r

at
e

LDA
QDA

Thierry Denœux ACE - Linear Classification July 2019 50 / 71



Logistic regression
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Logistic regression Model (case c = 2)
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Logistic regression Model (case c = 2)

Binomial Logistic regression

Consider a binary classification problem with c = 2 classes,
Y ∈ {0, 1}. Let P(x) = P(Y = 1 | X = x) be the conditional
probability of class Y = 1.
We want to find a simple model for P(x). An idea could be to use a
linear model of the form

P(x) = β0 + βT x ,

with β ∈ Rp and β0 ∈ R, but this is not suitable because β0 + βT x
can take any value in R, whereas P(x) ∈ [0, 1].
How to take into account the constraint P(x) ∈ [0, 1]?
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Logistic regression Model (case c = 2)

Binomial Logistic regression

A better model is to postulate that the log of the ratio between the
probabilities of class 1 over class 0 is linear in x . This is the
(Binomial) Logistic Regression (LR) model:

log
P(x)

1− P(x)
= β0 + βT x

Equivalently, we can write

P(x) =
1

1 + exp[−(β0 + βT x)]
= Λ(β0 + βT x),

where Λ(u) = 1
1+exp(−u) is called the logistic function.
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Logistic regression Model (case c = 2)

Plot of the logistic function
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Logistic regression Model (case c = 2)

Graphical representation of binomial logistic regression
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Logistic regression Parameter estimation
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Logistic regression Parameter estimation

Conditional likelihood function

Logistic regression models are usually fit by maximizing the conditional
likelihood, which is the likelihood function, assuming the xi are fixed. It is
defined as

L(β) =
n∏

i=1

P(Yi = yi |Xi = xi ;β)

=
n∏

i=1

P(xi ;β)yi [1− P(xi ;β)]1−yi

where yi ∈ {0, 1} and P(xi ;β) = P(Y = 1|X = xi ;β).
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Logistic regression Parameter estimation

Conditional log-likelihood function

The conditional log-likelihood is

`(β) =
n∑

i=1

{yi logP(xi ;β) + (1− yi ) log(1− P(xi ;β))}

=
n∑

i=1

{
yiβ

T xi − log(1 + exp(βT xi ))
}
,

where we assume that the vector of inputs xi includes the constant term 1
to accommodate the intercept.
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Logistic regression Parameter estimation

Maximization

To maximize the log-likelihood, we set its derivatives to zero.
The gradient of the log-likelihood is

∂`

∂β
=

n∑
i=1

yixi −
exp(βT xi )

1 + exp(βT xi )
xi

=
N∑
i=1

xi (yi − P(xi ;β)) = XT (y − P)

where y denote the vector of yi values, X the n × (p + 1) matrix of xi
values, P the vector of fitted probabilities with ith element P(xi ;β).
The score equation ∂`

∂β = 0 is non linear: we use the Newton-Raphson
algorithm.
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Logistic regression Parameter estimation

Hessian matrix and update equation

From
∂`

∂β
=

n∑
i=1

xi (yi − P(xi ;β)) ,

the Hessian matrix is

∂2`(β)

∂β∂βT
= −

n∑
i=1

xix
T
i P(xi ;β)(1− P(xi ;β))

= −XTWX,

where W an n × n diagonal matrix of weights with ith diagonal
element P(xi ;β)(1− P(xi ;β)).
We get the following update equation:

β(t+1) = β(t) + (XTWX)−1XT (y − p)
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Logistic regression Parameter estimation

Asymptotic distribution of β̂

A central limit theorem then shows that the distribution of β̂
converges to

N (β, (XTWX)−1).

when n→ +∞.
This results makes it possible to compute confidence intervals and to
test the significance of the coefficients βj .
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Logistic regression Parameter estimation

Binomial logistic regression in R

glm.fit<- glm(class˜.,data=pima.train,family=binomial)
summary(glm.fit)
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Logistic regression Parameter estimation

Prediction

pred.pima.glm<-predict(glm.fit,newdata=pima.test,type=’response’)

table(pima.test$class,pred.pima.glm>0.5)

FALSE TRUE
0 160 22
1 36 50

The error rate is (22 + 36)/268 ≈ 0.22.
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Logistic regression Parameter estimation

ROC curve: comparison with LDA

logit<-predict(glm.fit,newdata=pima.test,type=’link’)
roc_curve<-roc(pima.test$class,as.vector(pred.pima$x)) # LDA
plot(roc_curve)

roc_glm<-roc(pima.test$class,logit)
plot(roc_glm,add=TRUE,col=’red’)
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Logistic regression Multinomial logistic regression
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Logistic regression Multinomial logistic regression

Model

Multinomial logistic regression extends binomial logistic regression to
c > 2 by assuming the following model:

logPk(x) = βTk x + βk0 + γ, k = 1, . . . , c

where Pk(x) = P(Y = k | X = x), βk ∈ Rp, βk0 ∈ R and γ ∈ R is a
constant that does not depend on k .
The conditional probability Pk(x) can then be expressed as

Pk(x) =
exp(βTk x + βk0)∑c
l=1 exp(βTl x + βl0)

.

This transformation from βTk x + βk0 ∈ R to Pk(x) ∈ [0, 1] such that∑c
k=1 Pk(x) = 1 is called the softmax transformation.
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Logistic regression Multinomial logistic regression

Graphical representation of multinomial logistic regression
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Logistic regression Multinomial logistic regression

Learning

The conditional likelihood for the multinomial model is

L(β) =
n∏

i=1

P(Yi = yi | Xi = xi ;β)

=
n∏

i=1

c∏
k=1

[Pk(xi ;β)]yik

The conditional log-likelihood is

`(β) =
N∑
i=1

c∑
k=1

yik logPk(xi ;β),

It can be maximized by the Newton-Raphson algorithm as in the
binary case.
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Logistic regression Multinomial logistic regression

Multinomial logistic regression in R

library(nnet)
fit<-multinom(V1˜.,data=letter.train)
pred.letters<-predict(fit,newdata=letter.test)

perf <-table(letter.test$V1,pred.letters)
1-sum(diag(perf))/ntst

0.2726
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Logistic regression Multinomial logistic regression

Logistic regression vs. LDA

For a two-class problem, we have seen that, for LDA

log
P(x)

1− P(x)
= α0 + αT x

So it has the same form as logistic regression. The difference is in how
the parameters are estimated:

Logistic regression uses the conditional likelihood based on the
conditional probabilities Pk(x) (discriminative model).
LDA uses the full likelihood based on the joint distribution of X and Y
(generative model).

Despite these differences, in practice the results are often very similar.
LDA tends to be more stable when the classes are well-separated, but
it is also less robust to outliers.
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