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Introduction

Need for model selection

Consider, for instance, a regression problem with a response variable
Y and 3 predictors X1,X2,X3.
We can consider many (an infinity of) models, such as

Y = β0 + β1X1 + ε

Y = β0 + β1X1 + β2X2 + β3X3 + ε

Y = β0 + β1X1 + β2X2 + β3X3 + β4X
2
1 + β5X

2
2 +

β6X1X2 + β7X
2
3 + β8X1X3 + β9X2X3 + ε

...

Which model to choose?
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Introduction

Bias-variance trade-off

We have seen that a more complex model will not always have a
smaller error when applied to test data.
This is due to the bias-variance trade-off: when the number of
parameters increases, the bias of the model decreases, but the variance
increases.
Furthermore, a simpler model often has a distinct advantages in terms
of its interpretability.
In this lecture, we discuss some tools to select models that will be

complex enough to fit the data, but
not too complex to avoid overfitting and to be interpretable.

We focus mainly on linear regression, but the tools can be adapted to
classification.
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Introduction

Three classes of methods

Subset Selection. We identify a subset of the p predictors that we believe
to be related to the response. We then fit a model using the
reduced set of variables.

Regularization. We fit a model involving all p predictors, but the estimated
coefficients are shrunken towards zero to obtain a smoother
prediction function. This regularization (also known as
shrinkage) has the effect of reducing variance and can also
perform variable selection.

Dimension Reduction. We project the p predictors into a q-dimensional
subspace, where q < p. This is achieved by computing q
different linear combinations, or projections, of the variables.
Then these q projections are used as predictors to fit a linear
model.
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Subset selection Best subset and stepwise procedures

Best subset selection

1 LetM0 denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2 For k = 1, 2, . . . , p:
1 Fit all

(
p
k

)
models that contain exactly k predictors.

2 Pick the best among these
(
p
k

)
models, and call itMk . Here “best” is

defined as having the smallest RSS, or equivalently the largest R2.
3 Select a single best model from amongM0, . . . ,Mp. (How? to be

seen later).
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Subset selection Best subset and stepwise procedures

Best subset selection in R

library(’leaps’)
reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’exhaustive’,nvmax=15)
plot(reg.fit,scale="r2")
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Subset selection Best subset and stepwise procedures

Extension to other models

Although we have presented best subset selection here for least
squares regression, the same ideas apply to other types of models,
such as logistic regression.
The deviance, −2`(θ̂), plays the role of RSS for a broader class of
models.
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Subset selection Best subset and stepwise procedures

Stepwise selection

For computational reasons, best subset selection cannot be applied
with very large p.
Best subset selection may also suffer from statistical problems when p
is large: larger the search space, the higher the chance of finding
models that look good on the training data, even though they might
not have any predictive power on future data.
Thus an enormous search space can lead to overfitting and high
variance of the coefficient estimates.
For both of these reasons, stepwise methods, which explore a far more
restricted set of models, are attractive alternatives to best subset
selection.

Thierry Denœux ACE - Model Selection July 2019 11 / 112



Subset selection Best subset and stepwise procedures

Forward stepwise selection

Forward stepwise selection begins with a model containing no
predictors, and then adds predictors to the model, one-at-a-time, until
all of the predictors are in the model.
In particular, at each step the variable that gives the greatest
additional improvement to the fit is added to the model.
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Subset selection Best subset and stepwise procedures

Forward stepwise selection in detail

1 LetM0 denote the null model, which contains no predictors.
2 For k = 0, . . . , p − 1:

1 Consider all p − k models that augment the predictors inMk with one
additional predictor.

2 Choose the best among these p − k models, and call itMk+1. Here
“best” is defined as having smallest RSS or highest R2.

3 Select a single best model from amongM0, . . . ,Mp. (How? to be
seen later).
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Subset selection Best subset and stepwise procedures

More on forward stepwise selection

Computational advantage over best subset selection is clear.
It is not guaranteed to find the best possible model out of all 2p

models containing subsets of the p predictors.
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Subset selection Best subset and stepwise procedures

Forward stepwise selection in R

reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’forward’,nvmax=15)
plot(reg.fit,scale="r2")
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Subset selection Best subset and stepwise procedures

Backward stepwise selection

Like forward stepwise selection, backward stepwise selection provides
an efficient alternative to best subset selection.
However, unlike forward stepwise selection, it begins with the full least
squares model containing all p predictors, and then iteratively removes
the least useful predictor, one-at-a-time.
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Subset selection Best subset and stepwise procedures

Backward stepwise selection in detail

1 LetMp denote the full model, which contains all p predictors.
2 For k = p, p − 1, . . . , 1:

1 Consider all k models that contain all but one of the predictors inMk ,
for a total of k − 1 predictors.

2 Choose the best among these k models, and call itMk−1. Here “best”
is defined as having smallest RSS or highest R2.

3 Select a single best model from amongM0, . . . ,Mp. (How? to be
seen later).
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Subset selection Best subset and stepwise procedures

More on backward stepwise selection

Like forward stepwise selection, the backward selection approach
searches through only 1 + p(p + 1)/2 models, and so can be applied in
settings where p is too large to apply best subset selection
Like forward stepwise selection, backward stepwise selection is not
guaranteed to yield the best model containing a subset of the p
predictors.
Backward selection requires that the number of samples n is larger
than the number of variables p (so that the full model can be fit). In
contrast, forward stepwise can be used even when n < p, and so is the
only viable subset method when p is very large.

Thierry Denœux ACE - Model Selection July 2019 18 / 112



Subset selection Best subset and stepwise procedures

Backward stepwise selection in R

reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’backward’,nvmax=15)
plot(reg.fit,scale="r2")

Forward Backward
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Subset selection Choosing the optimal model
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Subset selection Choosing the optimal model

Choosing the optimal model

The model containing all of the predictors will always have the
smallest RSS and the largest R2, since these quantities are related to
the training error.
We wish to choose a model with low test error, not a model with low
training error. Recall that training error is usually a poor estimate of
test error.
Therefore, RSS and R2 are not suitable for selecting the best model
among a collection of models with different numbers of predictors.
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Subset selection Choosing the optimal model

Estimating test error: two approaches

We can
1 Indirectly estimate test error by making an adjustment to the training

error to account for the bias due to overfitting, or
2 Directly estimate the test error, using either a validation set approach

or a cross-validation approach.

We illustrate both approaches next.
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Subset selection Choosing the optimal model

Training error adjustment techniques

These techniques adjust the training error for the model size, and can
be used to select among a set of models with different numbers of
variables.
Three criteria:

1 Adjusted R2

2 Akaike information criterion (AIC)
3 Bayesian information criterion (BIC)

The next figure displays BIC, and adjusted R2 for the best model of
each size produced by best subset selection on the pollution data set.
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Subset selection Choosing the optimal model

Example

reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’exhaustive’,nvmax=15)
plot(reg.fit,scale="adjr2") plot(reg.fit,scale="bic")
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Subset selection Choosing the optimal model

Adjusted R-squared

Idea: introduce the “population R2” as

R2
pop = 1− σ2

Var(Y )

The usual R2 is
R2 = 1− RSS/n

TSS/n

It is based on bias estimates of the residual and total variances.
The adjusted R2 is based on unbiased estimates:

R
2

= 1− RSS/(n − p − 1)

TSS/(n − 1)

where p is the number of predictors used.
This criterion is specific to regression.
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Subset selection Choosing the optimal model

AIC

The AIC criterion is defined for a large class of models fit by maximum
likelihood:

AIC = −2`(θ̂) + 2r ,

where `(θ̂) is the maximized value of the log-likelihood function for
the estimated model, and r is the number of parameters.
The best model has the smallest AIC value.
For linear regression with p variables and a constant term, r = p + 1.
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Subset selection Choosing the optimal model

BIC

Definition:
BIC = −2`(θ̂) + r log(n),

where p is the number of parameters.
Like AIC, BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the
lowest BIC value.
Notice that BIC replaces the 2r used by AIC with a r log(n) term,
where n is the number of observations.
Since log n > 2 for any n > 7, the BIC statistic generally places a
heavier penalty on models with many variables, and hence results in
the selection of smaller models than AIC.
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Subset selection Choosing the optimal model

Direct estimation of the test error

Each of the procedures returns a sequence of modelsMk indexed by
model size k = 0, 1, 2, . . . , p. Our job here is to select k̂ . Once
selected, we will return modelM

k̂
.

We compute an estimate of the error for each modelMk under
consideration, and then select the k for which the resulting estimated
test error is smallest.
This procedure has an advantage relative to AIC, BIC, and adjusted
R2, in that it provides a direct estimate of the test error.
It can also be used in a wider range of model selection tasks, even in
cases where it is hard to pinpoint the model degrees of freedom.
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Subset selection Choosing the optimal model

Direct estimation of the test error

Two methods:
1 Hold-out approach
2 Cross-validation
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Subset selection Choosing the optimal model

Hold-out approach

Here we randomly divide the available set of samples into two parts:
1 a training set and
2 a validation or hold-out set

The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.
The resulting validation-set error provides an estimate of the test
error. This is typically assessed using MSE in the case of regression
and misclassification rate in the case of classification.
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Subset selection Choosing the optimal model

Example

n<-nrow(pollution)
napp=45
ntst=n-napp
train<-sample(1:n,napp)
pollution.train<-pollution[train,]
pollution.test<-pollution[-train,]

Formula<-c(Mortality ˜ pNonWhite,
Mortality ˜ Education + pNonWhite,
Mortality ˜ Rain + pNonWhite + logSO2ot,
Mortality ˜ JanTemp+ Rain +pNonWhite +logNOxPot,
...
)

for(i in 1:10){
reg<-lm(Formula[[i]],data=pollution.train)
pred<-predict(reg,newdata=pollution.test)
err[i]<-mean((pollution.test$Mortality-pred)ˆ2)
}
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Subset selection Choosing the optimal model

Results with 4 different splits
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Subset selection Choosing the optimal model

Drawbacks of the hold-out approach

The validation estimate of the test error can be highly variable,
depending on precisely which observations are included in the training
set and which observations are included in the validation set.
In the validation approach, only a subset of the observations – those
that are included in the training set rather than in the validation set –
are used to fit the model.
This suggests that the validation set error may tend to overestimate
the test error for the model fit on the entire data set.
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Subset selection Choosing the optimal model

K -fold cross-validation

Widely used approach for estimating test error.
Estimates can be used to select best model, and to give an idea of the
test error of the final chosen model.
Idea is to randomly divide the data into K equal-sized parts. We leave
out part k , fit the model to the other K − 1 parts (combined), and
then obtain predictions for the left-out kth part.
This is done in turn for each part k = 1, 2, . . . ,K , and then the results
are combined.
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Subset selection Choosing the optimal model

K -fold cross-validation in detail

Let the K parts be C1,C2, . . . ,CK , where Ck denotes the indices of
the observations in part k . There are nk observations in part k : if n is
a multiple of K , then nk = n/K .
Compute

CV(K) =
1
n

K∑
k=1

nk ×MSEk ,

where
MSEk =

1
nk

∑
i∈Ck

(yi − ŷ
(−k)
i )2

and ŷ
(−k)
i is the fit for observation i , obtained from the data with part

k removed.
Setting K = N yields N-fold or leave-one-out cross-validation
(LOOCV).
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Subset selection Choosing the optimal model

Special case

With least-squares linear or polynomial regression, a shortcut makes
the cost of LOOCV the same as that of a single model fit!
The following formula holds:

CV(N) =
1
n

n∑
i=1

(
yi − ŷi
1− hi

)2

,

where ŷi is the ith fitted value from the original least squares fit, and
hi is the leverage (diagonal of the “hat” matrix).
This is like the ordinary MSE, except the ith residual is divided by
1− hi .
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Subset selection Choosing the optimal model

Choice of K

Since each training set is only (K − 1)/K as big as the original training
set, the estimates of prediction error will typically be biased upward.
This bias is minimized when K = n (LOOCV), but this estimate has
high variance, because the estimates from each fold are highly
correlated.
K = 5 or 10 provides a good compromise for this bias-variance
tradeoff.
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Subset selection Choosing the optimal model

Standard error of the CV estimate

We can estimate the standard error (standard deviation) of the CV
error by

ŝe(CV(K)) =

√√√√ 1
K − 1

K∑
k=1

(MSEk −MSE)2

One-standard-error rule:
Calculate the standard error of the estimated test MSE for each model
size
Select the smallest model for which the estimated test error is within
one standard error of the lowest point on the curve.
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Subset selection Choosing the optimal model

Example of 10-fold cross-validation

K<-10
folds=sample(1:K,n,replace=TRUE)
CV<-rep(0,10)

for(i in (1:10)){
for(k in (1:K)){
reg<-lm(Formula[[i]],data=pollution[folds!=k,])
pred<-predict(reg,newdata=pollution[folds==k,])
CV[i]<-CV[i]+ sum((pollution$Mortality[folds==k]-pred)ˆ2)
}
CV[i]<-CV[i]/n
}
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Subset selection Choosing the optimal model

Result (4 trials)
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Subset selection Choosing the optimal model

Final remarks on cross-validation

The CV error rates can be averaged over r repetitions of K -fold
cross-validation with different random partitions, to reduce the
variance of the CV error estimates.
After the best model has been selected, we usually re-estimate the
model parameters using the whole training set.
To obtain an unbiased estimate of the best model’s error, we need an
independent test set, or two nested CV loops!
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Regularization Ridge regression and Lasso
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Regularization Ridge regression and Lasso

Shrinkage methods

By retaining a subset of the predictors and discarding the rest, subset
selection produces a model that is interpretable and has possibly lower
prediction error than the full model.
However, because it is a discrete process – variables are either retained
or discarded – it often exhibits high variance, and so does not always
reduce the prediction error of the full model.
Shrinkage methods are more continuous, and do not suffer as much
from high variability.
Two main methods:

1 Ridge regression
2 Lasso
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Regularization Ridge regression and Lasso

Ridge regression

Ridge regression shrinks the regression coefficients by imposing a
penalty on their size. The ridge coefficients minimize a penalized
residual sum of squares:

β̂ridge = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

β2
j


Here λ ≥ 0 is a complexity parameter that controls the amount of
shrinkage: the larger the value of λ, the greater the amount of
shrinkage. The coefficients are shrunk toward zero (and each other),
i.e., to the simplest model (with only the constant term).
Selecting a good value for λ is critical; cross-validation can be used for
this.
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Regularization Ridge regression and Lasso

Equivalent form

An equivalent way to write the ridge problem is

β̂ridge = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2
subject to

p∑
j=1

β2
j ≤ t,

which makes explicit the size constraint on the parameters.
There is a one-to-one correspondence between parameters t and λ in
the previous formulation.
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Regularization Ridge regression and Lasso

The effect of ridge regression

1e−02 1e+00 1e+02 1e+04

−
3

0
0

−
1

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff
ic

ie
n
ts

Income
Limit
Rating
Student

0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
0

−
1

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0

S
ta

n
d
a
rd

iz
e
d
 C

o
e
ff
ic

ie
n
ts

λ ‖β̂R
λ ‖2/‖β̂‖2

Thierry Denœux ACE - Model Selection July 2019 47 / 112



Regularization Ridge regression and Lasso

Derivation of the ridge regression estimates

It can be shown that β̂ridge can be found by separating the
minimization problem into two parts, after centering the inputs
(replacing xij by xij − x j):

1 We estimate β0 by y = 1
n

∑n
i=1 yi

2 The remaining coefficients get estimated by a ridge regression without
intercept, using the centered xij and the centered yi .

We assume that both the inputs and the output have been centered,
so that the input matrix X has p (rather than p + 1) columns, and y is
the n-vector of centered outputs.
The criterion can be written in matrix form

RSSλ(β) = (y − Xβ)T (y − Xβ) + λβTβ.
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Regularization Ridge regression and Lasso

Derivation of the ridge regression estimates (continued)

The criterion can be rewritten as

RSSλ(β) = yTy − 2βTXTy + βT (XTX + λI )β

Differentiating with respect to β we obtain

∂RSSλ(β)

∂β
= −2XTy + 2(XTX + λI )β

The solution of the equation ∂RSSλ(β)
∂β = 0 is

β̂ridge = (XTX + λI)−1XTy
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Regularization Ridge regression and Lasso

Effective degrees of freedom

As with the least-squares method, the fitted values are linear functions
of the yi

ŷ ridge = Xβ̂ridge = Sλy

with Sλ = X(XTX + λI)−1XT .
When λ = 0, tr(Sλ) = p, i.e., the degrees of freedom of the model.
By analogy, when λ > 0, we can define the effective degrees of
freedom as

df(λ) = tr(Sλ).
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Regularization Ridge regression and Lasso

Example
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Regularization Ridge regression and Lasso

Ridge regression: scaling of predictors

The standard least squares coefficient estimates are scale equivariant:
multiplying Xj by a constant c simply leads to a scaling of the least
squares coefficient estimates by a factor of 1/c . In other words,
regardless of how the jth predictor is scaled, Xj β̂j will remain the same.
In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor by a constant, due to
the sum of squared coefficients term in the penalty part of the ridge
regression objective function.
Therefore, it is best to apply ridge regression after standardizing the
predictors (dividing each centered variable by its standard deviation).
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Regularization Ridge regression and Lasso

Why Does Ridge Regression Improve Over Least Squares?
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Simulated data with n = 50 observations, p = 45 predictors, all having nonzero
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ridge regression predictions, as a function of λ and ‖β̂ridge

λ ‖2/‖β̂‖2. The
horizontal dashed lines indicate the minimum possible MSE.
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Regularization Ridge regression and Lasso

Why does ridge regression reduce variance?

When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high
variance.
A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin.
By imposing a size constraint on the coefficients, this problem is
alleviated.
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Regularization Ridge regression and Lasso

Ridge regression in R

library(glmnet)

x<-model.matrix(Mortality˜.-logNOx,pollution)
y<-pollution$Mortality[-21] # obs 21 has 2 missing values
n<-nrow(x)
napp=45
ntst=n-45
train<-sample(1:n,napp)
xapp<-x[train,]
yapp<-y[train]
xtst<-x[-train,]
ytst<-y[-train]

cv.out<-cv.glmnet(xapp,yapp,alpha=0)
plot(cv.out)

fit<-glmnet(xapp,yapp,lambda=cv.out$lambda.min,alpha=0)
ridge.pred<-predict(fit,s=cv.out$lambda.min,newx=xtst)
print(mean((ytst-ridge.pred)ˆ2))
2421.136
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Regularization Ridge regression and Lasso

CV error as a function of λ
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Regularization Ridge regression and Lasso

Coefficients

fit$beta
s0
(Intercept) .
JanTemp -2.641635e-01
JulyTemp 7.231499e-01
RelHum -1.443636e-01
Rain 9.618201e-01
Education -1.154417e+01
PopDensity 2.066547e-03
pNonWhite 1.478269e+00
pWC -1.105875e+00
pop 2.629839e-06
pophouse 3.057905e+01
income -1.008305e-03
logHCPot 2.311552e+00
logNOxPot 6.616369e+00
logSO2ot 3.966114e+00
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Regularization Ridge regression and Lasso

The Lasso

Ridge regression has one obvious disadvantage: unlike subset selection,
which will generally select models that involve just a subset of the
variables, ridge regression will include all p predictors in the final model
The Lasso is a relatively recent alternative to ridge regression that
overcomes this disadvantage. The Lasso coefficients, β̂lasso minimize
the quantity

β̂lasso = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

|βj |

 ,

i.e., the L2 norm is replaced by the L1 norm in the penalty term.

Thierry Denœux ACE - Model Selection July 2019 58 / 112



Regularization Ridge regression and Lasso

The Lasso (continued)

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero.
However, in the case of the lasso, the L1 penalty has the effect of
forcing some of the coefficient estimates to be exactly equal to zero
when the tuning parameter λ is sufficiently large.
Hence, much like best subset selection, the lasso performs variable
selection.
We say that the lasso yields sparse models – that is, models that
involve only a subset of the variables.
As in ridge regression, selecting a good value of λ for the lasso is
critical; cross-validation is again the method of choice.
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Regularization Ridge regression and Lasso

Example

20 50 100 200 500 2000 5000

−
2

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

0.0 0.2 0.4 0.6 0.8 1.0

−
3

0
0

−
1

0
0

0
1

0
0

2
0

0
3

0
0

4
0

0

S
ta

n
d

a
rd

iz
e

d
 C

o
e

ff
ic

ie
n

ts

Income
Limit
Rating
Student

λ ‖β̂L
λ ‖1/‖β̂‖1

Thierry Denœux ACE - Model Selection July 2019 60 / 112



Regularization Ridge regression and Lasso

Equivalent form

As in the case of ridge problem, the previous unconstrained
optimization problem is equivalent to the following constrained one

β̂lasso = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2
subject to

p∑
j=1

|βj | ≤ t,

This problem can be solved using a quadratic programming algorithm.
Remark: this time, the solution β̂lasso is a nonlinear function of y.
There is no obvious notion of effective degrees of freedom.
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Regularization Ridge regression and Lasso

Why does the Lasso eliminate variables?
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Regularization Ridge regression and Lasso

Comparing the Lasso and Ridge Regression
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Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso on simulated data set of Slide 53. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted
against their R2 on the training data, as a common form of indexing.
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Regularization Ridge regression and Lasso

Comparing the Lasso and Ridge Regression (continued)
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Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso. The simulated data is similar to that in the previous slide, except that
now only two predictors are related to the response. Right: Comparison of squared
bias, variance and test MSE between lasso (solid) and ridge (dashed). Both are
plotted against their R2 on the training data, as a common form of indexing.
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Regularization Ridge regression and Lasso

The Lasso in R

cv.out<-cv.glmnet(xapp,yapp,alpha=1)
plot(cv.out)

fit.lasso<-glmnet(xapp,yapp,lambda=cv.out$lambda.min,alpha=1)

lasso.pred<-predict(fit.lasso,s=cv.out$lambda.min,newx=xtst)
print(mean((ytst-lasso.pred)ˆ2))
1946.667
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Regularization Ridge regression and Lasso

CV error as a function of λ (Lasso)
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Regularization Ridge regression and Lasso

Coefficients

> print(fit.lasso$beta)
s0
(Intercept) .
JanTemp -1.157095e+00
JulyTemp .
RelHum .
Rain 1.404239e+00
Education -1.796084e+01
PopDensity .
pNonWhite 2.880287e+00
pWC -9.421496e-01
pop 2.141275e-06
pophouse .
income -4.655832e-04
logHCPot .
logNOxPot 1.392387e+01
logSO2ot 3.461564e-01
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Regularization Ridge regression and Lasso

Bayesian interpretation of ridge regression and Lasso
Bayesian inference

In Bayesian inference, the parameter β is considered as a random
variable.
Inference consists in computing the conditional probability distribution
of the parameter given the data, obtained by the Bayes Theorem as

p(β|y) =
p(y|β)p(β)

p(y)
∝ p(y|β)p(β)

The marginal distribution p(β) is called the prior distribution of β. It
encodes prior knowledge about β, i.e., information that we have about
β before observing the data.
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Regularization Ridge regression and Lasso

Bayesian interpretation of ridge regression and Lasso
Ridge regression corresponds to Gaussian errors and prior

Assumptions:
1 Gaussian errors: Y = Xβ + ε with ε ∼ N (0, σ2IN), so

p(y|β) ∝ exp

− 1
2σ2

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2


2 Gaussian prior: p(β) ∝ exp
(
− 1

2σ2
0

∑p
j=1 β

2
j

)
,

Then the log-posterior density of β is

log p(β|y) = − 1
2σ2

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

− 1
2σ2

0

p∑
j=1

β2
j + c

Ridge regression searches for the mode of posterior distribution.
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Regularization Ridge regression and Lasso

Bayesian interpretation of ridge regression and Lasso
Lasso correspond to a Laplace prior

With the Gaussian error model as before and an independent Laplace
prior

p(β) ∝ exp

−1
τ

p∑
j=1

|βj |

 ,

we get

log p(β|y) = − 1
2σ2

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

− 1
τ

p∑
j=1

|βj |+ c

Thierry Denœux ACE - Model Selection July 2019 70 / 112



Regularization Ridge regression and Lasso

Generalization

More generally, a prior of the form

p(β) ∝ exp

−γ p∑
j=1

|βj |q
 ,

leads to minimizing the MSE under a constraint
∑p

j=1 |βj |q ≤ t.

The case q = 1 (lasso) is the smallest q such that the constraint
region is convex; nonconvex constraint regions make the optimization
problem more difficult.
The case q = 0 corresponds to subset selection.
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Regularization Ridge regression and Lasso

Finding a compromise between lasso and ridge regression

We might try using other values of q besides 0, 1, or 2. Values of
q ∈ (1, 2) suggest a compromise between the lasso and ridge
regression.
Although this is the case, with q > 1, |βj |q is differentiable at 0, and
so does not share the ability of lasso (q = 1) for setting coefficients
exactly to zero.
The elastic net penalty

λ

p∑
j=1

(αβ2
j + (1− α)|βj |)

is a different compromise between ridge and lasso.
The elastic-net selects variables like the lasso, and shrinks together the
coefficients of correlated predictors like ridge.
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Regularization Ridge regression and Lasso

Elastic net penalty

Contours of constant value of
∑p

j=1 |βj |q for q = 1.2 (left plot), and the
elastic-net penalty

∑p
j=1(αβ2

j + (1− α)|βj |) for α = 0.2 (right plot).
Although visually very similar, the elastic-net has sharp (non-differentiable)
corners, while the q = 1.2 penalty does not.
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Regularization Regularized discriminant analysis

Overview

1 Introduction

2 Subset selection
Best subset and stepwise procedures
Choosing the optimal model

3 Regularization
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Regularized discriminant analysis
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Principal component analysis
Factor discriminant analysis
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Regularization Regularized discriminant analysis

Regularized discriminant analysis

The idea of regularization can be applied to other models such as
QDA and LDA.
For instance, one can shrink the separate covariances of QDA toward a
common covariance as in LDA. The regularized covariance matrices
have the form

Σ̂k(λ) = (1− λ)Σ̂k + λΣ̂

where Σ̂ is the pooled covariance matrix as used in LDA.
Here λ ∈ [0, 1] allows a continuum of models between LDA and QDA,
and needs to be specified.
In practice λ can be chosen based on the performance of the model on
validation data, or by cross-validation.
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Regularization Regularized discriminant analysis

Regularized discriminant analysis (continued)

Similar modifications allow Σ̂ itself to be shrunk toward the scalar
covariance,

Σ̂(γ) = (1− γ)Σ̂ + γσ̂2I

for γ ∈ [0, 1].
Replacing Σ̂ in the previous equation by Σ̂(γ) leads to a more general
family of covariances Σ̂k(λ, γ) indexed by a pair of parameters.
In R: package klaR, function rda.
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Dimension reduction
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Dimension reduction

Feature extraction

Given p variables (features) X = (X1, . . . ,Xp), feature extraction
consists in finding q new features

Z1 = φ1(X1, . . . ,Xp)

...
Zq = φq(X1, . . . ,Xp),

where φ1, . . . , φq are functions from Rp to R. These functions may be
linear or nonlinear.
When functions φj are linear, we can write Zj = uTj X , where uj ∈ Rp.
Only this case will be considered in this chapter.
Geometrically, Zj can be seen as the coordinate of the projection of X
onto an axis directed by uj .
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Dimension reduction

Objectives of feature extraction

Feature extraction is useful for
Representing high-dimensional data in a lower-dimensional feature
space
Reducing the input dimension (and hence the number of parameters) in
prediction (regression or classification) problems

Vectors u1, . . . , uq are determined in such a way that the new features
Z1, . . . ,Zq contain as much useful information as possible.
Feature extraction methods can be supervised, or unsupervised.
Here, we consider two methods:

1 Principal Component Analysis (PCA) – unsupervised
2 Factor Discriminant Analysis (FDA) - supervised
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Dimension reduction Principal component analysis

Overview
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Dimension reduction Principal component analysis

Principal component analysis

Idea: find orthogonal directions uj in input space in which the projected
data has maximal variance. These directions correspond to features
Zj = uTj X (called principal components) that have maximum information
content.
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Dimension reduction Principal component analysis

Finding the first component

Let X = (X1, . . . ,Xp) a random vector with variance matrix Σ.
The first feature Z1 = uT1 X , called the first component, is chosen
such that

Var(Z1) = max
u1

Var(uT1 X ) = max
u1

uT1 Σu1

subject to uT1 u1 = 1.
To solve this constrained optimization problem, we write the Lagrange
function as

L(u1, λ) = uT1 Σu1 − λ(uT1 u1 − 1)
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Dimension reduction Principal component analysis

Finding the first component (continued)

The solution must verify

∂L

∂u1
= 2Σu1 − 2λu1 = 0⇔ Σu1 = λu1

uT1 u1 = 1

Vector u1 is thus the eigenvector of Σ with unit norm and eigenvalue
λ1. (We recall that a symmetric and positive definite p × p matrix has
p orthogonal eigenvectors with real and positive eigenvalues).
Now,

Var(uT1 X ) = uT1 Σu1 = uT1 (λ1u1) = λ1u
T
1 u1 = λ1.

so λ1 must be the largest eigenvalue.
Vector u1 is called the loading vector of the first principal component.
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Dimension reduction Principal component analysis

Finding the second component

The second component Z2 = uT2 X is chosen such that

Var(Z2) = max
u2

Var(uT2 X ) = max
u2

uT2 Σu2

subject to uT2 u2 = 1 and Cov(Z1,Z2) = 0.
Now,

Cov(Z1,Z2) = Cov(uT1 X , uT2 X ) = uT1 Σu2 = λ1u
T
1 u2,

so the second constraint can be written uT1 u2 = 0.
The Lagrange function is

L(u2, λ, µ) = uT2 Σu2 − λ(uT2 u2 − 1)− µuT2 u1
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Dimension reduction Principal component analysis

Finding the second component (continued)

We solve:
∂L

∂u2
= 2Σu2 − 2λu2 − µu1 = 0 (1)

Left-multiplying (1) by uT1 , we get

2 uT1 Σu2︸ ︷︷ ︸
0

−2 uT1 λu2︸ ︷︷ ︸
0

−µuT1 u1 = 0⇒ µ = 0

So, (1) reduces to

∂L

∂u2
= 2Σu2 − 2λu2 = 0⇔ Σu2 = λu2

The solution is an eigenvector of Σ. We choose the one with the
second largest eigenvalue λ2.
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Dimension reduction Principal component analysis

Finding the next components

Continuing the same line of reasoning, we obtain p uncorrelated
components Z = (Z1, . . . ,Zp) corresponding to the eigenvalues
λ1 ≥ . . . ≥ λp of Σ.
We can write

Z = UTX ,

where U = (u1, . . . , up) is the p × p matrix (called the loading matrix)
whose columns are the p eigenvectors.
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Dimension reduction Principal component analysis

Properties

The variance matrix of Z is

Var(Z ) = UTΣU = Λ,

where Λ = diag(λ1, . . . , λp) is the diagonal matrix containing the p
eigenvalues of Σ.
Matrix U verifies UTU = I, i.e., U−1 = UT : it is an orthogonal
matrix, corresponding to rotation.
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Dimension reduction Principal component analysis

Properties (continued)

Consequently,

tr(Λ) = tr[UT (ΣU)] = tr[(ΣU)UT ] = tr(Σ)

Hence, the sum of the eigenvalues is the total variance

p∑
j=1

λj =

p∑
j=1

Var(Xi )

The proportion of the variance explained by the first q components is

q∑
j=1

λj

/
p∑

j=1

λj
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Dimension reduction Principal component analysis

Practical application

In practice, we center the data, and we estimate Σ by the empirical
variance matrix

Σ̂ =
1
n

n∑
i=1

xix
T
i

If we also standardize the data, then matrix Σ̂ is actually the
correlation matrix R (its diagonal elements equal 1, and its
off-diagonal elements are correlation coefficients).
Typically, we keep only q components Z1, . . . ,Zq such that the
cumulative proportion of explained variance is close enough to 1.
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Dimension reduction Principal component analysis

PCA in R: example with the Seeds data

pca<-princomp(x,cor=TRUE)
Z<-pca$scores
lambda<-pca$sdevˆ2

plot(cumsum(lambda)/sum(lambda),type="l",xlab="q",ylab="proportion
of explained variance")

biplot(pca)

km<-kmeans(x,centers=3,nstart=10)
pairs(Z[,1:3],col=km$cluster)
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Dimension reduction Principal component analysis

Proportion of explained variance
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Dimension reduction Principal component analysis

First 2 principal components
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Dimension reduction Principal component analysis

First 3 principal components and HCM partition

Comp.1
−

2
−

1
0

1
2

−2 0 2 4

−2 −1 0 1 2

Comp.2

−
2

0
2

4

−1 0 1 2 3

−
1

0
1

2
3

Comp.3

Thierry Denœux ACE - Model Selection July 2019 93 / 112



Dimension reduction Principal component analysis

PCA in R: example 2

# Expressions dataset
load(’data_expressions.RData’)
ii<-which(colMeans(X)==0)
X1<-X[,-ii]
X1<-scale(X1)

# princomp doesn’t work because the number of colums of X1
# exceeds the number of rows

pca<-prcomp(X1)
lambda<-pca$sdevˆ2

pairs(pca$x[,1:5],col=y)
plot(cumsum(lambda)/sum(lambda),type="l",xlab="M",

ylab="proportion of explained variance")

Thierry Denœux ACE - Model Selection July 2019 94 / 112



Dimension reduction Principal component analysis

Proportion of explained variance
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Dimension reduction Principal component analysis

First five principal components
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Dimension reduction Principal component analysis

Principal component regression (PCR)

The idea is to fit a regression model using least squares, taking as
predictors M < p principal components:

yi = θ0 +
M∑

m=1

θmzim + εi , i = 1, . . . ,N

We have

M∑
m=1

θmzim =
M∑

m=1

θm

p∑
j=1

umjxij =

p∑
j=1

M∑
m=1

θmumjxij =

p∑
j=1

βjxij

with

βj =
M∑

m=1

θmumj
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Dimension reduction Principal component analysis

Principal component regression (continued)

Hence, the PCR model can be thought of as a special case of the
original linear regression model.
Dimension reduction serves to constrain the estimated βj coefficients,
which can yield a good bias-variance tradeoff.
As with ridge regression, principal components depend on the scaling
of the inputs, so typically we first standardize them.
The value of M can be determined by cross-validation.
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Dimension reduction Principal component analysis

Principal component regression in R

library(pls)

pcr.fit<-pcr(Mortality ˜.-logNOx,data=pollution,scale=TRUE,
validation="CV")

summary(pcr.fit)
validationplot(pcr.fit,val.type = "MSEP",legendpos = "topright")
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Dimension reduction Principal component analysis

Cross-validation MSE as a function of M
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Dimension reduction Factor discriminant analysis

Overview

1 Introduction

2 Subset selection
Best subset and stepwise procedures
Choosing the optimal model

3 Regularization
Ridge regression and Lasso
Regularized discriminant analysis

4 Dimension reduction
Principal component analysis
Factor discriminant analysis
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Dimension reduction Factor discriminant analysis

Factor discriminant analysis

Factor discriminant analysis (FDA) is a supervised dimension reduction
techniques, suitable for classification problems.
It finds linear combinations of the original predictors, such that the
between-class variance is maximized with respect to the within-class
variance (i.e., such that the overlap between the classes is minimized).
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Dimension reduction Factor discriminant analysis

Decomposition of the variance

It can be shown that the variance matrix Σ = Var(X ) can be decomposed
as

Σ = B + W,

where B and W are, respectively, the between-class and within-class
matrices:

W =
c∑

k=1

πkΣk

B =
c∑

k=1

πk(µk − µ)(µk − µ)T ,

where µk = E(X |Y = k), µ = E(X ) and Σk = Var(X |Y = k)
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Dimension reduction Factor discriminant analysis

Decomposition of the variance (continued)

For a new variable Z = uTX , its variance is

Var(Z ) = uTΣu = uT (W + B)u = uTWu + uTBu.

Here,

uTWu = uT

(
c∑

k=1

πkΣk

)
u =

c∑
k=1

πku
TΣku =

c∑
k=1

πkVar(Z |Y = k)

and

uTBu =
c∑

k=1

πku
T (µk − µ)(µk − µ)Tu

=
c∑

k=1

πk(uTµk − uTµ)2 =
c∑

k=1

πk {E(Z |Y = k)− E(Z )}2
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Dimension reduction Factor discriminant analysis

Maximization of class separation

Problem, find Z such that the ratio

J(u) =
uTBu

uTWu

is maximized.
Solution: u is the eigenvector associated to the largest eigenvalue of
Σ−1B. Variable Z is called a discriminant coordinate.
Case c = 2: matrix B has rank one, and so has Σ−1B. We can show
that

u = Σ−1(µ1 − µ2).

There is only one discriminant coordinate Z = uTX .
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Dimension reduction Factor discriminant analysis

Discriminant coordinates: case K > 2

When c > 2, matrix Σ−1B has rank c − 1.
There are M = min(c − 1, p) discriminant coordinates Z1, . . . ,ZM ,
obtained from the eigenvectors of Σ−1B corresponding to its M
eigenvalues λ1 ≥ . . . ≥ λM .
Remark: matrix Σ−1B is not symmetric: its eigenvectors are not
orthogonal, and variables Zj are correlated.
Interpretation: each coordinate Zm = uTmX for m ≥ 2 maximizes the
ratio

J(um) =
uTmBum
uTmWum

under the constraints uTmWu` = 0, for ` = 1, . . . ,m − 1.
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Dimension reduction Factor discriminant analysis

FDA in practice

Matrices Σ and B are estimated by

Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T

and

B̂ =
c∑

k=1

nk
n

(µ̂k − µ̂)(µ̂k − µ̂)T
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Dimension reduction Factor discriminant analysis

Example: Wine data

Results of a chemical analysis of 178 wines grown in the same region
in Italy but derived from three different cultivars.
The analysis determined the quantities of 13 constituents found in
each of the three types of wines.
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Dimension reduction Factor discriminant analysis

FDA in R: Wine data

wine<-read.csv(’wine.data’,header=FALSE)

lda.wine<-lda(V1˜. ,data=wine)
U<-lda.wine$scaling
X<-as.matrix(wine[,2:14])
Z<-X%*%U

plot(Z[,1],Z[,2],pch=wine$V1,col=wine$V1,xlab=’Z1’,ylab=’Z2’)
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Dimension reduction Factor discriminant analysis

Plot in the 2-D space of discriminant coordinates
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Dimension reduction Factor discriminant analysis

FDA in R: Expressions data

load(’data_expressions.RData’)
ii<-which(colMeans(X)==0)
X1<-X[,-ii]

lda.expr<-lda(y˜ X1)
U<-lda.expr$scaling
Z<-X1%*%U

pairs(Z,col=y,pch=y)
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Dimension reduction Factor discriminant analysis

Plot in the 5-D space of discriminant coordinates
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