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Introduction to classification

Classification

@ In classification problems, the response variable Y is nominal, i.e., it
takes values in a finite and unordered set C, e.g.
o Email is one of C = {spam, email}
o Facial expression is one of C = {sadness, joy, disgust, ...}
o Object is one of C = {pedestrian, car, bike, ...}, etc.
@ The elements in C are called classes. They are arbitrarily numbered
1,2,...,c
@ Our goals are to:
e Build a classifier C : RP — C that predicts the class a future predictor
vector X.
o Assess the uncertainty in each classification
e Understand the roles of the different predictors
@ In this chapter, we will also see how to handle the case where Y is an
ordinal variable, i.e., the elements of C are ordered. This learning ta
is called ordinal regression/classification.
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Introduction to classification Basic notions

Formalization

@ We have a feature (predictor) vector X, and a discrete response
variable Y, both random.

e To represent the joint distribution of (X, Y), we can specify:
@ The marginal distribution of Y. We use the notation

Tk :P(Y = k),

and we call 7w, the prior probability of class k. We have

zc:ﬂ'k =1
k=1

@ The conditional probability density functions (pdf's) of X given Y = k,
for k=1,...,c. We use the notation

pi(x) = p(x | ¥ = k)

o
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Introduction to classification Basic notions

Formalization (continued)

We can then compute

@ The marginal (mixture) pdf of X as

p(x) =D pr(x)m
k=1

@ The conditional distribution of Y given X = x using Bayes' theorem.
Let
Pe(x) =P(Y =k | X =x)

denote the posterior (conditional) class probabilities. We have

Pk(x):mp(z()z)m, k=1,...,c
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Introduction to classification Basic notions

Example

@ Consider a classification problem with ¢ = 3 classes and p = 1 feature.

@ Assume that
m =03, m=05 m3=02

Pi(x) = &(x; i, o)
where ¢ is the normal pdf, with
p1=-1, p2=0, puz=15

o1 =1, 0'2:\/5, o3 =05

H)
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Introduction to classification Basic notions

Example: conditional densities px(x)

Pu(X)

ACE - Linear/Quadratic Classification Spring 2022 8 /104



LTI
Example: marginal density p(x)
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Introduction to classification Basic notions

Example: posterior probabilities Py(x)
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Introduction to classification Bayes classifier

The Bayes classifier

@ The conditional error probability for classifier C(x) is

Plerror | X =x) =P(C(X) # Y | X = x)
=1-P(C(X)=Y | X =x)

o If C(x) = k, then
Perror [ X =x) =1-P(Y =k | X =x) =1— P(x)

@ To minimize P(error | X = x), we must choose k such that Py(x) is
maximum.

@ The corresponding classifier C*(x) is called the Bayes classifier. It has
the lowest error probability. =
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Introduction to classification Bayes classifier

Example: decision regions of the Bayes classifier

Pi(x)
0.6
!

0.4

0.2

0.0
1

ACE - Linear/Quadratic Classification Spring 2022 13 / 104



Introduction to classification Bayes classifier

Bayes error rate

@ For X = x, the Bayes classifier predicts the class k* such that
P+ (x) = max Px(x), and the conditional error probability is

1—Pr=(x)=1- max Pr(x)

@ The error probability of the Bayes classifier (averaged over all values of
X) is

Errg = Ex [1 — max Pk(X)} - / [1 — max Pk(x)} p(x)dx

@ This probability is called the Bayes error rate. It is the lowest error

probability that can be achieved by a classifier. It characterizes the
difficulty of the classification task.
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Introduction to classification Bayes classifier

Approximating the Bayes classifier

@ The Bayes classifier is optimal but theoretical. We need practical
methods to learn classifiers that will approximate the Bayes classifier.
@ As in regression, we distinguish between

o Parametric methods that postulate a model (of the densities px(x), the
posterior probabilities Py(x) or the decisions C(x)) depending on a
limited number of parameters

o Nonparametric methods, which make minimal assumptions about the
distribution of the data.

@ A widely used nonparametric method is the voting K nearest neighbor
(K-NN) method.

R
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Introduction to classification Voting K-NN rule

Overview

© Introduction to classification

@ Voting K-NN rule

ACE - Linear/Quadratic Classification

Spring 2022

o

16 / 104



Introduction to classification Voting K-NN rule

K nearest neighbors
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@ Nearest-neighbor averaging can be used as in regression.

o Let x1),--.,Xk) denote the K nearest neighbors of x in the Iearnlng,w_
set, and y(1), ..., ¥(k) the corresponding class labels. \\M»;

o
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Voting K-nearest-neighbor rule

@ The posterior probability of class k can be estimated by the proportion
of observations from that class among the K nearest neighbors of x:

~ 1
Pk(X) = R#{I’E {1,...,K} Vi) = k}

e Voting K-nearest neighbor (K-NN) rule: select the majority class
among the K nearest neighbors:

Ck(x) =arg max I3k(x).

@ As in regression, the K-NN rule breaks down as dimension grows.
However, the impact on Ci(x) is less than that on the probability
estimates Py (x). e

e’
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Example: voting K-NN rule with n = 1000 and K = 50
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Introduction to classification Voting K-NN rule

Error probability estimation

e Typically, we estimate the error probability of a classifier C(X) by its
error rate on a test set 7 = {(x/,y/)}";:

Err’r:%#{"e{l,-o-am} Ly # CO)

@ The test error rate allows us to select the best model in a set of
candidate models (more on this later).

L2
g
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Introduction to classification Voting K-NN rule

Example: simulated data and Bayes decision boundary
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Voting K-NN rule
Decision boundaries for K =1 and K = 100

KNN: K=1 KNN: K=100
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Introduction to classification Voting K-NN rule

Training and test error rates vs. 1/K
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Introduction to classification Voting K-NN rule

Decision boundary for the best value of K

KNN: K=10

X
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Linear and quadratic discriminant analysis

Decision regions and decision bounadries

@ Since our classifier C(X) takes values in a finite set C, we can always
divide the input space into a collection of decision regions:

Rik={xeRP:C(x)=k}, k=1,...,c

@ The boundaries of these regions can be rough or smooth, depending
on the prediction function.
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e
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Linear and quadratic discriminant analysis

Linear/quadratic classification

@ For an important class of procedures, these decision boundaries are
linear or quadratic, i.e., they have equations of the form

BTx+Bo=0 (linear) or

xTQx+ BTx+ o =0 (quadratic)

@ This is what we will mean by linear and quadratic methods for

&, 2
=4

classification. They are examples of parametric methods. e
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Linear and quadratic discriminant analysis

Generative vs. discriminative models

@ To approximate Bayes' rule, we need to estimate the posterior

probabilities Px(x) = P(Y = k | X = x).

@ We can distinguish two kinds of models for classification:

Generative models represent the conditional pdf's px(x) and the prior
probabilities 7. Using Bayes' theorem, we then get the
posterior probabilities Py(x).

Discriminative models represent the conditional probabilities P (x)
directly, or a direct map from inputs x to C.

@ In this chapter, we will focus on two families of classifiers:

@ Linear and quadratic classifiers based on a generative model: Linear
Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA).

@ A linear classifier based on a discriminative model: Logistic regressiqﬁ%’
Q’;

R
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Linear and quadratic discriminant analysis Model

Multivariate normality assumption

Linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA) both use multivariate normal densities for px(x)

1 1 _
pr(x) = W exp {—2(X - Mk)TZkl(X - ,uk)} )

where px =E(X | Y = k) and Xy = Var(X | Y = k).

(P
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Linear and quadratic discriminant analysis Model
LDA model

LDA further assumes that the covariance matrices are equal:
Y, =%  forall k.

We start with a study of LDA.

s
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Linear and quadratic discriminant analysis Model

Linear boundaries of the Bayes classifier

Proposition

Under the assumptions of LDA, the boundary between any two decision
regions Ry and R, of the Bayes classifier is a hyperplane defined by the
equation:

_ 1 _ T
(hk — o) TE X — 5 (i + pe) T (i — pue) + |Og7?: =0 (1)

v

See example on next slide.
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Linear and quadratic discriminant analysis Model

Example

Left: contours of constant density enclosing 95% of the probability in each
case. The Bayes decision boundaries between each pair of classes are

shown (broken straight lines), and the Bayes decision boundaries separatlng
all three classes are the thicker solid lines. Right: a sample of 30 drawn %
from each distribution, and the fitted LDA decision boundaries. =
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]
Plug-in LDA classifier

@ The model parameters are my, ux (k =1,...,c) and the common
covariance matrix X.

@ To implement LDA, we compute the maximum likelihood estimates
(MLEs) of these parameters and we “plug in” these estimates in the
expressions of the conditional probabilities Py(x).

@ From the consistency of the MLEs, the resulting plug-in classifier will
tend to the Bayes classifier as the sample size n tends to infinity
(assuming the model to be correct).

g
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Linear and quadratic discriminant analysis Model

Likelihood function

@ Let 0 be the vector of all parameters.

@ Assumption: the sample (X1, Y1),...,(Xs, Ys) is independent and
identically distributed (iid).

@ The likelihood function is

n n
:Hp(X,',y, H PXI |}// p()/i)
i=1 i=1
Hk 1 Pe(xi) ik 15 1WZ’k

= TTIT 66 e 2y

i=1 k=1

where yi = I(yi = k) and ¢(x; uk, X) is the normal density with
mean g and variance X.
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Linear and quadratic discriminant analysis Model

Maximum likelihood estimates

@ The MLEs are

Cc

L1 ~ 1 .
M= k= nszyikxi, and 2= — > mex
i=1 k=1

where X, is the sample covariance matrix in class k:
1 n

= ~ ~\T

= P Z;Yik(xi — 1) (xi — k)
i

with Yik = I(y; = k) and ng = Z?:l Yik-

@ It can be shown that X is biased. An unbiased estimator of X is

s=_"%

5
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e
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Linear and quadratic discriminant analysis Model

Discriminant functions

Discriminant functions (DF's) are
functions dx(x) such that classifier

) C(x) can be written as

C(x) = arg max Ok(x).

@ Simple DF's can be obtained by computing the log .Bk(x), and
dropping the terms that are constant for all classes. Here, we get

(GE9)

R 1
Ok(x) =A[ T X—§MZZ fik + log 7.

@ The LDA classifier can thus be implemented using linear discriminatﬁj‘f
*‘qff,“;:,,@

functions.
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Linear and quadratic discriminant analysis [V

Example: Letter recognition dataset

@ Source: P. W. Frey and D. J. Slate, Machine Learning, Vol 6 #2,
March 91.

@ Objective: identify black-and-white rectangular pixel displays as one of
the 26 capital letters in the English alphabet.

@ The character images were based on 20 different fonts and each letter
within these 20 fonts was randomly distorted to produce a file of
20,000 instances.

@ Each instance was converted into 16 primitive numerical attributes
(statistical moments and edge counts) which were scaled to fit into a
range of integer values from 0 through 15.

ACE - Linear/Quadratic Classification Spring 2022 38 / 104



Linear and quadratic discriminant analysis Model
LDA in R

letter <- read.table("letter-recognition.data",header=FALSE)
n<-nrow(letter)

library (MASS)

napp=15000

ntst=n-napp

train<-sample(1:n,napp)
letter.test<-letter[-train,]
letter.train<-letter[train,]
1lda.letter<- 1da(V1i~.,data=letter.train)

pred.letters.lda<-predict(lda.letter,newdata=letter.test)

perf <-table(letter.test$Vl,pred.letters.lda$class)
1-sum(diag(perf))/ntst
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Model

Linear and quadratic discriminant analysis

Confusion matrix and test error rate

Jobs

Console

~/Documents/R/Scripts/teaching/sy19/
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Sacliaridenitai
Case ¢ = 2: fixing the threshold

e From (1), in the case of ¢ = 2 classes, LDA assigns x to class 2 if

o Ta-1
(MZ_IU'I)TZ X >s,

where the threshold s depends on the estimated parameters, including

the estimated prior probabilities 771 and 7.

@ If the prior probabilities cannot be estimated, or if the model
assumptions are not verified, a different threshold may give better
results.

@ The Receiver Operating Characteristic (ROC) curve describes the
performance of the classifier for any value of s.

R

ACE - Linear/Quadratic Classification Spring 2022 42 / 104



(R CETIETT W TTEL [EY TN ST IMETAEL EIWST  Case of binary classification

Confusion matrix (¢ = 2)

@ Assuming ¢ = 2, call one class “positive” and the other one “negative”.
@ For a given threshold s, we get a confusion matrix such as

predicted

true P N

P | true positive (TP) false negative (FN)
N | false positive (FP) true negative (TN)

@ The true positive rate (sensitivity) and false positive rate (1-
specificity) are defined, respectively, as

TP FP

TPR=———— FPR= ——
TP+ FN’ FP+ TN

o If we decrease s, we increase both the TPR and the FPR.
@ The ROC curve is a plot of the TPR as a function of the FPR, for i
different values of s.
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(R CETIETT W TTEL [EY TN ST IMETAEL EIWST  Case of binary classification

Example: Pima diabetes dataset

@ Data about diabetes in the population of Pima Indians leaving near
Phoenix, Arizona, USA.

@ All 768 patients were females and at least 21 years old.
e Variables:

Number of times pregnant

Plasma glucose concentration a 2 hours in an oral glucose tolerance test
Diastolic blood pressure (mm Hg)

Triceps skin fold thickness (mm)

2-Hour serum insulin (mu U/ml)

Body mass index (weight in kg/(height in m)?)

Diabetes pedigree function

Age (years)

@ Tested positive (1) or negative (0) for diabetes

00000000

@ Problem: predict the test result for the 8 predictors.

e’
v or e
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Case of binary classification
LDA of the Pima dataset

pima<-read.csv(’pima-indians-diabetes.data’,header=FALSE)
names (pima)<-c("pregnant","glucose","BP","skin","insulin","bmi","diabetes",
"agell , n classll)

n<-nrow(pima)

napp=500

ntst=n-napp

train<-sample(1:n,napp)

pima.test<-pimal[-train,]

pima.train<-pimal[train,]

lda.pima<- lda(class”.,data=pima.train)
pred.pima<-predict(lda.pima,newdata=pima.test)
table(pima.test$class,pred.pima$class)

> perf
0 1
0 152 15
1 45 56

Here, the TPR is 56/(454+56)=0.55, and the FPR is 15/(152+15)=0.08ﬁ?
The error rate is (15 4 45)/268 ~ 0.22. =
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Case of binary classification
ROC curve for the LDA classifier (Pima dataset)

library(pROC)
roc_curve<-roc(pima.test$V9,as.vector(pred.pima$x))
plot(roc_curve)

Sensitivity

T T T T T T
10 08 0.6 04 0.2 0.0
Specificity
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Related models
Quadratic Discriminant Analysis (QDA)

@ In QDA, the assumption of equality of covariance matrices is relaxed
(see next slide).

@ We have seen that we obtain discriminant functions by computing the
log ISk(x) from Bayes' theorem, and dropping the terms that are
constant for all classes.

o If the X are not assumed to be equal, then the quadratic terms now
depend on k, and we get quadratic discriminant functions:

dk(x) = log pi(x) + log
-1

1 N - 1 < ~
= _E(X — Mk)T}:k (x — k) — > log |Zk| + log 7k

@ As a consequence, the decision boundaries are now quadrics (quadrat
lines, surfaces or hypersurfaces). o
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Linear and quadratic discriminant analysis [SCEYEI MY SES

QDA model
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Example
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ST
Application of QDA to the letter recognition data

gda.letter<- qda(V1~.,data=letter.train)
pred.letters.qda<-predict(qda.letter,newdata=letter.test)

perf <-table(letter.test$Vl,pred.letters.qda$class)
1-sum(diag(perf))/ntst

0.1166

, <
g
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Linear and quadratic discriminant analysis Related models

Comparing classifiers: McNemar's test

@ The test error rate was 0.2996 for LDA, and it is 0.1166 for QDA. Is
this difference statistically significant?

@ To answer such a question, we typically use McNemar's test for 2 x 2
contingency tables.
@ We consider the following table:

classifier 2 wrong  classifier 2 correct
classifier 1 wrong noo no1
classifier 1 correct no nmi

R
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Linear and quadratic discriminant analysis Related models

Comparing classifiers: McNemar's test (continued)

@ Under the null hypothesis that the error probabilities of the two
classifiers are equal, the statistics

(|01 — mio| —1)?
no1 + N1o

D? =

is distributed approximately as x? with 1 degree of freedom.

o The p-values is p = Py, (x3 > d?).

@ Remark: when comparing more than two classifiers, we have more
chance of rejecting the null hypothesis for at least one pair of
classifiers. To address this problem, we can use the Bonferroni
correction: we reject the null hypothesis at level « for any two
classifiers if p < ao/m, where m is the number of classifier pairs. 5=

e’
v or e
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Linear and quadratic discriminant analysis Related models

McNemar's test in R

correct.lda<-letter.test$Vi==pred.letters.lda$class
correct.qda<-letter.test$Vi==pred.letters.qda$class
mcnemar . test (correct.lda,correct.qda)

McNemar’s Chi-squared test with continuity correction

data: correct.lda and correct.qda
McNemar’s chi-squared = 767.12, df = 1, p-value < 2.2e-16

%)

R
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Linear and quadratic discriminant analysis Related models

Naive Bayes classifiers (continued)

@ In LDA and QDA, we need to estimate covariance matrices with
p(p + 1)/2 parameters, which can yield poor results (or can even be
unfeasible) when p is very large.

@ Starting from the QDA model, we get a simpler model by assuming
that the covariance matrices X are diagonal:

= diag(o-ilv s 7o-ip)7

where O'ij = Var(X; | Y = k) (see next slide).

o We get a naive QDA classifier, a special kind of naive Bayes classifier.

A Wm“
e
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Linear and quadratic discriminant analysis [SCEYEI MY SES
Naive QDA model
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Linear and quadratic discriminant analysis Related models

Conditional independence assumption

@ The assumption that the covariance matrices are diagonal means that
the predictors are conditionally independent given the class variable Y,
ie, forall ke {1,...,c},

p
p(xt, -5 x0) = [ ] Pi(x)
j=1

@ Remark: conditional independence does not imply independence.
(Example: Height and vocabulary of kids are not independent; but
they are conditionally independent given age).

%"
R
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Linear and quadratic discriminant analysis Related models

Naive Bayes classifiers (continued)

@ To estimate X, under the conditional independence assumption, we
simply set the off-diagonal terms in X, to 0. The variance Jij of X;
conditionally on Y = k is estimated by

Uk

4 ZYIk Xij — ,Ukj) .

@ A further simplification is achieved by assuming that the covariance
matrices are diagonal and equal:

zl:...:ZC:Z:diag(a%,...,aﬁ).

This model can be called “Naive LDA" (see next slide). =

R
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Linear and quadratic discriminant analysis [SCEYEI MY SES
Naive LDA model
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Linear and quadratic discriminant analysis Related models

Advantages of Naive Bayes classifiers

@ In spite of their simplicity, naive Bayes classifiers often (but not

always) have very good performances, especially when the number p

of predictors is large.

@ They can accommodate mixed feature vectors (qualitative and
quantitative). If Xj is qualitative, we can estimate the probability mass
functions pgi(x;) using histograms over discrete categories.

PkjlXj g g g
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Linear and quadratic discriminant analysis Related models

Naive Bayes classifier in R

library(naivebayes)
naive.letter<- naive_bayes(V1~.,data=letter.train)
pred.letters.naive<-predict(naive.letter,newdata=letter.test)

perf.naive <-table(letter.test$Vi,pred.letters.naive)
1-sum(diag(perf.naive))/ntst

0.3554

# Comparison with LDA
correct.naive<-letter.test$Vi==pred.letters.naive
mcnemar . test (correct.lda,correct.naive)

McNemar’s Chi-squared test with continuity correction

data: correct.lda and correct.naive
McNemar’s chi-squared = 83.731, df = 1, p-value < 2.2e-16

Q)

R
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Linear and quadratic discriminant analysis [SCEYEI MY SES

Comparison of the different models

Model Number of parameters

QDA c<p+p(p+1)>—|—c—1
naive QDA 2cp+c—1

LDA cp+BEf o1
naive LDA cp+p—|—c—1

e QDA is the most general model. However, it does not always yield the
best performances, because it has the largest number of parameters.

@ Although LDA also has a number of parameters proportional to p?, it
is usually much more stable than QDA. This method is recommended
when n is small.

e Naive Bayes classifiers have a number of parameters proportional to/pis
They usually outperform other methods when p is very large. \
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Linear and quadratic discriminant analysis [SCEYEI MY SES

Example

@ We consider ¢ = 2 classes with p = 3 normally distributed input
variables, with the following parameters

m =7 =0.5

M1 :(07070)T7 M2:(17171)T
=13, Yo=07ls.
o LDA and QDA classifiers were trained using training sets of different

sizes between 30 and 20,000, and their error probability was estimated
using a test set of size 20,000.

@ For each training set size, the experiment was repeated 20 times. The
next figure shows error rates over the 20 replications. %?

X &

=
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Linear and quadratic discriminant analysis [SCEYEI MY SES
Result

— LDA
o — QDA
N
=]
o
N
[y o
8
S
= o
[CEER N
b7 o
Q
[ee]
-
o
~
-
o
T T T T T T T T
50 100 200 500 1000 2000 5000 20000

Training set size

ACE - Linear/Quadratic Classification Spring 2022 64 / 104



Logistic regression and related models

Overview

© Logistic regression and related models

o
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(RIS AT MEICETL RN O BV WL DBl Binomial logistic and probit regression

Overview

© Logistic regression and related models
@ Binomial logistic and probit regression

o
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Logistic regression and related models Binomial logistic and probit regression

Searching for a linear discriminative model

o Consider a binary classification problem with ¢ = 2 classes,
Y €{0,1}. Let P(x) =P(Y =1| X = x) be the conditional
probability of class Y = 1.

e We want to find a simple model for P(x). An idea could be to use a
linear model of the form

P(x) = Boxo + Bixt + ... + Bpxp = BT x,

where x is the augmented feature vector with xo = 1. However, this is
not suitable because 37 x can take any value in R, whereas
P(x) € [0,1].

@ A better idea is to assume that Y depends on a latent (unobserved)
continuous variable Y*, which is linearly related to x.

%"
R
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Logistic regression and related models Binomial logistic and probit regression

@ Assume that
Y*=8Tx+e,

where € is a random error term with 0 mean and cumulative
distribution function (cdf) F, and

1 fY*>0
0 otherwise

@ We then have

P(x)=P(Y =1|x)=P(Y*>0|x)=P(e>—8"x).

-
&, 2
N2 A

RN
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(RIS AT MEICETL RN O BV WL DBl Binomial logistic and probit regression
Model (continued)

o If we assume the distribution of € to be symmetric, then

Ple > —B"x)=P(e<B7x) and |P(x)=F(3"x)

o Different choices of F give us different models. Whatever the choice of
F we get a linear classifier, as the equation of the decision boundary is

1 \‘, Vi
Px)=5 BTx=F105)=0 sz
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(RIS AT MEICETL RN O BV WL DBl Binomial logistic and probit regression
Logit model

@ In the logit model, we assume that ¢ has a standard logistic
distribution with cdf

F(u) = A(w) = —2PW)

~ 14exp(u)’
@ We then have
exp(87x) 1
P(x) = 1- P(x) =
S w1 B A P Y
@ The log-odds ratio is linear in x:
ot g = -
- &)
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Logistic regression and related models Binomial logistic and probit regression
Probit model

@ In the probit model, we assume that € has a standard normal
distribution with cdf ®. We then have

P(x) = (87 x).

@ In practice, the two models usually give very similar results.

@ Logistic regression based on the logit model is more popular in ML.

N DO
A

RN
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(RIS AT MEICETL RN O BV WL DBl Binomial logistic and probit regression

Plot of the logistic and normal cdfs

CDF

—— normal
— logistic
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Logistic regression and related models Binomial logistic and probit regression

Conditional likelihood function

@ Logit and probit models are usually fit by maximizing the conditional
likelihood, which is the likelihood function, assuming the x; are fixed.

@ Assuming Y1,..., Y, to be independent conditionally on
X1 =x1,...,Xn, = Xn, the conditional likelihood is

L(IB):P(leyla--'uyn:yn’X1:X1a---7Xn:Xn)

=TIP(Vi=yi | Xi =x:8)
i=1

=[] PG 8 [ = PO B
i=1

Where Vi c {0’ 1} and P(Xi; B) = ]P)(Y = 1|X = X,,IB) \‘!w:’,":»,\?
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Binomial logistic and probit regression
Conditional log-likelihood (logit model)

@ The conditional log-likelihood for the logit model is
= {yilog P(xi; B) + (1 — yi) log(1 — P(x;; 8))}
i=1

— zn: {y,-BTx,- — log(1 + eXP(ﬁTXi))} )

i=1

o This function is non linear and the score equation 2 @ = 0 does not
have a closed-form solution: we need to use an iterative nonlinear
optimization procedure such as the

@ As the log-likelihood function is concave, it has only one maximum .
and the convergence of the Newton-Raphson algorithm is guaranteeﬁ

S
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Binomial logistic and probit regression
Update equation (logit model)

@ Let y denote the vector of y; values, X the n x (p + 1) matrix of x;
values, p the vector of fitted probabilities with i-th element P(x;; /3).

@ The gradient and Hessian of ¢(3) can be written as
9%4(B)

XT(y— = —XTWX
(y p) and aﬂaﬁT Y

o _
op
where W an n x n diagonal matrix of weights with i-th diagonal
element P(x;; 8) {1 — P(x;; B)}.
@ The update equation is, thus,

AU = g0 4+ (XTWX) !XT (y — p)

3

0\
1

S

e
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Binomial logistic and probit regression
Asymptotic distribution of [

@ A central limit theorem shows that the distribution of B\ converges to
N(B, (XTWX) ™).

when n — +o0.

@ This results makes it possible to compute confidence intervals and to
test the significance of the coefficients ;.

@ Similar results hold for probit regression.

&,
o
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(TS LMY CETNIEN N BV WP DBl Binomial logistic and probit regression

Binomial logistic regression in R

glm.fit<- glm(class”.,data=pima.train,family=binomial)
Console

> summary(glm.fit)

Call:
glm(formula = class ~ ., family = binemial, data = pima.train)

Deviance Residuals:
Min 1Q  Median 3Q Max
-2.6283 -@.7258 -@.3775 0.7200 2.7248

Coefficients:
Estimate Std. Error z value Pr(>lzl)

(Intercept) -9.169838 ©.933412 -9.824 < Ze-16 **=
pregnant 9.992700 ©.039180 2.366 ©.91798 *
glucose ©.935910 ©.004587 7.829 4.93e-15 **=
BP -0.013326 @.006252 -2.132 0.93305 *
skin -0.001035 @.008580 -0.121 ©.90401
insulin -0.001459 @.001146 -1.274 ©.20274

bmi ©.103880 ©@.018931 5.487 4.08e-08 **=
diabetes 1.132297 ©.368532 3.072 0.08212 **
age 9.924392 ©.011426 2.135 0.@3277 *

Signif. codes: @ ‘***’ @.001 ‘**’ 0.01 ‘*’ 9.85 ‘.’ 0.1 * ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 655.68 on 499 degrees of freedom

Residual deviance: 464.59 on 431 degrees of freedom
AIC: 482.59

Number of Fisher Scoring iterations: 5
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(RIS AT MEICETL RN O BV WL DBl Binomial logistic and probit regression
Prediction (logit model)

pred.pima.glm<-predict(glm.fit,newdata=pima.test,type=’response’)

table(pima.test$class,pred.pima.glm>0.5)

FALSE TRUE
158 14
1 41 55

The error rate is (14 4 41)/268 ~ 0.21.

5

W <
e
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Logistic regression and related models Binomial logistic and probit regression

Binomial probit regression in R

probit.fit<- glm(class”.,data=pima.train,family=binomial ("probit"))
> summary(probit.fit)

Call:
glm(formula = class ~ ., family = binomial("probit"), data = pima.train)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.5488 -0.7291 -0.3691 ©.7558 2.9030

Coefficients:

Estimate Std. Error z value Pr(>lzl)
(Intercept) -5.0692691 0.5018665 -10.101 < 2e-16 ***
pregnant 0.0674591 0.0247598 2.725 0.00644 **

)

glucose 0.0189866 0.0025196 7.536 4.86e-14 ***
BP -0.0107108 0.0042744 -2.506 0.01222 *
skin 0.0038887 ©0.0050731 0.767 0.44336
insulin -0.0011300 0.0006979 -1.619 0.10545

bmi 0.0658705 ©0.0113925 5.782 7.38e-09 ***
diabetes 0.5366801 0.2167489 2.476 0.01328 *
age 0.0108750 ©0.0071087 1.530 0.12606

Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 < ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 643.65 on 499 degrees of freedom ~XM %)
Residual deviance: 462.67 on 491 degrees of freedom =g
AIC: 480.67
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(TS LMY CETNIEN N BV WP DBl Binomial logistic and probit regression

Comparison logit vs. probit

> susmarycln.fit)

glaCformie = closs - ., fantly = binostal, doco = pina.tratm)
' W0 westn % e

Estirote std. rror 2 value FrG121)

Crntercepe) -9.165 9820 < 7616 e
236 0.01798

glucose 729 43515

3 212 0,050

sein 021 0,501

insitin 274 0,202

oni 5.487 4.08c-08

dianetes 3 o.0012
25 005277 +

SIgnie. codes: 0 000" 0.061 *o+’ B.01 0 0.05 < 0.1 7 1

(Dispersion paraneter for binemial fanily token to be 1)

Geviance: 655.68 on 499 degrees of fresdon
Residual ceviance: 464,59 on 492 degrees of fresdon
AL 482,55

Nasber of Fisner Scoring tterations: 5

o

> summary(probit. fit)

Call:
glm(formula = class ~

Deviance Residuals:

., family = binomial("probit"), data = pima.train)

Max
2.9030

Estimate Std. Error z value Pr(>1zl)

Min 1Q Median 3Q
-2.5488 -0.7291 -0.3691 0.7558
Coefficients:

(Intercept) -5.0692691 0.5018665 -
pregnant 0.0674591 0.0247598
glucose 0.0189866 0.0025196
BP -0.0107108 0.0042744
skin 0.0038387 0.0050731
insulin -0.0011300 0.0006979
bmi 0.0658705 0.0113925
diabetes 0.5366801 0.2167489
age 0.0108750 0.0071087

Signif. codes: @ ‘***’ @.001 ‘**’

(Dispersion parameter for binomial
Null deviance: 643.65 on 499

Residual deviance: 462.67 on 491
AIC: 480.67

ACE - Linear/Quadratic Classification

10.101 < 2e-16 ***
2.725 0.00644 **
7.536 4.86e-14 ***
-2.506 0.01222 *
0.767 0.44336

-1.619 0.10545
5.782 7.38e-@9 ***
2.476 0.01328 *
1.530 0.12606

0.01 ‘*> .05 ‘.” 0.1 ¢’ 1
family taken to be 1)

degrees of freedom
degrees of freedom
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Binomial logistic and probit regression
Prediction (probit model)

pred.pima.probit<-predict(probit.fit,newdata=pima.test,
type=’response’)

table(pima.test$class,pred.pima.probit>0.5)

FALSE TRUE
158 14
1 43 53

The error rate is (14 4 43)/268 ~ 0.21.

&,
o
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Binomial logistic and probit regression
ROC curves: comparison with LDA

logit<-predict(glm.fit,newdata=pima.test,type=’1link’)
probit<-predict(probit.fit,newdata=pima.test,type=’link’)
roc_curve<-roc(pima.test$class,as.vector(pred.pima$x)) # LDA plot(roc_curve)
roc_glm<-roc(pima.test$class,logit)

roc_probit<-roc(pima.test$class,probit)

plot(roc_glm,add=TRUE, col="red’)

plot(roc_probit,add=TRUE, col=’blue’)

Sensiivity

‘Specifiity
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Overview

© Logistic regression and related models

@ Multinomial logistic regression

o
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Logistic regression and related models Multinomial logistic regression

@ Multinomial logistic regression extends binomial logistic regression to
¢ > 2 by assuming the following model for the posterior probabilities
Pe(x) =P(Y =k | X = x):

el
Filx) E/CzleXP(ﬂlTX)

@ However, there is indeterminacy in the model, because the
probabilities are unchanged if we add a constant vector « to all Si's:

exp((B+a)Tx)  _ exp(Bx)
Yo exp((Br+a)Tx) 3 exp(B) x)

@ To remove this indeterminacy, we set 51 = 0.

R
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(RTIS ATNICETL e O Y WP DBl Multinomial logistic regression
Model (continued)

@ We then have 1

T 1t ep(5X)

P;(x)

and
exp(B/ x)

1+ Soioexp(Bx)’

@ The log-odds ratios for class k vs. class 1 are still linear in x:

Pr(x)

=2,...,cC.

Pi(x) T
lo = 6. x
g P]_(X) Bk
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Logistic regression and related models Multinomial logistic regression

Learning

@ The conditional likelihood for the multinomial model is

L(B) =[] P(Yi = yi | Xi = xi: B)
i=1

= [T TT (Pet:

i=1 k=1
@ The conditional log-likelihood is

n (o

UB) =" vilog Pi(xi; B),

i=1 k=1

@ It can be maximized by the Newton-Raphson algorithm as in the =~ =
binary case. \

R

ACE - Linear/Quadratic Classification Spring 2022 86 / 104



Logistic regression and related models Multinomial logistic regression

Multinomial logistic regression in R

library(nnet)
fit<-multinom(V1~.,data=letter.train)
pred.letters<-predict(fit,newdata=letter.test)

perf <-table(letter.test$Vl,pred.letters)
1-sum(diag(perf))/ntst

0.285
# Comparison with LDA correct.log<-letter.test$Vi==pred.letters.log
mcnemar.test (correct.lda,correct.log)

McNemar’s Chi-squared test with continuity correction

data: correct.lda and correct.log
McNemar’s chi-squared = 6.4881, df = 1, p-value = 0.01086
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Overview

© Logistic regression and related models

@ Ordered probit and logit regression

o
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Logistic regression and related models Ordered probit and logit regression

Ordinal classification /regression

@ In ordinal regression/classification, the response Y is an ordinal
variable, i.e., it takes values in a finite ordered set.

@ For instance, a variable “Customer satisfaction” may take values in the
set {High, Medium, Low}.

@ To solve ordinal regression problems, we can still use classification
methods, but the results will often not be optimal because the
ordering relation between the values of Y is ignored.

@ A much better option to use a specific method such as ordered probit
or logit regression.

%’- ¢
A

RN
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S pri o e f et
Ordered logit and probit models

@ As in the binomial logit and probit models, we assume the existence of
a latent variable Y™ linearly related to x:

Y*=8Tx+e
@ We now assume that Y is determined by Y™* as follows:

I po<Y*<m
2 <Y <
Y=<
C o1 < Y* < e

where —0o = g < 1 < ... < phe—1 < e = 400 are unknown =
parameters. W

R
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Ordered probit and logit regression
Ordered logit and probit models (continued)

@ The ordered logit and probit models correspond to different
assumptions about the distribution of e: respectively, logistic (F = A)
or normal (F = ®).

@ The conditional log-likelihood function is

=3 yixlog Pi(x)

i=1 k=1

—Zzy,klog[ (k= B7x) = F(uk—r — B7x)] ,
i=1 k=1
with 0 = (B, p1y .-, fre—1)-

@ The MLE of ¢ can be found by an iterative nonlinear optimization ..
algorithm. U

g
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Logistic regression and related models Ordered probit and logit regression

Example: Housing dataset

o Package MASS, 72 rows and 5 variables.
o Variables:

Sat: Satisfaction of householders with their present housing
circumstances (High, Medium or Low, ordered factor).
Infl: Perceived degree of influence householders have on the
management of the property (High, Medium, Low).
Type: Type of rental accommodation, (Tower, Atrium,
Apartment, Terrace).
Cont: Contact residents are afforded with other residents,
(Low, High).
Freq: Frequencies: the numbers of residents in each class.

e’
v or e
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el ds Sosy
Ordered logit regression in R
library ("MASS")

house.logit <- polr(Sat Infl + Type + Cont, weights = Freq,
data = housing, method = "logistic")

> summaryChouse.logit, digits = 3)
Re-fitting to get Hessian

Call:
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq,
method = "logistic")

Coefficients:

Value Std. Error t value
InflMedium 0.566 0.1047 5.41
InflHigh 1.289 0.1272  10.14
TypeApartment -0.572 0.1192  -4.80
TypeAtrium -0.366 0.1552 -2.36
TypeTerrace  -1.091 0.1515 -7.20
ContHigh 0.360 0.0955 3.77

Intercepts:

Value Std. Error t value
LowIMedium -0.496 0.125 -3.974
MediumlHigh ©.691 0.125 5.505

Residual Deviance: 3479.149

Thierry Denceux ACE - Linear/Quadratic Classification Spring 2022
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el ds Sosy
Ordered probit regression in R

house.probit <- polr(Sat Infl + Type + Cont, weights = Freq,
data = housing, method = "probit")

> sunmary(house.probit, digits = 3)

Re-fitting to get Hessian

Call:
polr(formula = Sat ~ Infl + Type + Cont, data = housing, weights = Freq,
method = "probit™")

Coefficients:

Value Std. Error t value
InflMedium 0.346 0.0641 5.40
InflHigh 0.783 0.0764 10.24
TypeApartment -0.348 0.0723 -4.81
TypeAtrium -0.218 0.0948 -2.30
TypeTerrace -0.664 0.0918 -7.24

ContHigh 0.222 0.0581 3.83
Intercepts:

Value Std. Error t value
LowIMedium -0.300 0.076 -3.937
Medium|High ©.427 0.076 5.585

Residual Deviance: 3479.689
AIC: 3495.689
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Complements on LDA
Decision boundaries of LDA |

@ The decision boundary between regions Ry and Ry is defined by the
equation Py(x) = Py(x), which can be written as

Pi(x) pr(X)mk Tk
=lo =lo x) —lo x)+log— =0
Pyx) € o ()s g pk(x) — log pg(x) + log "

log
o Now,

1 1 _
) = g o0~ 0 TE k- |
SO

1 _
log pk(x) = _E(X — ) TETY(x — pug) + cst

1 1 S )
= I T o T et W
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Complements on LDA
Decision boundaries of LDA 1l

o Consequently,
log pk(x) — log pe(x) = ,u,z—):_lx — 2uk Iyt
—pl T+ Mz D X

_ 1
= (e — ) TET X= 5 |p X e — g le]

(Mk+w.)Tzfl(Mk—w)

e
o
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Appendix Linear discriminant functions

Discriminant functions of LDA

From Be(x)7
o Pr\X )Tk

Pr(x) = ——

) p(x)

we get

log ng(x) = log px(x) + log Tk + cst
1 Tl N N
= _E(X — k) TE T (x — fik) + log Ty + cst
=X x— E,uk): [x + log Ty + cst
o1
(The quadratic term x"X ~x is absorbed in the constant because if does
not depend on k).

A e =
e
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Linear discriminant functions
Discriminant functions of QDA

From

~

P (X)T«

P ="50

we get
log Py(x) = log pr(x) + log 7y + cst

1 Tl N 1 N ~
:—E(x—uk)TZk (x = Hik) — 5 log Xy + log 7k + cst

1 -1 -1 1 o1 1 =
:*EXTZk X+ il 2y X—3 A Hk*§|0g\zk|+
log Tk + cst

o1
(The quadratic terms x" X, “x now depend on k).
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Appendix Complements on logistic regression

Log-likelihood of binary logistic regression

From
N 1 B N exp(—87x;)
PO = Teecam) ™ 1 PO = T i)
we get
UB) = Z —yilog[l + exp(—BTx)] =B x; — log[1 + exp(—57x)]
= — log[1-+exp(AT x)]

+yi87 x; + yi log[1 + eXP(—ﬁTX)]}

n

UB) = Z {y,ﬂTx,- — log[1 + exp(BTx)]}

i=1

3

)

VAN

'Y
e

=
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Seaeenelalics sl sl
The Newton-Raphson algorithm

Main ideas

@ An iterative optimization algorithm.
@ Basic idea: at each time step, approximate ¢(/3) around the current
estimate 8(!) by the second-order Taylor series expansion.
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Seaeenelalics sl sl
The Newton-Raphson algorithm

o We have
T oU(B") t))

ap
1
~(8 — B
508 - )
e Differentiating both sides w.r.t. 3, we get

oL(B) _ ou(BM) N 026(B)
o8~ 0B opopT

@ Setting %(ﬂ) =0, we get the update equation

S0 _ gl (azg(g(t)))—laag(t))

(B) ~ £(BD) + (B — pM)

7 2B

0BOBT (5= 51,

(86— BY).

dBOBT 0B 7

’»
%
R

(@
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Complements on logistic regression
Gradient of 4(/3)

From .,
4B) =Y {187 x — log(1 +exp(87 )}
i=1
the gradient is
N = exp(B7x)
972 L ew(7Tx)
—_——
P(xi:8)
=> xi(yi— P(xi:8) =X"(y — p)
i=1

where y denote the vector of y; values, X the n x (p + 1) matrix of x;
values, p the vector of fitted probabilities with i-th element P(x;; /3).
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Complements on logistic regression
Hessian of /() |

@ From

qu i = Plxii 9)
/\(ﬁTX)
and N'(u) = A(u)[1 — A(u)], we have
02¢
8ﬁ_/8/8k

ZX’JX’I‘P Xi, 6)[1_ (Xi;ﬂ)]

o,

= N
&, L

S 5
e
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Complements on logistic regression
Hessian of ¢(5) Il

@ The Hessian matrix can, thus, be written as

0*(B) _ .
8ﬁ8,87— - _ZXI XI! [1 - (leﬁ)]

= —xwa,

where W an n x n diagonal matrix of weights with j-th diagonal
element P(x;; B)[1 — P(x;; )]

g
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