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Introduction

Need for model selection

e Consider, for instance, a regression problem with a response variable
Y and 3 predictors X1, X5, X3.

@ We can consider many (an infinity of) models, such as
Y=o+ fr1Xi+e
Y = o+ 81Xt + B2 Xo + B3 X3 + €

Y = Bo + B1X1 + BaXa + B3 X3 + BaXP 4 Bs X3+
BeX1Xa + B7X5 + BeX1.X3 + BoXoXz + €

o,

‘Which model to choose? ‘ Lj?:
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Introduction

Bias-variance trade-off

We have seen that a more complex model will not always have a

smaller error when applied to test data.

@ This is due to the bias-variance trade-off: when the number of
parameters increases, the bias of the model decreases, but the variance
increases.

@ Furthermore, a simpler model often has a distinct advantages in terms
of its interpretability.

@ In this lecture, we discuss some tools to select models that will be

e complex enough to fit the data, but

e not too complex to avoid overfitting and to be interpretable.
@ We focus mainly on linear regression, but the tools can be adapted to
classification. ﬁ?
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Introduction

Three classes of methods

Subset Selection. We identify a subset of the p predictors that we believe

to be related to the response. We then fit a model using the
reduced set of variables.

Regularization. We fit a model involving all p predictors, but the estimated
coefficients are shrunken towards zero to obtain a smoother
prediction function. This regularization (also known as
shrinkage) has the effect of reducing variance and can also
perform variable selection.

Dimension Reduction. We project the p predictors into a g-dimensional
subspace, where g < p. This is achieved by computing g
different linear combinations, or projections, of the variables.

Then these g projections are used as predictors to fit a linear.
model. €N
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Subset selection

Overview

© Subset selection
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Subset selection Best subset and stepwise procedures

Overview

© Subset selection
@ Best subset and stepwise procedures
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Subset selection Best subset and stepwise procedures

Best subset selection

@ Let Mg denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.
@ Fork=1,2,...,p:
@ Fit all (?) models that contain exactly k predictors.
@ Pick the best among these (‘,j) models, and call it M. Here “best” is
defined as having the smallest RSS, or equivalently the largest R?.
© Select a single best model from among My, ..., M. (How? to be
seen later).
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Subset selection Best subset and stepwise procedures

Best subset selection in R

library(’leaps’)
reg.fit<-regsubsets(Mortality~.-logNOx,data=pollution,method=’exhaustive’,nvmax=15)

plot(reg.fit,scale="r2")
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Subset selection Best subset and stepwise procedures

Extension to other models

@ Although we have presented best subset selection here for least

squares regression, the same ideas apply to other types of models,
such as logistic regression.

-~

@ The deviance, —2/(#), plays the role of RSS for a broader class of
models.
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Subset selection Best subset and stepwise procedures

Stepwise selection

@ For computational reasons, best subset selection cannot be applied
with very large p.

@ Best subset selection may also suffer from statistical problems when p
is large: larger the search space, the higher the chance of finding
models that look good on the training data, even though they might
not have any predictive power on future data.

@ Thus an enormous search space can lead to overfitting and high
variance of the coefficient estimates.

@ For both of these reasons, stepwise methods, which explore a far more
restricted set of models, are attractive alternatives to best subset
selection.

g
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Subset selection Best subset and stepwise procedures

Forward stepwise selection

@ Forward stepwise selection begins with a model containing no
predictors, and then adds predictors to the model, one-at-a-time, until
all of the predictors are in the model.

@ In particular, at each step the variable that gives the greatest
additional improvement to the fit is added to the model.
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Subset selection Best subset and stepwise procedures

Forward stepwise selection in detail

O Let My denote the null model, which contains no predictors.

@ Fork=0,...,p—1:
@ Consider all p — k models that augment the predictors in M with one
additional predictor.
® Choose the best among these p — k models, and call it My1. Here
“best” is defined as having smallest RSS or highest R?.

© Select a single best model from among Mo, ..., M,. (How? to be
seen later).

R
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Subset selection Best subset and stepwise procedures

More on forward stepwise selection

o Computational advantage over best subset selection is clear.

@ It is not guaranteed to find the best possible model out of all 2P
models containing subsets of the p predictors.
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Subset selection Best subset and stepwise procedures

Forward stepwise selection in R

reg.fit<-regsubsets(Mortality~.-logNOx,data=pollution,method=’forward’,nvmax=15)

plot(reg.fit,scale="r2")
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Subset selection Best subset and stepwise procedures

Backward stepwise selection

o Like forward stepwise selection, backward stepwise selection provides
an efficient alternative to best subset selection.

@ However, unlike forward stepwise selection, it begins with the full least
squares model containing all p predictors, and then iteratively removes
the least useful predictor, one-at-a-time.
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Subset selection Best subset and stepwise procedures

Backward stepwise selection in detail

@ Let M, denote the full model, which contains all p predictors.

Q@ Fork=p,p—1,...,1
@ Consider all k models that contain all but one of the predictors in My,
for a total of k — 1 predictors.
@ Choose the best among these k models, and call it M_;. Here “best”
is defined as having smallest RSS or highest R2.

© Select a single best model from among Mo, ..., M,. (How? to be
seen later).
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Subset selection Best subset and stepwise procedures

More on backward stepwise selection

@ Like forward stepwise selection, the backward selection approach
searches through only 1+ p(p+ 1)/2 models, and so can be applied in
settings where p is too large to apply best subset selection

@ Like forward stepwise selection, backward stepwise selection is not
guaranteed to yield the best model containing a subset of the p
predictors.

@ Backward selection requires that the number of samples n is larger
than the number of variables p (so that the full model can be fit). In
contrast, forward stepwise can be used even when n < p, and so is the
only viable subset method when p is very large.
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Subset selection Best subset and stepwise procedures

Backward stepwise selection in R

reg.fit<-regsubsets(Mortality~.-logNOx,data=pollution,method=’backward’,nvmax=15)

plot(reg.fit,scale="r2")
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Overview

© Subset selection

@ Choosing the optimal model
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Choosing the optimal model

@ The model containing all of the predictors will always have the
smallest RSS and the largest R?, since these quantities are related to
the training error.

@ We wish to choose a model with low test error, not a model with low
training error. Recall that training error is usually a poor estimate of
test error.

o Therefore, RSS and R? are not suitable for selecting the best model
among a collection of models with different numbers of predictors.

R
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Estimating test error: two approaches

o We can
© Indirectly estimate test error by making an adjustment to the training
error to account for the bias due to overfitting, or
@ Directly estimate the test error, using either a validation set approach
or a cross-validation approach.

@ We illustrate both approaches next.

-
&, ;
PN

RN

ACE - Model Selection Y



Training error adjustment techniques

@ These techniques adjust the training error for the model size, and can
be used to select among a set of models with different numbers of
variables.

@ Three criteria:

@ Adjusted R?
@ Akaike information criterion (AIC)
© Bayesian information criterion (BIC)

@ The next figure displays BIC, and adjusted R? for the best model of
each size produced by best subset selection on the pollution data set.
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SILESEECGHI Choosing the optimal model

Example

reg.fit<-regsubsets(Mortality~.-logNOx,data=pollution,method=’exhaustive’,nvmax=15)
plot(reg.fit,scale="adjr2") plot(reg.fit,scale="bic")
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Adjusted R-squared

o Idea: introduce the “population R?" as

2
R2 —1__9
pop Var(Y)
@ The usual R? is RSS/
RZ—1— d
TSS/n

It is based on bias estimates of the residual and total variances.

@ The adjusted R? is based on unbiased estimates:

=2 RSS/(n—p—1)
Ro=1- TSS/(n—1)

where p is the number of predictors used.

A e
=

@ This criterion is specific to regression.
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@ The AIC criterion is defined for a large class of models fit by maximum
likelihood: N
AIC = =20(0) + 2r,

~

where ¢(0) is the maximized value of the log-likelihood function for
the estimated model, and r is the number of parameters.

@ The best model has the smallest AIC value.

@ For linear regression with p variables and a constant term, r = p + 1.

e’
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ACE - Model Selection Y



@ Definition:

~

BIC = —2¢(0) + rlog(n),
where p is the number of parameters.

o Like AIC, BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the
lowest BIC value.

o Notice that BIC replaces the 2r used by AIC with a rlog(n) term,
where n is the number of observations.

@ Since logn > 2 for any n > 7, the BIC statistic generally places a
heavier penalty on models with many variables, and hence results in
the selection of smaller models than AIC.

R
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Direct estimation of the test error

@ Each of the procedures returns a sequence of models M indexed by
model size k =0,1,2,..., p. Our job here is to select k. Once
selected, we will return model /Vl;.

@ We compute an estimate of the error for each model M under
consideration, and then select the k for which the resulting estimated
test error is smallest.

@ This procedure has an advantage relative to AlIC, BIC, and adjusted
R2, in that it provides a direct estimate of the test error.

@ It can also be used in a wider range of model selection tasks, even in
cases where it is hard to pinpoint the model degrees of freedom.

R
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Direct estimation of the test error

Two methods:
@ Hold-out approach
@ Cross-validation
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Hold-out approach

@ Here we randomly divide the available set of samples into two parts:
© a training set and
@ a validation or hold-out set
@ The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.

@ The resulting validation-set error provides an estimate of the test
error. This is typically assessed using MSE in the case of regression
and misclassification rate in the case of classification.

R
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Example

n<-nrow(pollution)

napp=45

ntst=n-napp
train<-sample(1:n,napp)
pollution.train<-pollution[train,]
pollution.test<-pollution[-train,]

Formula<-c(Mortality ~ pNonWhite,

Mortality ~ Education + pNonWhite,

Mortality ~ Rain + pNonWhite + logS02ot,
Mortality ~ JanTemp+ Rain +pNonWhite +logNOxPot,

)

for(i in 1:10){
reg<-1lm(Formula[[i]],data=pollution.train)
pred<-predict(reg,newdata=pollution.test)
err[i]<-mean((pollution.test$Mortality-pred) "2)

’ Q)
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Drawbacks of the hold-out approach

@ The validation estimate of the test error can be highly variable,
depending on precisely which observations are included in the training
set and which observations are included in the validation set.

@ In the validation approach, only a subset of the observations — those
that are included in the training set rather than in the validation set —
are used to fit the model.

@ This suggests that the validation set error may tend to overestimate
the test error for the model fit on the entire data set.

e’
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K-fold cross-validation

@ Widely used approach for estimating test error.

o Estimates can be used to select best model, and to give an idea of the
test error of the final chosen model.

@ |dea is to randomly divide the data into K equal-sized parts. We leave
out part k, fit the model to the other K — 1 parts (combined), and

then obtain predictions for the left-out kth part.

@ This is done in turn for each part k =1,2,..., K, and then the results

are combined.

Validation

Train

Train

Train

Train

Thierry Denceux
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K-fold cross-validation in detail

o Let the K parts be (i, Gy, ..., Ck, where C denotes the indices of
the observations in part k. There are n, observations in part k: if nis
a multiple of K, then ny = n/K.

o Compute

K
1
CV(K) = ; an X MSEk,
k=1

where

1 (=
MSE, = — Z(y; _Y,'( k))2

n
k ieCy

and j/\,(_k) is the fit for observation i, obtained from the data with part
k removed.

@ Setting K = N yields N-fold or leave-one-out cross-validation

(LOOCV).
ACE - Model Selection July 2019 35 / 112
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SILESEECGHI Choosing the optimal model

Special case

@ With least-squares linear or polynomial regression, a shortcut makes
the cost of LOOCV the same as that of a single model fit!

@ The following formula holds:

1 (i =9\
CV(N)ZnZ(lh,-)’

i=1

where y; is the jth fitted value from the original least squares fit, and
h;i is the leverage (diagonal of the “hat” matrix).

@ This is like the ordinary MSE, except the ith residual is divided by
1— h;.
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Choosing the optimal model
Choice of K

@ Since each training set is only (K — 1)/K as big as the original training
set, the estimates of prediction error will typically be biased upward.

@ This bias is minimized when K = n (LOOCV), but this estimate has
high variance, because the estimates from each fold are highly

correlated.
@ K =5 or 10 provides a good compromise for this bias-variance
tradeoff.
“Q::f;:,»'
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Choosing the optimal model
Standard error of the CV estimate

@ We can estimate the standard error (standard deviation) of the CV
error by

1

Se(CVix) = | 5

K
> (MSE — MSE)?
k=1
@ One-standard-error rule:
o Calculate the standard error of the estimated test MSE for each model
size
o Select the smallest model for which the estimated test error is within
one standard error of the lowest point on the curve.

A Wm“
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Example of 10-fold cross-validation

K<-10
folds=sample(1:K,n,replace=TRUE)
CV<-rep(0,10)

for(i in (1:10)){
for(k in (1:K)){
reg<-lm(Formula[[i]],data=pollution[folds!=k,])
pred<-predict(reg,newdata=pollution[folds==k,])

CV[i]<-CV[i]+ sum((pollution$Mortality[folds==k]-pred) "2)

X
CV[il<-CV[il/n
b

ACE - Model Selection
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Choosing the optimal mode!
Result (4 trials)

8
g
2]
E,
B
z & H °
] ™

e
N
\
\
|
\

\

number of prediciors number ofprecicirs

200 200 2000

e
o

1500

N g —

2 s o s 0 2 4 s 8 0

umbor of pedictors omber ofpedictors

ACE - Model Selection Y



Final remarks on cross-validation

@ The CV error rates can be averaged over r repetitions of K-fold
cross-validation with different random partitions, to reduce the
variance of the CV error estimates.

o After the best model has been selected, we usually re-estimate the
model parameters using the whole training set.

@ To obtain an unbiased estimate of the best model’s error, we need an
independent test set, or two nested CV loops!

R
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Regularization

Overview

© Regularization
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Regularization Ridge regression and Lasso

Overview

© Regularization
@ Ridge regression and Lasso
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Shrinkage methods

e By retaining a subset of the predictors and discarding the rest, subset
selection produces a model that is interpretable and has possibly lower
prediction error than the full model.

@ However, because it is a discrete process — variables are either retained
or discarded — it often exhibits high variance, and so does not always
reduce the prediction error of the full model.

@ Shrinkage methods are more continuous, and do not suffer as much
from high variability.
@ Two main methods:

© Ridge regression
@ Lasso

g
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Regularization Ridge regression and Lasso

Ridge regression

o Ridge regression shrinks the regression coefficients by imposing a
penalty on their size. The ridge coefficients minimize a penalized
residual sum of squares:

2
n p

p
pridee — arg min olvi—Bo=D x| +r>_ 57

i=1 j=1 j=1

@ Here A > 0 is a complexity parameter that controls the amount of
shrinkage: the larger the value of A, the greater the amount of
shrinkage. The coefficients are shrunk toward zero (and each other),
i.e., to the simplest model (with only the constant term).

o Selecting a good value for A is critical; cross-validation can be used for_
this.

g
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Regularization Ridge regression and Lasso

Equivalent form

@ An equivalent way to write the ridge problem is

2
n

p
Brldge = arg mﬁin Z Vi — /80 — ZXUBJ

i=1 j=1

P
subject to Zﬁf <t,
Jj=1
which makes explicit the size constraint on the parameters.

@ There is a one-to-one correspondence between parameters t and A in
the previous formulation.

%)
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Regularization Ridge regression and Lasso

The effect of ridge regression
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Regularization Ridge regression and Lasso

Derivation of the ridge regression estimates

@ It can be shown that B’idge can be found by separating the
minimization problem into two parts, after centering the inputs
(replacing xjj by xjj — X;):

@ We estimate Bo by y =237 | ;i
@ The remaining coefficients get estimated by a ridge regression without
intercept, using the centered x;; and the centered y;.

@ We assume that both the inputs and the output have been centered,
so that the input matrix X has p (rather than p + 1) columns, and y is
the n-vector of centered outputs.

@ The criterion can be written in matrix form

RSSA(B) = (y — XB)T(y — X8) + A87 5.
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Regularization Ridge regression and Lasso

Derivation of the ridge regression estimates (continued)

@ The criterion can be rewritten as
RSSA(8) =y Ty —28"XTy + 8T (XX + Al)3
o Differentiating with respect to 3 we obtain

ORSS,(B)

_ T T
o5 = Xy XX+ A8

@ The solution of the equation aRsasﬁ*(ﬁ) =0is

Bridge — (XTX + )\I)fley

= N
&, L
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Regularization Ridge regression and Lasso

Effective degrees of freedom

@ As with the least-squares method, the fitted values are linear functions
of the y;
yridge _ XBridge =S,y
with Sy = X(XTX + Al)~1XT.
e When A =0, tr(Sy) = p, i.e., the degrees of freedom of the model.

e By analogy, when A > 0, we can define the effective degrees of
freedom as

df(\) = tr(Sy).

N DO
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RECAETGP NI Ridge regression and Lasso

Example
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Regularization Ridge regression and Lasso

Ridge regression: scaling of predictors

@ The standard least squares coefficient estimates are scale equivariant:
multiplying X; by a constant ¢ simply leads to a scaling of the least
squares coefficient estimates by a factor of l/c.A In other words,
regardless of how the jth predictor is scaled, X;f3; will remain the same.

@ In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor by a constant, due to
the sum of squared coefficients term in the penalty part of the ridge
regression objective function.

@ Therefore, it is best to apply ridge regression after standardizing the
predictors (dividing each centered variable by its standard deviation).
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Sidecliceennlalioss
Why Does Ridge Regression Improve Over Least Squares?
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Simulated data with n = 50 observations, p = 45 predictors, all having nonzero

coefficients. Squared bias (black), variance (green), and test MSE (purple) for the
ridge regression predictions, as a function of A and ||37%8|12/||3||2. The ,
horizontal dashed lines indicate the minimum possible MSE. ml‘;:;,:;
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Regularization Ridge regression and Lasso

Why does ridge regression reduce variance?

@ When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high
variance.

o A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin.

e By imposing a size constraint on the coefficients, this problem is
alleviated.

R
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Regularization Ridge regression and Lasso

Ridge regression in R

library(glmnet)

x<-model.matrix(Mortality~.-logNOx,pollution)
y<-pollution$Mortality[-21] # obs 21 has 2 missing values
n<-nrow(x)

napp=45

ntst=n-45

train<-sample(1:n,napp)

xapp<-x[train,]

yapp<-y [train]

xtst<-x[-train,]

ytst<-y[-train]

cv.out<-cv.glmnet (xapp,yapp,alpha=0)
plot(cv.out)

fit<-glmnet (xapp,yapp,lambda=cv.out$lambda.min,alpha=0)
ridge.pred<-predict(fit,s=cv.out$lambda.min,newx=xtst) y
print (mean((ytst-ridge.pred)"2)) ;iii:
2421.136 S A
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CV error as a function of \
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Regularization Ridge regression and Lasso

Coefficients

fit$beta

s0

(Intercept)

JanTemp -2.641635e-01
JulyTemp 7.231499e-01
RelHum -1.443636e-01
Rain 9.618201e-01
Education -1.154417e+01
PopDensity 2.066547e-03
pNonWhite 1.478269e+00
pWC -1.105875e+00

pop 2.629839e-06
pophouse 3.057905e+01
income -1.008305e-03
logHCPot 2.311552e+00
logNOxPot 6.616369e+00
logS020t 3.966114e+00

R
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Ridge regression and Lasso
The Lasso

@ Ridge regression has one obvious disadvantage: unlike subset selection,
which will generally select models that involve just a subset of the
variables, ridge regression will include all p predictors in the final model

@ The Lasso is a relatively recent alternative to ridge regression that
overcomes this disadvantage. The Lasso coefficients, B'ass" minimize
the quantity

2

n p p

@assozargmf}n Slyi=Bo=D x| +A>_18l¢,
=1

i=1 j=1

i.e., the Ly norm is replaced by the Ly norm in the penalty term.

g
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Ridge regression and Lasso
The Lasso (continued)

o As with ridge regression, the lasso shrinks the coefficient estimates
towards zero.

@ However, in the case of the lasso, the Ly penalty has the effect of
forcing some of the coefficient estimates to be exactly equal to zero
when the tuning parameter X is sufficiently large.

@ Hence, much like best subset selection, the lasso performs variable
selection.

@ We say that the lasso yields sparse models — that is, models that
involve only a subset of the variables.

@ As in ridge regression, selecting a good value of \ for the lasso is
critical; cross-validation is again the method of choice.

R
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Example

100 200 300 400
100 200 300 400

0
1
v

0
1

— Income
- -~ Limit
s~ 1. Rati
§ - ating
Student
T T T T T T T T T T T T T T
20 50 100 200 500 2000 5000 0.0 0.2 0.4 0.6 0.8 1.0

A B /1181

Standardized Coefficients
Standardized Coefficients
-100

-300

N

.Y
%
s

ACE - Model Selection Y



Regularization Ridge regression and Lasso

Equivalent form

@ As in the case of ridge problem, the previous unconstrained
optimization problem is equivalent to the following constrained one

2
n

p
B = arg min S yvi— 60— xiB

i=1 j=1

P
subject to Z 1Bj] < t,
j=1
@ This problem can be solved using a quadratic programming algorithm.

@ Remark: this time, the solution 3'#%° is a nonlinear function of y.

There is no obvious notion of effective degrees of freedom. R

g
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RECAETGP NI Ridge regression and Lasso

Why does the Lasso eliminate variables?
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Sidecliceennlalioss
Comparing the Lasso and Ridge Regression

10 20 30 40 50 60
10 20 30 40 50 60

Mean Squared Error
Mean Squared Error

0
I

T T T I—— N T T T T T T
0.02 0.10 050  2.00 10.00  50.00 0.0 0.2 0.4 0.6 0.8 1.0

A R? on Training Data

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso on simulated data set of Slide 53. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dashed). Both are plottegi
against their R? on the training data, as a common form of indexing. \X

R
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Regularization Ridge regression and Lasso

Comparing the Lasso and Ridge Regression (continued)

100
I
100
I

80
80

Mean Squared Error
Mean Squared Error

T I L — T T T T T T T T T T
0.02 0.10 0.50 2.00 10.00 50.00 0.4 05 06 07 08 09 1.0

A R? on Training Data

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso. The simulated data is similar to that in the previous slide, except that
now only two predictors are related to the response. Right: Comparison of squared
bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are/\
plotted against their R2 on the training data, as a common form of indexing. S
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Ridge regression and Lasso
The Lasso in R

cv.out<-cv.glmnet (xapp,yapp,alpha=1)
plot(cv.out)

fit.lasso<-glmnet (xapp,yapp,lambda=cv.out$lambda.min,alpha=1)

lasso.pred<-predict(fit.lasso,s=cv.out$lambda.min,newx=xtst)
print (mean((ytst-lasso.pred) "2))
1946.667

%’- ¢
A
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Regularization Ridge regression and Lasso

CV error as a function of A (Lasso)
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Regularization Ridge regression and Lasso

Coefficients

> print(fit.lasso$beta)
s0

(Intercept)

JanTemp -1.157095e+00
JulyTemp .

RelHum .

Rain 1.404239e+00
Education -1.796084e+01
PopDensity .

pNonWhite 2.880287e+00
pWC -9.421496e-01

pop 2.141275e-06
pophouse .

income -4.655832e-04
logHCPot .

logNOxPot 1.392387e+01
logS020t 3.461564e-01

R
& /)
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Regularization Ridge regression and Lasso

Bayesian interpretation of ridge regression and Lasso

Bayesian inference

@ In Bayesian inference, the parameter 3 is considered as a random
variable.

@ Inference consists in computing the conditional probability distribution
of the parameter given the data, obtained by the Bayes Theorem as

p(8ly) = ”(ylﬁ)y';(ﬂ) x ply|8)p(8)

@ The marginal distribution p(3) is called the prior distribution of 3. It
encodes prior knowledge about (3, i.e., information that we have about
[ before observing the data.

g
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Regularization Ridge regression and Lasso

Bayesian interpretation of ridge regression and Lasso

Ridge regression corresponds to Gaussian errors and prior

@ Assumptions:
© Gaussian errors: Y = X3 + € with € ~ N(0, 0?1y), so

2

1 o a
p(y|B) o exp —?Z }/i—ﬁo_zxijﬁj
i=1 j=1

@ Gaussian prior: p(8) x exp (_% f:l 512) ’
@ Then the log-posterior density of 3 is

2

1
|ogp(6\y 2 22 Yi— /80 ZXI_//BJ _r‘%25f+c

o Ridge regression searches for the mode of posterior distribution. — “=%*
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Regularization Ridge regression and Lasso

Bayesian interpretation of ridge regression and Lasso

Lasso correspond to a Laplace prior

@ With the Gaussian error model as before and an independent Laplace

prior
1 P
p(B) xex | == 151 |
j=1
we get
2
1 n P 1 P
Iogp(ﬂly):—ﬁ yi—Bo— > xiib; —;ZWJ\‘FC
i=1 Jj=1 Jj=1

o L2
e
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Regularization Ridge regression and Lasso

Generalization

@ More generally, a prior of the form

p
p(B) xexp [ =7 1817

j=1

leads to minimizing the MSE under a constraint 37, |39 < t.
@ The case g =1 (lasso) is the smallest g such that the constraint
region is convex; nonconvex constraint regions make the optimization

problem more difficult.
@ The case g = 0 corresponds to subset selection.

1 g=0:5 q=0.1

q=4 q=2 q=
|
|
‘ i
|
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Regularization Ridge regression and Lasso

Finding a compromise between lasso and ridge regression

e We might try using other values of g besides 0, 1, or 2. Values of
q € (1,2) suggest a compromise between the lasso and ridge
regression.

o Although this is the case, with ¢ > 1, |5;|9 is differentiable at 0, and
so does not share the ability of lasso (q = 1) for setting coefficients
exactly to zero.

@ The elastic net penalty
P
A (af? + (1 - a)lB)])
j=1

is a different compromise between ridge and lasso.

@ The elastic-net selects variables like the lasso, and shrinks together tbﬁ
coefficients of correlated predictors like ridge. A
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TR e e e
Elastic net penalty

g:=1:2 a=0.2
i AN
!

Lq

Elastic Net

Contours of constant value of Zle |8j|9 for g = 1.2 (left plot), and the
elastic-net penalty Zle(aﬁf + (1 — «)|p;]) for o = 0.2 (right plot).
Although visually very similar, the elastic-net has sharp (non-differentiable)
corners, while the g = 1.2 penalty does not.

g
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Regularization Regularized discriminant analysis

Overview

© Regularization

@ Regularized discriminant analysis

o
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Regularization Regularized discriminant analysis

Regularized discriminant analysis

@ The idea of regularization can be applied to other models such as
QDA and LDA.

@ For instance, one can shrink the separate covariances of QDA toward a
common covariance as in LDA. The regularized covariance matrices
have the form R R R

T,(AN)=(1-NXE+ \X

where ¥ is the pooled covariance matrix as used in LDA.

@ Here X € [0, 1] allows a continuum of models between LDA and QDA,
and needs to be specified.

@ In practice X can be chosen based on the performance of the model on
validation data, or by cross-validation.

e’
v or e
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Regularization Regularized discriminant analysis

Regularized discriminant analysis (continued)

@ Similar modifications allow X itself to be shrunk toward the scalar
covariance,

X(y) = (1 —7)Z +15°l
for v € [0,1].

@ Replacing % in the previous equation by f(fy) leads to a more general
family of covariances X (), ) indexed by a pair of parameters.

@ In R: package k1aR, function rda.

A e =
e
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Dimension reduction

Overview

@ Dimension reduction

R
& /)

Moy
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Dimension reduction

Feature extraction

e Given p variables (features) X = (X,..., X,), feature extraction
consists in finding g new features

Z1 = p1( X1, ..., Xp)

Zg = ¢g(X1,..., Xp),

where ¢1, ..., ¢4 are functions from RP to R. These functions may be
linear or nonlinear.

@ When functions ¢; are linear, we can write Z; = ujTX, where u; € RP.
Only this case will be considered in this chapter.

o Geometrically, Z; can be seen as the coordinate of the projection of X

=2

onto an axis directed by u;. %)

g
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Dimension reduction

Objectives of feature extraction

@ Feature extraction is useful for
o Representing high-dimensional data in a lower-dimensional feature
space
o Reducing the input dimension (and hence the number of parameters) in
prediction (regression or classification) problems
@ Vectors uy, ..., uqg are determined in such a way that the new features
Z1,...,Zg contain as much useful information as possible.

o Feature extraction methods can be supervised, or unsupervised.

@ Here, we consider two methods:

@ Principal Component Analysis (PCA) — unsupervised
@ Factor Discriminant Analysis (FDA) - supervised

R
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Overview

@ Dimension reduction
@ Principal component analysis

R
& /)

Moy
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Principal component analysis

Idea: find orthogonal directions u; in input space in which the projected
data has maximal variance. These directions correspond to features

Zi = uJ-TX (called principal components) that have maximum information
content.

35
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30
1

20
1

15

Ad Spending
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T T T T T T T
10 20 30 40 50 60 70 %

Population St
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Finding the first component

o Let X = (Xi,...,X,) a random vector with variance matrix X.

@ The first feature Z; = ulTX, called the first component, is chosen
such that
Var(Z;) = max Var(u{ X) = maxu Zuy
u ui

subject to uf u; = 1.
@ To solve this constrained optimization problem, we write the Lagrange

function as
L(up,\) = uf Zup — Mo v — 1)

%"
R
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Finding the first component (continued)

@ The solution must verify

L
0 =22 - 221 =0 Xu; = A\
ouq
v u =1

@ Vector u; is thus the eigenvector of X with unit norm and eigenvalue
A1. (We recall that a symmetric and positive definite p x p matrix has
p orthogonal eigenvectors with real and positive eigenvalues).
o Now,
Var(u{ X) = uf Zuy = uf M\in) = Mo g = M.

so A1 must be the largest eigenvalue.

@ Vector uy is called the loading vector of the first principal componefjﬂ

R
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Finding the second component

o The second component Z, = ud X is chosen such that
Var(Z,) = max Var(ul X) = max u) Tup
uz uz
subject to u2Tu2 =1 and Cov(Z1,22) = 0.
o Now,
Cov(Z1, Zo) = Cov(uf X, uj X) = uf Zup = Muf wp,

so the second constraint can be written u] up = 0.
@ The Lagrange function is
T T T
Llug, A\ pp) = uy Zup — Mug up — 1) — puy g R

R
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Finding the second component (continued)

o We solve: oL
E 2% up — 2Aup — puy =0 (1)

o Left-multiplying (1) by u{, we get
2u! Tup —2uf Ny —pu{ uy =0= =0
~— ~—
0 0
@ So, (1) reduces to

L
8— =22 -2 =0 Zur = Aup
Oun

@ The solution is an eigenvector of X. We choose the one with the
second largest eigenvalue \s.

e
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Finding the next components

@ Continuing the same line of reasoning, we obtain p uncorrelated
components Z = (Zy, ..., Zp) corresponding to the eigenvalues
A1 > ... > A, of .
o We can write
Z=U"X,
where U = (u1, ..., up) is the p x p matrix (called the loading matrix)
whose columns are the p eigenvectors.

&,
R
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Properties

@ The variance matrix of Z is
Var(Z) =UTZU = A,

where A = diag(A1, ..., Ap) is the diagonal matrix containing the p
eigenvalues of X.

e Matrix U verifiess UTU =1, i.e., U1 =U": it is an orthogonal
matrix, corresponding to rotation.

H)

N <
e
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Properties (continued)

o Consequently,
tr(A) = tr[UT (ZU)] = tr[(ZU)UT] = tr(X)
@ Hence, the sum of the eigenvalues is the total variance
p p
> A= Var(X;)
j=1 j=1
@ The proportion of the variance explained by the first g components is

i&/ixf

Jj=1 Jj=1

&, W%
PN
g
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Practical application

@ In practice, we center the data, and we estimate X by the empirical
variance matrix .
~ 1 -
=

o If we also standardize the data, then matrix X is actually the
correlation matrix R (its diagonal elements equal 1, and its
off-diagonal elements are correlation coefficients).

o Typically, we keep only g components Z1,. .., Z, such that the
cumulative proportion of explained variance is close enough to 1.

R
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G T T =
PCA in R: example with the Seeds data

pca<-princomp (x,cor=TRUE)
Z<-pca$scores
lambda<-pca$sdev”2

plot (cumsum(lambda)/sum(lambda) ,type="1",xlab="q",ylab="proportion
of explained variance")

biplot(pca)

km<-kmeans (x,centers=3,nstart=10)
pairs(Z[,1:3],col=km$cluster)

&,
R

ACE - Model Selection Y



Proportion of explained variance
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n reduction Principal component analysis

First 2 principal components
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G T T =
First 3 principal components and HCM partition

Comp.1

Comp.2

Comp.3
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G T T =
PCA in R: example 2

# Expressions dataset
load(’data_expressions.RData’)
ii<-which(colMeans (X)==0)
X1<-X[,-ii]

X1<-scale(X1)

# princomp doesn’t work because the number of colums of X1
# exceeds the number of rows

pca<-prcomp (X1)
lambda<-pca$sdev”2

pairs(pca$x[,1:5],col=y)
plot (cumsum(lambda)/sum(lambda) ,type="1",xlab="M",
ylab="proportion of explained variance") ”éﬁ‘

o
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Proportion of explained variance
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n reduction Principal component analysis

First five principal components
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Principal component regression (PCR)

@ The idea is to fit a regression model using least squares, taking as
predictors M < p principal components:

M
y;:90+20mz,~m+e,-, i=1...,N

m=1
o We have
M M P p M P
E QmZ,'m = Z@m E UmJ'X,'J' = E E emuij,'j = E IBJ'X,'J'
m=1 m=1 j=1 j=1 m=1 j=1
with
M
m=1 %Zj;«m,f;
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Principal component regression (continued)

@ Hence, the PCR model can be thought of as a special case of the
original linear regression model.

@ Dimension reduction serves to constrain the estimated /3; coefficients,
which can yield a good bias-variance tradeoff.

o As with ridge regression, principal components depend on the scaling
of the inputs, so typically we first standardize them.

@ The value of M can be determined by cross-validation.

R
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Principal component regression in R

library(pls)

pcr.fit<-pcr(Mortality ~.-logNOx,data=pollution,scale=TRUE,
validation="CV")

summary (pcr.fit)
validationplot(pcr.fit,val.type = "MSEP",legendpos = "topright")

5

W <
e
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Principal component analysis
Cross-validation MSE as a function of M
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Overview

@ Dimension reduction

@ Factor discriminant analysis

o
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Factor discriminant analysis

@ Factor discriminant analysis (FDA) is a supervised dimension reduction
techniques, suitable for classification problems.

@ It finds linear combinations of the original predictors, such that the
between-class variance is maximized with respect to the within-class
variance (i.e., such that the overlap between the classes is minimized).

%’- ¢
A
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Decomposition of the variance

It can be shown that the variance matrix £ = Var(X) can be decomposed
as

Y=B+W,

where B and W are, respectively, the between-class and within-class
matrices:

c
W = Zﬂkzk
k=1
c
B=> me(mk— p) (e — )7,
k=1

where p = E(X|Y = k), p = E(X) and Xy = Var(X|Y = k)

L5
e
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Decomposition of the variance (continued)

@ For a new variable Z = uT X, its variance is

Var(Z) = u"Zu=u"(W+B)u=u"Wu + u"Bu.

o Here,
C c c
uTWu=u" (Z Wk):k) u= ZwkuTZku = Zkaar(Z|Y = k)
k=1 k=1 k=1
and

c
uTBu=">> meu” (ke — )ik — ) v
k=1

= Zwk ul e — u” p)? Zwk {EB(Z|Y = k) — E(Z)}%{%??
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Maximization of class separation

@ Problem, find Z such that the ratio

uTBu

I =

is maximized.
@ Solution: u is the eigenvector associated to the largest eigenvalue of
¥ B. Variable Z is called a discriminant coordinate.
e Case ¢ = 2: matrix B has rank one, and so has ¥ 1B. We can show
that
u=X""(u — p2).

There is only one discriminant coordinate Z = u” X. -

&,
R

ACE - Model Selection TR



Discriminant coordinates: case K > 2

@ When ¢ > 2, matrix X ~IB has rank ¢ — 1.

@ There are M = min(c — 1, p) discriminant coordinates Z1, ..., Zpy,
obtained from the eigenvectors of ¥ !B corresponding to its M
eigenvalues A\ > ... > Apy.

@ Remark: matrix 1B is not symmetric: its eigenvectors are not
orthogonal, and variables Z; are correlated.

o Interpretation: each coordinate Z,, = u, X for m > 2 maximizes the

ratio -
un,Bu
J(um) = 7”.’7'"
urWup,
under the constraints u! Wu, =0, for £ =1,....m— 1.

R
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Factor discriminant analysis
FDA in practice

@ Matrices X and B are estimated by

-~ 1< R R
£ (- M- A)
i=1
and
~ i Nk, . U AT
B= Z?(Mk — ) (kk — 1t)
k=1

& s
e
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fesidieina ot
Example: Wine data

@ Results of a chemical analysis of 178 wines grown in the same region
in Italy but derived from three different cultivars.

@ The analysis determined the quantities of 13 constituents found in
each of the three types of wines.

%"
R
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FDA in R: Wine data

wine<-read.csv(’wine.data’ ,header=FALSE)

lda.wine<-1da(V1~. ,data=wine)
U<-lda.wine$scaling
X<-as.matrix(wine[,2:14])
Z<-X%*%U

plot(Z[,1],Z[,2] ,pch=wine$V1,col=wine$V1l,xlab=’Z1’,ylab=272")

ACE - Model Selection
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Plot in the 2-D space of discriminant coordinates
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fesidieina ot
FDA in R: Expressions data

load(’data_expressions.RData’)
ii<-which(colMeans (X)==0)
X1<-X[,-ii]

lda.expr<-lda(y~ X1)
U<-1lda.expr$scaling
Z<-X1%*%U

pairs(Z,col=y,pch=y)

5

, <
e
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Plot in the 5-D space of discriminant coordinates
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