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Introduction to classification

Classification

In classification problems, the response variable Y is nominal, i.e., it
takes values in a finite and unordered set C, e.g.

Email is one of C = {spam, email}
Facial expression is one of C = {sadness, joy, disgust, . . .}
Object is one of C = {pedestrian, car, bike, . . .}, etc.

The elements in C are called classes. They are arbitrarily numbered
1, 2, . . . , c .
Our goals are to:

Build a classifier C : Rp → C that predicts the class a future predictor
vector X .
Assess the uncertainty in each classification
Understand the roles of the different predictors

In this chapter, we will also see how to handle the case where Y is an
ordinal variable, i.e., the elements of C are ordered. This learning task
is called ordinal regression/classification.
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Introduction to classification Basic notions

Formalization

We have a feature (predictor) vector X , and a discrete response
variable Y , both random.
To represent the joint distribution of (X ,Y ), we can specify:

1 The marginal distribution of Y . We use the notation

πk = P(Y = k),

and we call πk the prior probability of class k . We have

c∑
k=1

πk = 1

2 The conditional probability density functions (pdfs) of X given Y = k ,
for k = 1, . . . , c . We use the notation

pk(x) = p(x | Y = k)
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Introduction to classification Basic notions

Formalization (continued)

We can then compute
The marginal (mixture) pdf of X as

p(x) =
c∑

k=1

pk(x)πk

The conditional distribution of Y given X = x using Bayes’ theorem.
Let

Pk(x) = P(Y = k | X = x)

denote the posterior (conditional) class probabilities. We have

Pk(x) =
pk(x)πk
p(x)

, k = 1, . . . , c
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Introduction to classification Basic notions

Example

Consider a classification problem with c = 3 classes and p = 1 feature.
Assume that

π1 = 0.3, π2 = 0.5, π3 = 0.2

pk(x) = φ(x ;µk , σk)

where φ is the normal pdf, with

µ1 = −1, µ2 = 0, µ3 = 1.5

σ1 = 1, σ2 =
√
2, σ3 = 0.5
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Introduction to classification Basic notions

Example: conditional densities pk(x)
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Introduction to classification Basic notions

Example: marginal density p(x)
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Introduction to classification Basic notions

Example: posterior probabilities Pk(x)
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Introduction to classification Bayes classifier

The Bayes classifier

The conditional error probability for classifier C (x) is

P(error | X = x) = P(C (X ) 6= Y | X = x)

= 1− P(C (X ) = Y | X = x)

If C (x) = k , then

P(error | X = x) = 1− P(Y = k | X = x) = 1− Pk(x)

To minimize P(error | X = x), we must choose k such that Pk(x) is
maximum.
The corresponding classifier C ∗(x) is called the Bayes classifier. It has
the lowest error probability.
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Introduction to classification Bayes classifier

Example: decision regions of the Bayes classifier
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Introduction to classification Bayes classifier

Bayes error rate

For X = x , the Bayes classifier predicts the class k∗ such that
Pk∗(x) = maxk Pk(x), and the conditional error probability is

1− Pk∗(x) = 1−max
k

Pk(x)

The error probability of the Bayes classifier (averaged over all values of
X ) is

ErrB = EX

[
1−max

k
Pk(X )

]
=

∫ [
1−max

k
Pk(x)

]
p(x)dx

This probability is called the Bayes error rate. It is the lowest error
probability that can be achieved by a classifier. It characterizes the
difficulty of the classification task.
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Introduction to classification Bayes classifier

Approximating the Bayes classifier

The Bayes classifier is optimal but theoretical. We need practical
methods to learn classifiers that will approximate the Bayes classifier.
For this, we need to estimate the posterior probabilities Pk(x).
As in regression, we distinguish between

Parametric methods that postulate a model (of the densities pk(x), the
posterior probabilities Pk(x) or the decisions C (x)) depending on a
limited number of parameters
Nonparametric methods, which make minimal assumptions about the
distribution of the data.

A widely used nonparametric method is the voting K nearest neighbor
(K -NN) method.
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Introduction to classification Voting K -NN rule
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Introduction to classification Voting K -NN rule

K nearest neighbors

<latexit sha1_base64="mqPhB1vRRtLiVkiQ5vcwFtnOq8k="></latexit>x

Nearest-neighbor averaging can be used as in regression.
Let x(1), . . . , x(K) denote the K nearest neighbors of x in the learning
set, and y(1), . . . , y(K) the corresponding class labels.
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Introduction to classification Voting K -NN rule

Voting K -nearest-neighbor rule

The posterior probability of class k can be estimated by the proportion
of observations from that class among the K nearest neighbors of x :

P̂k(x) =
1
K

#{i ∈ {1, . . . ,K} : y(i) = k}

Voting K -nearest neighbor (K -NN) rule: select the majority class
among the K nearest neighbors:

CK (x) = argmax
k

P̂k(x).

As in regression, the K -NN rule breaks down as dimension grows.
However, the impact on CK (x) is less than that on the probability
estimates P̂k(x).
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Introduction to classification Voting K -NN rule

Example: voting K -NN rule with n = 1000 and K = 50
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Introduction to classification Voting K -NN rule

Error probability estimation

Typically, we estimate the error probability of a classifier C (X ) by its
error rate on a test set T = {(x ′i , y ′i )}mi=1:

ErrT =
1
m

#
{
i ∈ {1, . . . ,m} : y ′i 6= C (x ′i )

}
The test error rate allows us to select the best model in a set of
candidate models (more on this later).
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Introduction to classification Voting K -NN rule

Example: simulated data and Bayes decision boundary
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Introduction to classification Voting K -NN rule

Decision boundaries for K = 1 and K = 100
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Introduction to classification Voting K -NN rule

Training and test error rates vs. 1/K
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Introduction to classification Voting K -NN rule

Decision boundary for the best value of K
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Linear and quadratic discriminant analysis

Decision regions and decision boundadries

Since our classifier C (X ) takes values in a finite set C, we can always
divide the input space into a collection of decision regions:

Rk = {x ∈ Rp : C (x) = k}, k = 1, . . . , c .

The boundaries of these regions can be rough or smooth, depending
on the prediction function.
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Linear and quadratic discriminant analysis

Linear/quadratic classification

For an important class of procedures, these decision boundaries are
linear or quadratic, i.e., they have equations of the form

βT x + β0 = 0 (linear) or

xTQx + βT x + β0 = 0 (quadratic)

Linear and quadratic methods for classification are examples of
parametric methods.
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Linear and quadratic discriminant analysis

Generative vs. discriminative models

To approximate Bayes’ rule, we need to estimate the posterior
probabilities Pk(x) = P(Y = k | X = x).
We can distinguish two kinds of models for classification:
Generative models represent the conditional pdf’s pk(x) and the prior

probabilities πk . Using Bayes’ theorem, we then get the
posterior probabilities Pk(x).

Discriminative models represent the conditional probabilities Pk(x)
directly, or a direct map from inputs x to C.

In this chapter, we will focus on two families of classifiers:
1 Linear and quadratic classifiers based on a generative model: Linear

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA).

2 A linear classifier based on a discriminative model: Logistic regression.
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Basic assumption

Quadratic Discriminant Analysis (QDA) is based on the assumption
that the class-conditional densities pk(x) are multivariate normal:

pk(x) =
1

(2π)p/2|Σk |1/2
exp
{
−1
2

(x − µk)TΣ−1
k (x − µk)

}
where µk = E(X | Y = k) and Σk = Var(X | Y = k).
The parameters of the model are the class-conditional means µk and
covariance matrices Σk , as well as the prior probabilities πk ,
k = 1, . . . , c .
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Optimal decision boundaries

The boundary between optimal decision regions Rk and R` is defined
by the equation

Pk(x) = P`(x)

Applying the logarithm to both sides and using the Bayes’ theorem

Pk(x) ∝ pk(x)πk ,

we get
log pk(x) + log πk = log p`(x) + log π` (1)

Now

log pk(x) = −1
2

(x − µk)TΣ−1
k (x − µk)− 1

2
log |Σk |+ cst (2)

From (1) and (2), the boundary equation can be put in the form
xTQx + βT x + β0 = 0: the decision boundary is a quadric.
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Example
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Estimation of parameters

Let θ be the vector of all parameters.
Assumption: the sample (X1,Y1), . . . , (Xn,Yn) is independent and
identically distributed (iid).
The likelihood function is

L(θ) =
n∏

i=1

p(xi , yi ) =
n∏

i=1

p(xi | yi )︸ ︷︷ ︸∏c
k=1 pk (xi )

yik

p(yi )︸ ︷︷ ︸∏c
k=1 π

yik
k

=
n∏

i=1

c∏
k=1

φ(xi ;µk ,Σk)yikπyikk

where yik = I (yi = k) and φ(x ;µk ,Σk) is the normal density with
mean µk and variance Σk .
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Maximum likelihood estimates

The MLEs are

π̂k =
nk
n
, µ̂k =

1
nk

n∑
i=1

yikxi , and

Σ̂k =
1
nk

n∑
i=1

yik(xi − µ̂k)(xi − µ̂k)T ,

with nk =
∑n

i=1 yik .
These estimators are consistent (they converge to the true parameter
values when the sample size tends to infinity).

Thierry Denœux ACE - Linear/Quadratic Classification Spring 2023 34 / 101



Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Implementation of QDA

To implement QDA, we plug-in the parameter estimates into the
expressions of the posterior probabilities. The decision rule is then

C (x) = argmax
k

P̂k(x)

We actually only need to compute monotonic transformations of the
estimated posterior probabilities P̂k(x), called discriminant functions
(DFs).
We get quadratic DFs by applying a logarithmic transformation:

Case c = 2: we only need one DF δ(x) = log P̂1(x)− log P̂2(x) and the
decision rule is

C (x) =

{
1 if δ(x) > 0
2 otherwise.

Case c > 2: we need c DFs δk(x) = log P̂k(x) and the decision rule is

C (x) = argmax
k
δk(x)
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Example: Letter recognition dataset

Source: P. W. Frey and D. J. Slate, Machine Learning, Vol 6 #2,
March 91.
Objective: identify black-and-white rectangular pixel displays as one of
the 26 capital letters in the English alphabet.
The character images were based on 20 different fonts and each letter
within these 20 fonts was randomly distorted to produce a file of
20,000 instances.
Each instance was converted into 16 primitive numerical attributes
(statistical moments and edge counts) which were scaled to fit into a
range of integer values from 0 through 15.

Thierry Denœux ACE - Linear/Quadratic Classification Spring 2023 36 / 101



Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Example (continued)

letter <- read.table("letter-recognition.data",header=FALSE)
n<-nrow(letter)

library(MASS)

napp=15000
ntst=n-napp
train<-sample(1:n,napp)
letter.test<-letter[-train,]
letter.train<-letter[train,]

qda.letter<- qda(V1˜.,data=letter.train)
pred.letters.qda<-predict(qda.letter,newdata=letter.test)

perf <-table(letter.test$V1,pred.letters.qda$class)
1-sum(diag(perf))/ntst

0.1166
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Linear and quadratic discriminant analysis Quadratic Discriminant Analysis

Confusion matrix
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Linear and quadratic discriminant analysis Simplifying assumptions
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Linear and quadratic discriminant analysis Simplifying assumptions

Number of parameters for QDA

The number of parameters for QDA is c[p + p(p + 1)/2] + c − 1 (c
means, c covariance matrices and c − 1 prior probabilities).
This number is quadratic in p: the method becomes impractical when
p is large, and QDA may perform badly when p is large and n is small.
We can decrease the number of parameters to estimate by making
simplifying assumptions. We will consider two such assumptions:

1 Equality of covariance matrices (homoscedasticity) → Linear
Discriminant Analysis (LDA)

2 Conditional independence of the predictors Xj given the class variable
Y → Naive Bayes classifiers

Thierry Denœux ACE - Linear/Quadratic Classification Spring 2023 40 / 101



Linear and quadratic discriminant analysis Simplifying assumptions

Linear Discriminant Analysis (LDA)

LDA is based on the assumption that the class-conditional covariance
matrices are equal:

Σk = Σ, for all k.

In that case, the equation of the optimal boundary between regions
Rk and R`,

log pk(x) + log πk = log p`(x) + log π` (3)

is linear. Indeed, we now have

log pk(x) = −1
2

(x − µk)TΣ−1(x − µk) + cst (4)

= µTk Σ
−1x − 1

2
µTk Σ

−1µk + cst (5)

The DF and the decision boundaries are now linear in x .
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Linear and quadratic discriminant analysis Simplifying assumptions

Example

Left: contours of constant density enclosing 95% of the probability in each
case. The Bayes decision boundaries between each pair of classes are
shown (broken straight lines), and the Bayes decision boundaries separating
all three classes are the thicker solid lines. Right: a sample of size 30 drawn
from each distribution, and the fitted LDA decision boundaries.
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Linear and quadratic discriminant analysis Simplifying assumptions

Estimation of parameters

The MLEs are

π̂k =
nk
n
, µ̂k =

1
nk

n∑
i=1

yikxi , and Σ̂ =
1
n

c∑
k=1

nkΣ̂k

where, as before Σ̂k is the sample covariance matrix in class k :

Σ̂k =
1
nk

n∑
i=1

yik(xi − µ̂k)(xi − µ̂k)T ,

and nk =
∑n

i=1 yik .

It can be shown that Σ̂ is biased. An unbiased estimator of Σ is

S =
n

n − c
Σ̂.
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Linear and quadratic discriminant analysis Simplifying assumptions

LDA in R

lda.letter<- lda(V1˜.,data=letter.train)

pred.letters.lda<-predict(lda.letter,newdata=letter.test)

perf <-table(letter.test$V1,pred.letters.lda$class)
1-sum(diag(perf))/ntst
0.2996
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Linear and quadratic discriminant analysis Simplifying assumptions

Comparing classifiers: McNemar’s test

The test error rate was 0.1166 for QDA, and it is 0.2996 for LDA. Is
this difference statistically significant?
To answer such a question, we typically use McNemar’s test for 2× 2
contingency tables.
We consider the following table:

classifier 2 wrong classifier 2 correct
classifier 1 wrong n00 n01
classifier 1 correct n10 n11
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Linear and quadratic discriminant analysis Simplifying assumptions

Comparing classifiers: McNemar’s test (continued)

Under the null hypothesis that the error probabilities of the two
classifiers are equal, the statistics

D2 =
(|n01 − n10| − 1)2

n01 + n10

is distributed approximately as χ2 with 1 degree of freedom.
The p-values is p = PH0(χ2

1 ≥ d2).
Remark: when comparing more than two classifiers, we have more
chance of rejecting the null hypothesis for at least one pair of
classifiers. To address this problem, we can use the Bonferroni
correction: we reject the null hypothesis at level α for any two
classifiers if p ≤ α/m, where m is the number of classifier pairs.
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Linear and quadratic discriminant analysis Simplifying assumptions

McNemar’s test in R

correct.lda<-letter.test$V1==pred.letters.lda$class
correct.qda<-letter.test$V1==pred.letters.qda$class
mcnemar.test(correct.lda,correct.qda)

McNemar’s Chi-squared test with continuity correction

data: correct.lda and correct.qda
McNemar’s chi-squared = 767.12, df = 1, p-value < 2.2e-16
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Linear and quadratic discriminant analysis Simplifying assumptions

Naive Bayes classifiers

In LDA and QDA, we need to estimate covariance matrices with
p(p + 1)/2 parameters, which can yield poor results (or can even be
unfeasible) when p is very large.
Starting from the QDA model, we get a simpler model by assuming
that the covariance matrices Σk are diagonal:

Σk = diag(σ2
k1, . . . , σ

2
kp),

where σ2
kj = Var(Xj | Y = k) (see next slide).

We get a naive QDA classifier, a special kind of naive Bayes classifier.
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Linear and quadratic discriminant analysis Simplifying assumptions

Naive QDA model
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Linear and quadratic discriminant analysis Simplifying assumptions

Conditional independence assumption

The assumption that the covariance matrices are diagonal means that
the predictors are conditionally independent given the class variable Y ,
i.e., for all k ∈ {1, . . . , c},

pk(x1, . . . , xp) =

p∏
j=1

pkj(xj)

Remark: conditional independence does not imply independence.
(Example: Height and vocabulary of kids are not independent; but
they are conditionally independent given age).
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Linear and quadratic discriminant analysis Simplifying assumptions

Naive Bayes classifiers (continued)

To estimate Σk under the conditional independence assumption, we
simply set the off-diagonal terms in Σ̂k to 0. The variance σ2

kj of Xj

conditionally on Y = k is estimated by

σ̂2
kj =

1
nk

n∑
i=1

yik(xij − µ̂kj)2.

A further simplification is achieved by assuming that the covariance
matrices are diagonal and equal:

Σ1 = · · · = Σc = Σ = diag(σ2
1, . . . , σ

2
p).

This model can be called “Naive LDA” (see next slide).
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Linear and quadratic discriminant analysis Simplifying assumptions

Naive LDA model
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Linear and quadratic discriminant analysis Simplifying assumptions

Advantages of Naive Bayes classifiers

In spite of their simplicity, naive Bayes classifiers often (but not
always) have very good performances, especially when the number p
of predictors is large.
They can accommodate mixed feature vectors (qualitative and
quantitative). If Xj is qualitative, we can estimate the probability mass
functions pkj(xj) using histograms over discrete categories.
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Linear and quadratic discriminant analysis Simplifying assumptions

Naive Bayes classifier in R

library(naivebayes)
naive.letter<- naive_bayes(V1˜.,data=letter.train)
pred.letters.naive<-predict(naive.letter,newdata=letter.test)

perf.naive <-table(letter.test$V1,pred.letters.naive)
1-sum(diag(perf.naive))/ntst

0.3554
# Comparison with LDA
correct.naive<-letter.test$V1==pred.letters.naive
mcnemar.test(correct.lda,correct.naive)

McNemar’s Chi-squared test with continuity correction

data: correct.lda and correct.naive
McNemar’s chi-squared = 83.731, df = 1, p-value < 2.2e-16
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Linear and quadratic discriminant analysis Simplifying assumptions

Comparison of the different models

Model Number of parameters

QDA c
(
p + p(p+1)

2

)
+ c − 1

naive QDA 2cp + c − 1
LDA cp + p(p+1)

2 + c − 1
naive LDA cp + p + c − 1

QDA is the most general model. However, it does not always yield the
best performances, because it has the largest number of parameters.
Although LDA also has a number of parameters proportional to p2, it
is usually much more stable than QDA. This method is recommended
when n is small.
Naive Bayes classifiers have a number of parameters proportional to p.
They often outperform other methods when p is very large.
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Linear and quadratic discriminant analysis Simplifying assumptions

Example

We consider c = 2 classes with p = 3 normally distributed input
variables, with the following parameters

π1 = π2 = 0.5

µ1 = (0, 0, 0)T , µ2 = (1, 1, 1)T

Σ1 = I3, Σ2 = 0.7I3.

LDA and QDA classifiers were trained using training sets of different
sizes between 30 and 20,000, and their error probability was estimated
using a test set of size 20,000.
For each training set size, the experiment was repeated 20 times. The
next figure shows error rates over the 20 replications.
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Linear and quadratic discriminant analysis Simplifying assumptions

Result
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Linear and quadratic discriminant analysis Case of binary classification

Overview
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Linear and quadratic discriminant analysis Case of binary classification

Case c = 2: fixing the threshold

From (5), in the case of c = 2 classes, LDA assigns x to class 2 if

log P̂2(x) > log P̂1(x)⇔ (µ̂2 − µ̂1)T Σ̂
−1

x > s,

where the threshold s depends on the estimated parameters, including
the estimated prior probabilities π̂1 and π̂2.
If the prior probabilities cannot be estimated, or if the model
assumptions are not verified, a different threshold may give better
results.
In general, a decision is made by comparing a DF δ(x) to some
threshold s.
The Receiver Operating Characteristic (ROC) curve describes the
performance of the classifier for any value of s.
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Linear and quadratic discriminant analysis Case of binary classification

Confusion matrix (c = 2)

Assuming c = 2, call one class “positive” and the other one “negative”.
For a given threshold s, we get a confusion matrix such as

predicted
true N P
N true negative (TN) false positive (FP)
P false negative (FN) true positive (TP)

The true positive rate (sensitivity) and false positive rate (1-
specificity) are defined, respectively, as

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

If we decrease s, we increase both the TPR and the FPR.
The ROC curve is a plot of the TPR as a function of the FPR, for
different values of s.
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Linear and quadratic discriminant analysis Case of binary classification

Example: Pima diabetes dataset

Data about diabetes in the population of Pima Indians leaving near
Phoenix, Arizona, USA.
All 768 patients were females and at least 21 years old.
Variables:

1 Number of times pregnant
2 Plasma glucose concentration a 2 hours in an oral glucose tolerance test
3 Diastolic blood pressure (mm Hg)
4 Triceps skin fold thickness (mm)
5 2-Hour serum insulin (mu U/ml)
6 Body mass index (weight in kg/(height in m)2)
7 Diabetes pedigree function
8 Age (years)
9 Tested positive (1) or negative (0) for diabetes

Problem: predict the test result for the 8 predictors.
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Linear and quadratic discriminant analysis Case of binary classification

LDA of the Pima dataset

pima<-read.csv(’pima-indians-diabetes.data’,header=FALSE)
names(pima)<-c("pregnant","glucose","BP","skin","insulin","bmi","diabetes",
"age","class")
n<-nrow(pima)
napp=500
ntst=n-napp
train<-sample(1:n,napp)
pima.test<-pima[-train,]
pima.train<-pima[train,]
lda.pima<- lda(class˜.,data=pima.train)
pred.pima<-predict(lda.pima,newdata=pima.test)
table(pima.test$class,pred.pima$class)
> perf

0 1
0 152 15
1 45 56

Here, the TPR is 56/(45+56)=0.55, and the FPR is 15/(152+15)=0.089.
The error rate is (15 + 45)/268 ≈ 0.22.
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Linear and quadratic discriminant analysis Case of binary classification

ROC curve for the LDA classifier (Pima dataset)

library(pROC)
roc_curve<-roc(pima.test$V9,as.vector(pred.pima$x))
plot(roc_curve)
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Logistic regression and related models Binomial logistic and probit regression
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Logistic regression and related models Binomial logistic and probit regression

Searching for a linear discriminative model

Consider a binary classification problem with c = 2 classes,
Y ∈ {0, 1}. Let P(x) = P(Y = 1 | X = x) be the conditional
probability of class Y = 1.
We want to find a simple model for P(x). An idea could be to use a
linear model of the form

P(x) = β0x0 + β1x1 + . . .+ βpxp = βT x ,

where x is the augmented feature vector with x0 = 1. However, this is
not suitable because βT x can take any value in R, whereas
P(x) ∈ [0, 1].
A better idea is to assume that Y depends on a latent (unobserved)
continuous variable Y ∗, which is linearly related to x .
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Logistic regression and related models Binomial logistic and probit regression

Model

Assume that
Y ∗ = βT x + ε,

where ε is a random error term with 0 mean and cumulative
distribution function (cdf) F , and

Y =

{
1 if Y ∗ > 0
0 otherwise

We then have

P(x) = P(Y = 1 | x) = P(Y ∗ > 0 | x) = P(ε > −βT x).
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Logistic regression and related models Binomial logistic and probit regression

Model (continued)

<latexit sha1_base64="vD11JahJMcsssBtK3Go3eEHfK6g="></latexit>✏

<latexit sha1_base64="F6uiBz3gGPkp3q44yc1r8U4cTH0="></latexit>

p(✏)

<latexit sha1_base64="5Apwki+wLhPEKKbrZ8CSl3UY+7I="></latexit>

�T x
<latexit sha1_base64="ubztiICOCxakgyVP9OZBC2uD5tU="></latexit>

��T x

If we assume the distribution of ε to be symmetric, then

P(ε > −βT x) = P(ε ≤ βT x) and P(x) = F (βT x)

Different choices of F give us different models. The decision boundary
is linear, with equation

P(x) =
1
2
⇔ βT x = F−1(0.5) = 0
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Logistic regression and related models Binomial logistic and probit regression

Logit model

In the logit model, we assume that ε has a standard logistic
distribution with cdf

F (u) = Λ(u) =
exp(u)

1 + exp(u)
.

We then have

P(x) =
exp(βT x)

1 + exp(βT x)
and 1− P(x) =

1
1 + exp(βT x)

The log-odds ratio is linear in x :

log
P(x)

1− P(x)
= βT x
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Logistic regression and related models Binomial logistic and probit regression

Probit model

In the probit model, we assume that ε has a standard normal
distribution with cdf Φ. We then have

P(x) = Φ(βT x).

In practice, the two models usually give very similar results.
Logistic regression based on the logit model is more popular in ML.
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Logistic regression and related models Binomial logistic and probit regression

Plot of the logistic and normal cdfs
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Logistic regression and related models Binomial logistic and probit regression

Conditional likelihood function

Logit and probit models are usually fit by maximizing the conditional
likelihood, which is the likelihood function, assuming the xi are fixed.
Assuming Y1, . . . ,Yn to be independent conditionally on
X1 = x1, . . . ,Xn = xn, the conditional likelihood is

L(β) = P(Y1 = y1, . . . ,Yn = yn | X1 = x1, . . . ,Xn = xn)

=
n∏

i=1

P(Yi = yi | Xi = xi ;β)

=
n∏

i=1

P(xi ;β)yi [1− P(xi ;β)]1−yi

where yi ∈ {0, 1} and P(xi ;β) = P(Y = 1|X = xi ;β).
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Logistic regression and related models Binomial logistic and probit regression

Conditional log-likelihood (logit model)

The conditional log-likelihood for the logit model is

`(β) =
n∑

i=1

{yi logP(xi ;β) + (1− yi ) log(1− P(xi ;β))}

=
n∑

i=1

{
yiβ

T xi − log(1 + exp(βT xi ))
}
,

Proof

This function is non linear and the score equation ∂`
∂β = 0 does not

have a closed-form solution: we need to use an iterative nonlinear
optimization procedure such as the Newton-Raphson algorithm .
As the log-likelihood function is concave, it has only one maximum
and the convergence of the Newton-Raphson algorithm is guaranteed.
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Logistic regression and related models Binomial logistic and probit regression

Update equation (logit model)

Let y denote the vector of yi values, X the n × (p + 1) matrix of xi
values, p the vector of fitted probabilities with i-th element P(xi ;β).
The gradient and Hessian of `(β) can be written as

∂`

∂β
= XT (y − p) and

∂2`(β)

∂β∂βT
= −XTWX,

where W an n × n diagonal matrix of weights with i-th diagonal
element P(xi ;β) {1− P(xi ;β)}. Proof

The update equation is, thus,

β(t+1) = β(t) + (XTWX)−1XT (y − p)
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Logistic regression and related models Binomial logistic and probit regression

Asymptotic distribution of β̂

A central limit theorem shows that the distribution of β̂ converges to

N (β, (XTWX)−1).

when n→ +∞.
This result makes it possible to compute confidence intervals and to
test the significance of the coefficients βj .
Similar results hold for probit regression.
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Logistic regression and related models Binomial logistic and probit regression

Binomial logistic regression in R

glm.fit<- glm(class˜.,data=pima.train,family=binomial)
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Logistic regression and related models Binomial logistic and probit regression

Prediction (logit model)

pred.pima.glm<-predict(glm.fit,newdata=pima.test,type=’response’)

table(pima.test$class,pred.pima.glm>0.5)

FALSE TRUE
0 158 14
1 41 55

The error rate is (14 + 41)/268 ≈ 0.21.
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Logistic regression and related models Binomial logistic and probit regression

Binomial probit regression in R

probit.fit<- glm(class˜.,data=pima.train,family=binomial("probit"))

Thierry Denœux ACE - Linear/Quadratic Classification Spring 2023 78 / 101



Logistic regression and related models Binomial logistic and probit regression

ROC curves: comparison with LDA

logit<-predict(glm.fit,newdata=pima.test,type=’link’)
probit<-predict(probit.fit,newdata=pima.test,type=’link’)
roc_curve<-roc(pima.test$class,as.vector(pred.pima$x)) # LDA plot(roc_curve)
roc_glm<-roc(pima.test$class,logit)
roc_probit<-roc(pima.test$class,probit)
plot(roc_glm,add=TRUE,col=’red’)
plot(roc_probit,add=TRUE,col=’blue’)
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Logistic regression and related models Multinomial logistic regression
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Logistic regression and related models Multinomial logistic regression

Model

Multinomial logistic regression extends binomial logistic regression to
c > 2 by assuming the following model for the posterior probabilities
Pk(x) = P(Y = k | X = x):

Pk(x) =
exp(βTk x)∑c
l=1 exp(βTl x)

However, there is indeterminacy in the model, because the
probabilities are unchanged if we add a constant vector α to all βk ’s:

exp((βk + α)T x)∑c
l=1 exp((βl + α)T x)

=
exp(βTk x)∑c
l=1 exp(βTl x)

To remove this indeterminacy, we set β1 = 0.
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Logistic regression and related models Multinomial logistic regression

Model (continued)

We then have
P1(x) =

1
1 +

∑c
l=2 exp(βTl x)

and

Pk(x) =
exp(βTk x)

1 +
∑c

l=2 exp(βTl x)
, k = 2, . . . , c .

The log-odds ratios for class k vs. class 1 are still linear in x :

log
Pk(x)

P1(x)
= βTk x
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Logistic regression and related models Multinomial logistic regression

Learning

The conditional likelihood for the multinomial model is

L(β) =
n∏

i=1

P(Yi = yi | Xi = xi ;β)

=
n∏

i=1

c∏
k=1

[Pk(xi ;β)]yik

The conditional log-likelihood is

`(β) =
n∑

i=1

c∑
k=1

yik logPk(xi ;β),

It can be maximized by the Newton-Raphson algorithm as in the
binary case.
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Logistic regression and related models Multinomial logistic regression

Multinomial logistic regression in R

library(nnet)
fit<-multinom(V1˜.,data=letter.train)
pred.letters<-predict(fit,newdata=letter.test)

perf <-table(letter.test$V1,pred.letters)
1-sum(diag(perf))/ntst

0.285
# Comparison with LDA correct.log<-letter.test$V1==pred.letters.log
mcnemar.test(correct.lda,correct.log)

McNemar’s Chi-squared test with continuity correction

data: correct.lda and correct.log
McNemar’s chi-squared = 6.4881, df = 1, p-value = 0.01086
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Logistic regression and related models Ordered probit and logit regression
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Logistic regression and related models Ordered probit and logit regression

Ordinal classification/regression

In ordinal regression/classification, the response Y is an ordinal
variable, i.e., it takes values in a finite ordered set.
For instance, a variable “Customer satisfaction” may take values in the
set {High,Medium, Low}.
To solve ordinal regression problems, we can still use classification
methods, but the results will often not be optimal because the
ordering relation between the values of Y is ignored.
A much better option to use a specific method such as ordered probit
or logit regression.
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Logistic regression and related models Ordered probit and logit regression

Ordered logit and probit models

As in the binomial logit and probit models, we assume the existence of
a latent variable Y ∗ linearly related to x :

Y ∗ = βT x + ε

We now assume that Y is determined by Y ∗ as follows:

Y =


1 µ0 < Y ∗ ≤ µ1

2 µ1 < Y ∗ ≤ µ2
...
c µc−1 < Y ∗ < µc

where −∞ = µ0 < µ1 < . . . < µc−1 < µc = +∞ are unknown
parameters.
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Logistic regression and related models Ordered probit and logit regression

Ordered logit and probit models (continued)

The ordered logit and probit models correspond to different
assumptions about the distribution of ε: respectively, logistic (F = Λ)
or normal (F = Φ).
The conditional log-likelihood function is

`(θ) =
n∑

i=1

c∑
k=1

yik logPk(x)

=
n∑

i=1

c∑
k=1

yik log
[
F (µk − βT x)− F (µk−1 − βT x)

]
,

with θ = (β, µ1, . . . , µc−1).
The MLE of θ can be found by an iterative nonlinear optimization
algorithm.
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Logistic regression and related models Ordered probit and logit regression

Example: Housing dataset

Package MASS, 72 rows and 5 variables.
Variables:

Sat: Satisfaction of householders with their present housing
circumstances (High, Medium or Low, ordered factor).

Infl: Perceived degree of influence householders have on the
management of the property (High, Medium, Low).

Type: Type of rental accommodation, (Tower, Atrium,
Apartment, Terrace).

Cont: Contact residents are afforded with other residents,
(Low, High).

Freq: Frequencies: the numbers of residents in each class.
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Logistic regression and related models Ordered probit and logit regression

Ordered logit regression in R

library("MASS")
house.logit <- polr(Sat ˜ Infl + Type + Cont, weights = Freq,
data = housing, method = "logistic")
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Logistic regression and related models Ordered probit and logit regression

Ordered probit regression in R

house.probit <- polr(Sat ˜ Infl + Type + Cont, weights = Freq,
data = housing, method = "probit")
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Appendix Complements on LDA

Decision boundaries of LDA I

The decision boundary between regions Rk and R` is defined by the
equation Pk(x) = P`(x), which can be written as

log
Pk(x)

P`(x)
= log

pk(x)πk
p`(x)π`

= log pk(x)− log p`(x) + log
πk
π`

= 0

Now,

pk(x) =
1

(2π)p/2|Σ|1/2 exp
{
−1
2

(x − µk)TΣ−1(x − µk)

}
,

so

log pk(x) = −1
2

(x − µk)TΣ−1(x − µk) + cst

= −1
2
xTΣ−1x + µTk Σ

−1x − 1
2
µTk Σ

−1µk + cst
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Appendix Complements on LDA

Decision boundaries of LDA II

Consequently,

log pk(x)− log p`(x) = µTk Σ
−1x − 1

2
µTk Σ

−1µk

− µT` Σ−1x +
1
2
µT` Σ

−1µ`

= (µk − µ`)TΣ−1x − 1
2

[
µTk Σ

−1µk − µT` Σ−1µ`

]
︸ ︷︷ ︸

(µk+µ`)TΣ−1(µk−µ`)

Back
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Appendix Linear discriminant functions

Discriminant functions of LDA

From
P̂k(x) =

p̂k(x)π̂k
p̂(x)

we get

log P̂k(x) = log p̂k(x) + log π̂k + cst

= −1
2

(x − µ̂k)T Σ̂
−1

(x − µ̂k) + log π̂k + cst

= µ̂Tk Σ̂
−1

x − 1
2
µ̂Tk Σ̂

−1
µ̂k + log π̂k + cst

(The quadratic term xT Σ̂
−1

x is absorbed in the constant because if does
not depend on k).
Back
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Appendix Linear discriminant functions

Discriminant functions of QDA

From
P̂k(x) =

p̂k(x)π̂k
p̂(x)

we get

log P̂k(x) = log p̂k(x) + log π̂k + cst

= −1
2

(x − µ̂k)T Σ̂
−1
k (x − µ̂k)− 1

2
log |Σ̂k |+ log π̂k + cst

= −1
2
xT Σ̂

−1
k x + µ̂Tk Σ̂

−1
k x − 1

2
µ̂Tk Σ̂

−1
k µ̂k −

1
2
log |Σ̂k |+

log π̂k + cst

(The quadratic terms xT Σ̂
−1
k x now depend on k).

Back

Thierry Denœux ACE - Linear/Quadratic Classification Spring 2023 95 / 101



Appendix Complements on logistic regression

Log-likelihood of binary logistic regression

From

P(xi ) =
1

1 + exp(−βT xi )
and 1− P(xi ) =

exp(−βT xi )
1 + exp(−βT xi )

we get

`(β) =
n∑

i=1

−yi log[1 + exp(−βT x)]−βT xi − log[1 + exp(−βT xi )]︸ ︷︷ ︸
− log[1+exp(βT x)]

+yiβ
T xi + yi log[1 + exp(−βT x)]

}
`(β) =

n∑
i=1

{
yiβ

T xi − log[1 + exp(βT x)]
}

Back
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Appendix Complements on logistic regression

The Newton-Raphson algorithm
Main ideas

An iterative optimization algorithm.
Basic idea: at each time step, approximate `(β) around the current
estimate β(t) by the second-order Taylor series expansion.
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Appendix Complements on logistic regression

The Newton-Raphson algorithm

We have

`(β) ≈ `(β(t)) + (β − β(t))T
∂`(β(t))

∂β
+

1
2

(β − β(t))T
∂2`(β(t))

∂β∂βT
(β − β(t)).

Differentiating both sides w.r.t. β, we get

∂`(β)

∂β
≈ ∂`(β(t))

∂β
+
∂2`(β(t))

∂β∂βT
(β − β(t)).

Setting ∂`
∂β (β) = 0, we get the update equation

β(t+1) = β(t) −
(
∂2`(β(t))

∂β∂βT

)−1
∂`(β(t))

∂β

Back
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Appendix Complements on logistic regression

Gradient of `(β)

From

`(β) =
n∑

i=1

{
yiβ

T xi − log(1 + exp(βT xi ))
}

the gradient is

∂`

∂β
=

n∑
i=1

yixi −
exp(βT xi )

1 + exp(βT xi )︸ ︷︷ ︸
P(xi ;β)

xi

=
n∑

i=1

xi (yi − P(xi ;β)) = XT (y − p)

where y denote the vector of yi values, X the n × (p + 1) matrix of xi
values, p the vector of fitted probabilities with i-th element P(xi ;β).
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Appendix Complements on logistic regression

Hessian of `(β) I

From

∂`

∂βj
=

n∑
i=1

xij

yi − P(xi ;β)︸ ︷︷ ︸
Λ(βT x)


and Λ′(u) = Λ(u)[1− Λ(u)], we have

∂2`

∂βj∂βk
= −

n∑
i=1

xijxikP(xi ;β) [1− P(xi ;β)]
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Appendix Complements on logistic regression

Hessian of `(β) II

The Hessian matrix can, thus, be written as

∂2`(β)

∂β∂βT
= −

n∑
i=1

xix
T
i P(xi ;β) [1− P(xi ;β)]

= −XTWX,

where W an n × n diagonal matrix of weights with i-th diagonal
element P(xi ;β) [1− P(xi ;β)].

Back
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