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Need for model selection

Consider, for instance, a regression problem with a response variable
Y and 3 predictors X1,X2,X3.
We can consider many (an infinity of) models, such as

Y = β0 + β1X1 + ε

Y = β0 + β1X1 + β2X2 + β3X3 + ε

Y = β0 + β1X1 + β2X2 + β3X3 + β4X
2
1 + β5X

2
2 +

β6X1X2 + β7X
2
3 + β8X1X3 + β9X2X3 + ε

...

Which model to choose?
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Bias-variance trade-off

We have seen that a more complex model will not always have a
smaller error when applied to test data.
This is due to the bias-variance trade-off: when the number of
parameters increases, the bias of the model decreases, but the variance
increases.
Furthermore, a simpler model often has a distinct advantage in terms
of its interpretability.
In this chapter, we discuss some tools to select models that will be

Complex enough to fit the data, but
Not too complex to avoid overfitting and to be interpretable.

We focus mainly on linear regression, but the tools can be adapted to
classification.
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Three classes of methods

Subset Selection: We identify a subset of the p predictors that we believe
to be related to the response. We then fit a model using the
reduced set of variables.

Regularization: We fit a model involving all p predictors, but the estimated
coefficients are shrunken towards zero to obtain a smoother
prediction function. This regularization (also known as
shrinkage) has the effect of reducing variance and can also
perform variable selection.

Feature extraction: We project the p predictors into a q-dimensional
subspace, where q < p. This is achieved by computing q
different linear combinations, or projections, of the variables.
Then these q projections (features) are used as predictors to
fit a linear model.
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Part I

Subset selection
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Subset selection methods

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Subset selection methods Best subset selection

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Subset selection methods Best subset selection

Best subset selection

1 LetM0 denote the null model, which contains no predictors. This
model simply predicts the sample mean for each observation.

2 For k = 1, 2, . . . , p:
1 Fit all

(
p
k

)
models that contain exactly k predictors.

2 Pick the best among these
(
p
k

)
models, and call itMk . Here “best” is

defined as having the smallest RSS, or equivalently the largest R2.
3 Select a single best model from amongM0, . . . ,Mp. (How? to be

seen later).
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Subset selection methods Best subset selection

Example: air pollution and mortality

Data are from McDonald and Schwing (1973), “Instabilities of
Regression Estimates Relating Air Pollution to Mortality”,
Technometrics, 15, 463-481.
This data set of 15 predictors and a measure of mortality in 60 US
metropolitan areas in 1959-1961.
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Subset selection methods Best subset selection

Variables

Response: Total Age Adjusted Mortality Rate
Predictors:

1 Mean annual precipitation in inches
2 Mean January temperature in degrees Fahrenheit
3 Mean July temperature in degrees Fahrenheit
4 Percent of 1960 SMSA population that is 65 years of age or over
5 Population per household, 1960 SMSA
6 Median school years completed for those over 25 in 1960 SMSA
7 Percent of housing units that are found with facilities
8 Population per square mile in urbanized area in 1960
9 % of 1960 urbanized area population that is non-white
10 % employment in white-collar occupations in 1960 urbanized area
11 % of families with income under 3,000 in 1960 urbanized area
12 Relative population potential of hydrocarbons, HC
13 Relative pollution potential of oxides of nitrogen, NOx
14 Relative pollution potential of sulfur dioxide, SO2
15 Percent relative humidity, annual average at 1 p.m.
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Subset selection methods Best subset selection

Best subset selection in R

library(’leaps’)
reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’exhaustive’,nvmax=15)
plot(reg.fit,scale="r2")
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Subset selection methods Best subset selection

Extension to other models

Although we have presented best subset selection here for least
squares regression, the same ideas apply to other types of models,
such as logistic regression.
The deviance, −2`(θ̂), plays the role of RSS for a broader class of
models.
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Subset selection methods Best subset selection

Stepwise selection

For computational reasons, best subset selection cannot be applied
with very large p.
Best subset selection may also suffer from statistical problems when p
is large: larger the search space, the higher the chance of finding
models that look good on the training data, even though they might
not have any predictive power on future data.
Thus an enormous search space can lead to overfitting and high
variance of the coefficient estimates.
For both of these reasons, stepwise methods, which explore a far more
restricted set of models, are attractive alternatives to best subset
selection.
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Subset selection methods Forward stepwise selection

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Subset selection methods Forward stepwise selection

Forward stepwise selection

Forward stepwise selection begins with a model containing no
predictors, and then adds predictors to the model, one at a time, until
all of the predictors are in the model.
In particular, at each step the variable that gives the greatest
additional improvement to the fit is added to the model.
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Subset selection methods Forward stepwise selection

Forward stepwise selection in detail

1 LetM0 denote the null model, which contains no predictors.
2 For k = 0, . . . , p − 1:

1 Consider all p − k models that augment the predictors inMk with one
additional predictor.

2 Choose the best among these p − k models, and call itMk+1. Here
“best” is defined as having smallest RSS or highest R2.

3 Select a single best model from amongM0, . . . ,Mp. (How? to be
seen later).
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Subset selection methods Forward stepwise selection

More on forward stepwise selection

Computational advantage over best subset selection is clear.
It is not guaranteed to find the best possible model out of all 2p

models containing subsets of the p predictors.
In contrast to best subset selection, the models are nested:

M0 ⊂ . . . ⊂Mp
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Subset selection methods Forward stepwise selection

Forward stepwise selection in R

reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’forward’,nvmax=15)
plot(reg.fit,scale="r2")
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Subset selection methods Backward stepwise selection

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Subset selection methods Backward stepwise selection

Backward stepwise selection

Like forward stepwise selection, backward stepwise selection provides
an efficient alternative to best subset selection.
However, unlike forward stepwise selection, it begins with the full least
squares model containing all p predictors, and then iteratively removes
the least useful predictor, one-at-a-time.
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Subset selection methods Backward stepwise selection

Backward stepwise selection in detail

1 LetMp denote the full model, which contains all p predictors.
2 For k = p, p − 1, . . . , 1:

1 Consider all k models that contain all but one of the predictors inMk ,
for a total of k − 1 predictors.

2 Choose the best among these k models, and call itMk−1. Here “best”
is defined as having smallest RSS or highest R2.

3 Select a single best model from amongM0, . . . ,Mp. (How? to be
seen later).
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Subset selection methods Backward stepwise selection

More on backward stepwise selection

Like forward stepwise selection, the backward selection approach
searches through only 1 + p(p + 1)/2 models, and so can be applied in
settings where p is too large to apply best subset selection
Like forward stepwise selection, backward stepwise selection is not
guaranteed to yield the best model containing a subset of the p
predictors.
Backward stepwise selection requires that the number of samples n is
larger than the number of variables p (so that the full model can be
fit). In contrast, forward stepwise selection can be used even when
n < p, and so is the only viable subset method when p is very large.
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Subset selection methods Backward stepwise selection

Backward stepwise selection in R

reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’backward’,nvmax=15)
plot(reg.fit,scale="r2")

Forward Backward
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Choosing the optimal model

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Choosing the optimal model

Choosing the optimal model

Each of the subset selection procedures returns a sequence of models
Mk indexed by model size k = 0, 1, 2, . . . , p. Our job here is to select
k̂ . Once selected, we will return modelM

k̂
.

Which criterion for model selection?
The model containing all of the predictors will always have the
smallest RSS and the largest R2, since these quantities are related to
the training error.
We wish to choose a model with low prediction error, not a model
with low training error. Recall that training error is usually a poor
estimate of prediction error.
Therefore, RSS and R2 are not suitable for selecting the best model
among a collection of models with different numbers of predictors.
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Choosing the optimal model

Estimating prediction error: two approaches

We can
1 Indirectly estimate prediction error by making an adjustment to the

training error to account for the bias due to overfitting, or
2 Directly estimate the prediction error, using either the hold-out method

or cross-validation.

We illustrate both approaches next.
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Choosing the optimal model Training error adjustment

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Choosing the optimal model Training error adjustment

Training error adjustment techniques

These techniques adjust the training error for the model size, and can
be used to select among a set of models with different numbers of
variables.
Three criteria:

1 Adjusted R2

2 Akaike information criterion (AIC)
3 Bayesian information criterion (BIC)

The next figure displays BIC, and adjusted R2 for the best model of
each size produced by best subset selection on the pollution data set.

Thierry Denœux ACE - Model Selection Spring 2022 28 / 123



Choosing the optimal model Training error adjustment

Example

reg.fit<-regsubsets(Mortality˜.-logNOx,data=pollution,method=’exhaustive’,nvmax=15)
plot(reg.fit,scale="adjr2") plot(reg.fit,scale="bic")
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Choosing the optimal model Training error adjustment

Adjusted R-squared

The usual R2 is
R2 = 1− RSS/n

TSS/n

It can be seen as en estimate of the “population R2” defined as

R2
pop = 1− σ2

Var(Y )

The R2 uses biased estimates of the residual and total variances. The
adjusted R2 is based on unbiased estimates:

R
2

= 1− RSS/(n − p − 1)

TSS/(n − 1)

where p is the number of predictors used.
This criterion is specific to regression.
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Choosing the optimal model Training error adjustment

AIC

The AIC criterion is defined for a large class of models fit by maximum
likelihood:

AIC = −2`(θ̂) + 2r

where `(θ̂) is the maximized value of the log-likelihood function for
the estimated model, and r is the number of parameters.
The best model has the smallest AIC value.
For linear regression with p variables and a constant term, r = p + 2
(p + 1 coefficients and the variance σ2 or the error term).

Thierry Denœux ACE - Model Selection Spring 2022 31 / 123



Choosing the optimal model Training error adjustment

BIC

Definition:
BIC = −2`(θ̂) + r log(n)

where r is the number of parameters.
Like AIC, BIC will tend to take on a small value for a model with a
low prediction error, and so generally we select the model that has the
lowest BIC value.
Notice that BIC replaces the 2r used by AIC with a r log(n) term,
where n is the number of observations.
Since log n > 2 for any n > 7, the BIC statistic generally places a
heavier penalty on models with many variables, and hence results in
the selection of smaller models than AIC.
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Choosing the optimal model Direct error estimation

Overview

1 Subset selection methods
Best subset selection
Forward stepwise selection
Backward stepwise selection

2 Choosing the optimal model
Training error adjustment
Direct error estimation
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Choosing the optimal model Direct error estimation

Direct estimation of the prediction error

We compute an estimate of the prediction error for each modelMk

under consideration, and then select the k for which the resulting
estimated prediction error is smallest.
This procedure has an advantage relative to AIC, BIC, and adjusted
R2, in that it provides a direct estimate of the prediction error.
It can also be used in a wider range of model selection tasks, even in
cases where it is hard to pinpoint the model degrees of freedom.
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Choosing the optimal model Direct error estimation

Direct estimation of the prediction error

Two methods:
1 Validation-set (hold-out) approach
2 Cross-validation
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Choosing the optimal model Direct error estimation

Validation-set approach

Training

Validation

Here we randomly divide the available set of
samples into two parts:

1 a training set and
2 a validation set

The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.
The resulting validation-set error provides an estimate of the
prediction error. This is typically assessed using MSE in the case of
regression and error rate in the case of classification.
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Choosing the optimal model Direct error estimation

Hold-out approach (continued)

After the best model has been selected, it is usually fit on the whole
data (training+validation).
The validation error for the best model is biased (optimistic).

Training

Validation

Test

+

+

The error of the best model has to be estimated
using an independent test set.
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Choosing the optimal model Direct error estimation

Example

n<-nrow(pollution)
ntrain=45
nval=n-ntrain
train<-sample(1:n,ntrain)
pollution.train<-pollution[train,]
pollution.val<-pollution[-train,]

Formula<-c(Mortality ˜ pNonWhite,
Mortality ˜ Education + pNonWhite,
Mortality ˜ Rain + pNonWhite + logSO2ot,
Mortality ˜ JanTemp+ Rain +pNonWhite +logNOxPot,
...
)

for(i in 1:10){
reg<-lm(Formula[[i]],data=pollution.train)
pred<-predict(reg,newdata=pollution.val)
err[i]<-mean((pollution.val$Mortality-pred)ˆ2)
}
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Choosing the optimal model Direct error estimation

Results with 4 different splits (Air pollution data)
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Choosing the optimal model Direct error estimation

Limitations of the hold-out approach

The validation estimate of the prediction error can be highly variable,
depending on which observations are included in the training set.
In the hold-out approach, only a subset of the observations – those
that are included in the training set – are used to fit the model.
Consequently, the validation-set error tends to overestimate the
prediction error for the model fit on the entire data set.
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Choosing the optimal model Direct error estimation

K -fold cross-validation

Widely used approach for estimating prediction error.
Estimates can be used to select the best model, and to give an idea of
the prediction error of the final chosen model.
Idea is to randomly divide the data into K equal-sized subsets. We
leave out subset k , fit the model to the other K − 1 subsets
(combined), and then obtain predictions for the left-out k-th subset.
This is done in turn for each subset k = 1, 2, . . . ,K , and then the
results are combined.
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Choosing the optimal model Direct error estimation

K -fold cross-validation in detail

Let the K subsets be C1,C2, . . . ,CK , where Ck denotes the indices of
the observations in subset k . There are nk observations in subset k : if
n is a multiple of K , then nk = n/K .
Compute

CV(K) =
1
n

K∑
k=1

nk ×MSEk ,

where
MSEk =

1
nk

∑
i∈Ck

(
yi − ŷ

(−k)
i

)2

and ŷ
(−k)
i is the fitted value for observation i , obtained from the data

with subset k removed.
Setting K = n yields n-fold or leave-one-out cross-validation
(LOOCV).
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Choosing the optimal model Direct error estimation

Special case

With least-squares linear regression, a shortcut makes the cost of
LOOCV the same as that of a single model fit!
The following formula holds:

CV(n) =
1
n

n∑
i=1

(
yi − ŷi
1− hi

)2

,

where ŷi is the ith fitted value from the original least squares fit, and
hi is the leverage (diagonal term of the “hat” matrix). (Reminder:
H = X(XTX)−1XT , and ŷ = Hy).
This is like the ordinary MSE, except the i-th residual is divided by
1− hi .
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Choosing the optimal model Direct error estimation

Choice of K

Since each training set is only (K − 1)/K as big as the original training
set, the estimates of prediction error will typically be biased upward.
This bias is minimized when K = n (LOOCV), but this estimate has
high variance, because the estimates from each fold are highly
correlated.
K = 5 or 10 provides a good compromise for this bias-variance
tradeoff.
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Choosing the optimal model Direct error estimation

Standard error of the CV estimate

We can estimate the standard error (standard deviation) of the CV
error by

ŝe(CV(K)) =

√√√√ 1
K − 1

K∑
k=1

(MSEk −MSE)2

One-standard-error rule:
Calculate the standard error of the estimated test MSE for each model
size
Select the smallest model for which the estimated test error is within
one standard error of the lowest point on the curve (see next slide)
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Choosing the optimal model Direct error estimation

One-standard-error rule

complexity
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Choosing the optimal model Direct error estimation

Example of 10-fold cross-validation

K<-10
folds=sample(1:K,n,replace=TRUE)
CV<-rep(0,10)

for(i in (1:10)){
for(k in (1:K)){
reg<-lm(Formula[[i]],data=pollution[folds!=k,])
pred<-predict(reg,newdata=pollution[folds==k,])
CV[i]<-CV[i]+ sum((pollution$Mortality[folds==k]-pred)ˆ2)
}
CV[i]<-CV[i]/n
}
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Choosing the optimal model Direct error estimation

Result (4 trials)
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Choosing the optimal model Direct error estimation

Final remarks on cross-validation

The CV error estimates can be averaged over r repetitions of K -fold
cross-validation with different random partitions, to reduce the
variance of the CV error estimates.
After the best model has been selected, we usually re-estimate the
model parameters using the whole training set.
To obtain an unbiased estimate of the best model’s error, we need an
independent test set, or nested cross-validation.

Thierry Denœux ACE - Model Selection Spring 2022 49 / 123



Choosing the optimal model Direct error estimation

Nested cross-validation

Two nested loops: an outer loop of K folds and an inner loop of K ′

folds.
The data is first split into K outer subsets.
One by one, an outer subset is selected (outer loop); the remaining
K − 1 outer subsets are pooled and split into K ′ inner subsets.
Model selection is performed by K ′-fold CV (inner loop).
The best model is fit on K − 1 outer subsets and its performance is
evaluated using the outer test set.
After the outer loop has been completed, the error is averaged over
the K outer subsets.
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Part II

Regularization
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Shrinkage methods

By retaining only a subset of the predictors, subset selection produces
a model that is interpretable and has possibly lower prediction error
than the full model.
However, because it is a discrete process – variables are either retained
or discarded – it often exhibits high variance, and so does not always
reduce the prediction error of the full model.
Shrinkage methods are more continuous, and do not suffer as much
from high variability.
Two main methods:

1 Ridge regression
2 Lasso
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Ridge regression and lasso

Overview

1 Ridge regression and lasso
Ridge regression
Lasso
Bayesian interpretation

2 Regularized discriminant analysis
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Ridge regression and lasso Ridge regression

Overview
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Ridge regression and lasso Ridge regression

Ridge regression

Ridge regression shrinks the regression coefficients by imposing a
penalty on their size. The ridge coefficients minimize a penalized
residual sum of squares:

β̂ridge = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

β2
j


Here λ ≥ 0 is a regularization coefficient (hyperparameter), which
controls the amount of shrinkage: the larger the value of λ, the
greater the amount of shrinkage. The parameters βj are shrunk
toward zero (and each other), i.e., to the simplest model (with only
the constant term).
Selecting a good value for λ is critical; cross-validation can be used for
this.
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Ridge regression and lasso Ridge regression

Equivalent form

An equivalent way to write the ridge problem is

β̂ridge = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2
subject to

p∑
j=1

β2
j ≤ t,

which makes explicit the size constraint on the parameters. (See next
slide).
There is a one-to-one correspondence between parameters t and λ in
the previous formulation.
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Ridge regression and lasso Ridge regression

Ridge regression as a constrained optimization problem
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Ridge regression and lasso Ridge regression

The effect of ridge regression
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Ridge regression and lasso Ridge regression

Derivation of the ridge regression estimates

We can show that β̂ridge can be found by separating the minimization
problem into two parts, after centering the inputs (replacing xij by
xij − x j):

1 We estimate β0 by y = 1
n

∑n
i=1 yi

2 The remaining coefficients get estimated by a ridge regression without
intercept, using the centered xij and the centered yi .

We assume that both the inputs and the output have been centered,
so that the input matrix X has p (rather than p + 1) columns, and y is
the n-vector of centered outputs.
The criterion can be written in matrix form

RSSλ(β) = (y − Xβ)T (y − Xβ) + λβTβ.
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Ridge regression and lasso Ridge regression

Derivation of the ridge regression estimates (continued)

The criterion can be rewritten as

RSSλ(β) = yTy − 2βTXTy + βT (XTX + λIp)β

Differentiating with respect to β we obtain

∂RSSλ(β)

∂β
= −2XTy + 2(XTX + λIp)β

The solution of the equation ∂RSSλ(β)
∂β = 0 is

β̂ridge = (XTX + λIp)−1XTy
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Ridge regression and lasso Ridge regression

Effective degrees of freedom

As with the least-squares method, the fitted values are linear functions
of the yi

ŷridge = Xβ̂ridge = X

β̂ridge︷ ︸︸ ︷
(XTX + λIp)−1XT︸ ︷︷ ︸

Sλ

y

When λ = 0, Sλ = H and tr(Sλ) = p, i.e., the degrees of freedom of
the model. (Reminder: the trace of a projection matrix is equal to its
rank).
By analogy, when λ > 0, we can define the effective degrees of
freedom as

df(λ) = tr(Sλ).
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Ridge regression and lasso Ridge regression

Example
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Ridge regression and lasso Ridge regression

Ridge regression: scaling of predictors

The standard least squares coefficient estimates are scale equivariant:
multiplying Xj by a constant c simply leads to a scaling of the least
squares coefficient estimates by a factor of 1/c . In other words,
regardless of how the jth predictor is scaled, Xj β̂j will remain the same.
In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor by a constant, due to
the sum of squared coefficients term in the penalty part of the ridge
regression objective function.
Therefore, it is best to apply ridge regression after standardizing the
predictors (dividing each centered variable by its standard deviation).
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Ridge regression and lasso Ridge regression

Why does ridge regression improve over least squares?
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Simulated data with n = 50 observations, p = 45 predictors, all having nonzero
coefficients. Squared bias (black), variance (green), and test MSE (purple) for the
ridge regression predictions, as a function of λ. The horizontal dashed lines
indicate the minimum possible MSE.
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Ridge regression and lasso Ridge regression

Ridge regression in R

library(glmnet)

x<-model.matrix(Mortality˜.-logNOx,pollution)
y<-pollution$Mortality[-21] # obs 21 has 2 missing values
n<-nrow(x)
ntrain=45
ntst=n-45
train<-sample(1:n,ntrain)
xtrain<-x[train,]
ytrain<-y[train]
xtst<-x[-train,]
ytst<-y[-train]

cv.out<-cv.glmnet(xtrain,ytrain,alpha=0)
plot(cv.out)

fit<-glmnet(xtrain,ytrain,lambda=cv.out$lambda.min,alpha=0)
ridge.pred<-predict(fit,s=cv.out$lambda.min,newx=xtst)
print(mean((ytst-ridge.pred)ˆ2))
2421.136
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Ridge regression and lasso Ridge regression

CV error as a function of λ
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Ridge regression and lasso Ridge regression

Coefficients

fit$beta
s0
(Intercept) .
JanTemp -2.641635e-01
JulyTemp 7.231499e-01
RelHum -1.443636e-01
Rain 9.618201e-01
Education -1.154417e+01
PopDensity 2.066547e-03
pNonWhite 1.478269e+00
pWC -1.105875e+00
pop 2.629839e-06
pophouse 3.057905e+01
income -1.008305e-03
logHCPot 2.311552e+00
logNOxPot 6.616369e+00
logSO2ot 3.966114e+00
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Ridge regression and lasso Lasso

Overview

1 Ridge regression and lasso
Ridge regression
Lasso
Bayesian interpretation

2 Regularized discriminant analysis
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Ridge regression and lasso Lasso

The lasso

Ridge regression has one obvious disadvantage: unlike subset
selection, it includes all p predictors in the final model
The lasso is a relatively recent alternative to ridge regression that
overcomes this disadvantage. The lasso coefficients, β̂lasso minimize a
penalized residual sum of squares:

β̂lasso = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2

+ λ

p∑
j=1

|βj |

 ,

where the L2 norm used in ridge regression is replaced by the L1 norm
in the penalty term.

(Reminder: the Lp norm is defined as ‖β‖p =
(∑

j |βj |p
)1/p

).
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Ridge regression and lasso Lasso

The lasso (continued)

As with ridge regression, the lasso shrinks the coefficient estimates
towards zero.
However, in the case of the lasso, the L1 penalty has the effect of
forcing some of the coefficient estimates to be exactly equal to zero
when the tuning parameter λ is sufficiently large.
Hence, much like best subset selection, the lasso performs variable
selection.
We say that the lasso yields sparse models – that is, models that
involve only a subset of the variables.
As in ridge regression, selecting a good value of λ for the lasso is
critical; cross-validation is again the method of choice.

Thierry Denœux ACE - Model Selection Spring 2022 70 / 123



Ridge regression and lasso Lasso

Example
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Ridge regression and lasso Lasso

Equivalent form

As in the case of ridge problem, the previous unconstrained
optimization problem is equivalent to the following constrained one:

β̂lasso = argmin
β


n∑

i=1

yi − β0 −
p∑

j=1

xijβj

2
subject to

p∑
j=1

|βj | ≤ t,

This problem can be solved using a quadratic programming algorithm.
Remark: this time, the solution β̂lasso is a nonlinear function of y.
There is no obvious notion of effective degrees of freedom.
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Ridge regression and lasso Lasso

Why does the lasso eliminate variables?

When p = 2, the feasibility region is a diamond, which has corners; if the
solution occurs at a corner, then it has one parameter βj equal to zero.
When p > 2, the feasibility region has many corners, flat edges and faces;
there are many more opportunities for the estimated parameters to be zero.
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Ridge regression and lasso Lasso

Comparing the lasso and ridge regression

0.02 0.10 0.50 2.00 10.00 50.00

0
1
0

2
0

3
0

4
0

5
0

6
0

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

0.0 0.2 0.4 0.6 0.8 1.0

0
1
0

2
0

3
0

4
0

5
0

6
0

R
2
 on Training Data

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

λ

Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso on simulated data set of Slide 64. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dashed). Both are plotted
against their R2 on the training data, as a common form of indexing.
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Ridge regression and lasso Lasso

Comparing the lasso and ridge regression (continued)
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Left: Plots of squared bias (black), variance (green), and test MSE (purple) for
the lasso. The simulated data are similar to those in the previous slide, except
that now only two predictors are related to the response. Right: Comparison of
squared bias, variance and test MSE between lasso (solid) and ridge (dashed).
Both are plotted against their R2 on the training data, as a common form of
indexing.
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Ridge regression and lasso Lasso

The lasso in R

cv.out<-cv.glmnet(xtrain,ytrain,alpha=1)
plot(cv.out)

fit.lasso<-glmnet(xtrain,ytrain,lambda=cv.out$lambda.min,alpha=1)

lasso.pred<-predict(fit.lasso,s=cv.out$lambda.min,newx=xtst)
print(mean((ytst-lasso.pred)ˆ2))
1946.667
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Ridge regression and lasso Lasso

CV error as a function of λ (lasso)
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Ridge regression and lasso Lasso

Coefficients

> print(fit.lasso$beta)
s0
(Intercept) .
JanTemp -1.157095e+00
JulyTemp .
RelHum .
Rain 1.404239e+00
Education -1.796084e+01
PopDensity .
pNonWhite 2.880287e+00
pWC -9.421496e-01
pop 2.141275e-06
pophouse .
income -4.655832e-04
logHCPot .
logNOxPot 1.392387e+01
logSO2ot 3.461564e-01
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Ridge regression and lasso Bayesian interpretation

Overview

1 Ridge regression and lasso
Ridge regression
Lasso
Bayesian interpretation

2 Regularized discriminant analysis
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Ridge regression and lasso Bayesian interpretation

Bayesian inference

In Bayesian inference, the parameter β is treated as a random variable.
Inference consists in computing the conditional probability distribution
of the parameter given the data, obtained by the Bayes Theorem as

p(β | y) =
p(y | β)p(β)

p(y)
∝ p(y | β)︸ ︷︷ ︸

likelihood

p(β)︸︷︷︸
prior

The marginal distribution p(β) is called the prior distribution of β. It
encodes prior knowledge about β, i.e., information that we have about
β before observing the data.
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Ridge regression and lasso Bayesian interpretation

Ridge regression corresponds to Gaussian errors and prior

Assumptions:
1 Gaussian errors: Y = Xβ + ε with ε ∼ N (0, σ2In), so

p(y | β) ∝ exp

− 1
2σ2

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2


2 Gaussian prior: p(β) ∝ exp
(
− 1

2σ2
0

∑p
j=1 β

2
j

)
,

Then the log-posterior density of β is

log p(β | y) = − 1
2σ2

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

− 1
2σ2

0

p∑
j=1

β2
j + c

Ridge regression searches for the mode of the posterior distribution.
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Ridge regression and lasso Bayesian interpretation

Lasso correspond to a Laplace prior

With the Gaussian error model as before and an independent Laplace
prior

p(β) ∝ exp

−1
τ

p∑
j=1

|βj |

 ,

we get

log p(β | y) = − 1
2σ2

n∑
i=1

yi − β0 −
p∑

j=1

xijβj

2

− 1
τ

p∑
j=1

|βj |+ c

Thus, the lasso corresponds to a Laplace prior.
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Ridge regression and lasso Bayesian interpretation

Generalization

More generally, a prior of the form

p(β) ∝ exp

−γ p∑
j=1

|βj |q


leads to minimizing the MSE under a constraint
∑p

j=1 |βj |q ≤ t.

The case q = 1 (lasso) is the smallest q such that the constraint
region is convex; nonconvex constraint regions make the optimization
problem more difficult.
The case q = 0 corresponds to subset selection.
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Ridge regression and lasso Bayesian interpretation

Finding a compromise between lasso and ridge regression

We might try using other values of q besides 0, 1, or 2. Values of
q ∈ (1, 2) suggest a compromise between the lasso and ridge
regression.
Although this is the case, with q > 1, |βj |q is differentiable at 0, and
so does not share the ability of lasso (q = 1) for setting coefficients
exactly to zero.
The elastic net penalty

λ

p∑
j=1

(αβ2
j + (1− α)|βj |)

with 0 ≤ α ≤ 1 is a different compromise between ridge and lasso.
The elastic-net selects variables like the lasso, and shrinks together the
coefficients of correlated predictors like ridge.
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Ridge regression and lasso Bayesian interpretation

Elastic net penalty

Contours of constant value of
∑p

j=1 |βj |q for q = 1.2 (left plot), and the
elastic-net penalty

∑p
j=1(αβ2

j + (1− α)|βj |) for α = 0.2 (right plot).
Although visually very similar, the elastic-net has sharp (non-differentiable)
corners, while the q = 1.2 penalty does not.
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Regularized discriminant analysis

Overview

1 Ridge regression and lasso
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2 Regularized discriminant analysis
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Regularized discriminant analysis

Regularized discriminant analysis

The idea of regularization can be applied to logistic regression in the
same way as in linear regression (using Lq penalization, also available
in package glmnet).
It can also applied to other models such as QDA and LDA.
For instance, one can shrink the separate covariances of QDA toward a
common covariance as in LDA. The regularized covariance matrices
have the form

Σ̂k(λ) = (1− λ)Σ̂k + λΣ̂

where Σ̂ is the pooled covariance matrix as used in LDA.
Here λ ∈ [0, 1] allows a continuum of models between LDA and QDA,
and needs to be specified.
In practice λ can be chosen based on the performance of the model on
validation data, or by cross-validation.
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Regularized discriminant analysis

Regularized discriminant analysis (continued)

Similar modifications allow Σ̂ itself to be shrunk toward the scalar
covariance,

Σ̂(γ) = (1− γ)Σ̂ + γσ̂2Ip

for γ ∈ [0, 1].
Replacing Σ̂ in the previous equation by Σ̂(γ) leads to a more general
family of covariances Σ̂k(λ, γ) indexed by a pair of parameters.
In R: package klaR, function rda.
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Part III

Feature extraction
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Principle

Given p variables (features) X = (X1, . . . ,Xp), feature extraction
consists in finding q new features

Z1 = Φ1(X1, . . . ,Xp)

...
Zq = Φq(X1, . . . ,Xp),

where Φ1, . . . ,Φq are functions from Rp to R. These functions may
be linear or nonlinear.
When functions Φj are linear, we can write Zj = uTj X , where uj ∈ Rp

and, without loss of generality, ‖uj‖ = 1. Only this case will be
considered in this chapter.
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Geometrical representation

Geometrically, Zj can be seen as the coordinate of the projection of X onto
an axis directed by uj .

<latexit sha1_base64="UeZUr6pbyw6cRm8yFYDc0MsDWKk="></latexit>uj

<latexit sha1_base64="qsqTDxHCRnJemfkgompl/3oe+Rc="></latexit>

X

<latexit sha1_base64="EAncLB2PBGasdxqGXtz5Pkn+EME=">AAACznicjVHLSsNAFD2Nr1pfVZdugkWom5KKosuiG5cV+oJaS5JO69i8SCaFUopbf8Ctfpb4B/oX3hmnoBbRCcmcOfecm7n3OpHHE2FZrxljYXFpeSW7mltb39jcym/vNJIwjV1Wd0MvjFuOnTCPB6wuuPBYK4qZ7TseazrDCxlvjlic8DCoiXHEOr49CHifu7Ygql1Mu3c3tdYhbd18wSpZapnzoKxBAXpVw/wLrtFDCBcpfDAEEIQ92EjoaaMMCxFxHUyIiwlxFWeYIkfelFSMFDaxQ/oO6NTWbEBnmTNRbpf+4tEbk9PEAXlC0sWE5d9MFU9VZsn+lnuicsq7jWl3dC6fWIFbYv/yzZT/9claBPo4UzVwqilSjKzO1VlS1RV5c/NLVYIyRMRJ3KN4TNhVzlmfTeVJVO2yt7aKvymlZOXZ1doU7/KWNODyz3HOg8ZRqXxSsq6OC5VzPeos9rCPIs3zFBVcooq66vgjnvBsVI2RMTXuP6VGRnt28W0ZDx/69pNE</latexit>

(uT
j X)uj
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Objectives of feature extraction

Feature extraction is useful for
Representing high-dimensional data in a lower-dimensional feature
space
Reducing the input dimension (and hence the number of parameters) in
prediction (regression or classification) problems

Vectors u1, . . . , uq are determined in such a way that the new features
Z1, . . . ,Zq contain as much useful information as possible.
Feature extraction methods can be supervised, or unsupervised.
Here, we consider two methods:

1 Principal Component Analysis (PCA) – unsupervised
2 Factor Discriminant Analysis (FDA) – supervised
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Principal component analysis

Overview

1 Principal component analysis
Mathematical derivation
Practical applications and examples
Principal component regression

2 Factor discriminant analysis
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Principal component analysis

Basic idea

Idea: find orthogonal directions uj in input space in which the projected
data has maximal variance. These directions correspond to features
Zj = uTj X (called principal components) that have maximum variance.
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Principal component analysis Mathematical derivation

Overview

1 Principal component analysis
Mathematical derivation
Practical applications and examples
Principal component regression

2 Factor discriminant analysis
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Principal component analysis Mathematical derivation

Finding the first component

Let X = (X1, . . . ,Xp) be a random vector with variance matrix Σ.
The first feature Z1 = uT1 X , called the first component, is chosen
such that

Var(Z1) = max
u1

Var(uT1 X ) = max
u1

uT1 Σu1

subject to uT1 u1 = 1.
To solve this constrained optimization problem, we write the Lagrange
function as

L(u1, λ) = uT1 Σu1 − λ(uT1 u1 − 1)
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Principal component analysis Mathematical derivation

Finding the first component (continued)

The solution must verify

∂L

∂u1
= 2Σu1 − 2λu1 = 0⇔ Σu1 = λu1

uT1 u1 = 1

Vector u1 is thus the eigenvector of Σ with unit norm and eigenvalue
λ1. (We recall that a symmetric and positive definite p × p matrix has
p orthogonal eigenvectors with real and positive eigenvalues).
Now,

Var(uT1 X ) = uT1 Σu1 = uT1 (λ1u1) = λ1u
T
1 u1 = λ1.

so λ1 must be the largest eigenvalue.
Vector u1 is called the loading vector of the first principal component.
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Principal component analysis Mathematical derivation

Finding the second component

The second component Z2 = uT2 X is chosen such that

Var(Z2) = max
u2

Var(uT2 X ) = max
u2

uT2 Σu2

subject to uT2 u2 = 1 and Cov(Z1,Z2) = 0.
Now,

Cov(Z1,Z2) = Cov(uT1 X , uT2 X ) = uT1 Σ︸︷︷︸
(λ1u1)T

u2 = λ1u
T
1 u2,

so the second constraint can be written uT1 u2 = 0.
The Lagrange function is

L(u2, λ, µ) = uT2 Σu2 − λ(uT2 u2 − 1)− µuT2 u1
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Principal component analysis Mathematical derivation

Finding the second component (continued)

We solve:
∂L

∂u2
= 2Σu2 − 2λu2 − µu1 = 0 (1)

Left-multiplying (1) by uT1 , we get

2 uT1 Σu2︸ ︷︷ ︸
0

−2 uT1 λu2︸ ︷︷ ︸
0

−µuT1 u1 = 0⇒ µ = 0

So, (1) reduces to

∂L

∂u2
= 2Σu2 − 2λu2 = 0⇔ Σu2 = λu2

The solution is an eigenvector of Σ. We choose the one with the
second largest eigenvalue λ2.
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Principal component analysis Mathematical derivation

Finding the next components

Continuing the same line of reasoning, we obtain p uncorrelated
components Z = (Z1, . . . ,Zp) corresponding to the eigenvalues
λ1 ≥ . . . ≥ λp of Σ.
We can write

Z = UTX ,

where U = (u1, . . . , up) is the p × p matrix (called the loading matrix)
whose columns are the p eigenvectors.
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Principal component analysis Mathematical derivation

Properties

The variance matrix of Z is

Var(Z ) = UTΣU = Λ,

where Λ = diag(λ1, . . . , λp) is the diagonal matrix containing the p
eigenvalues of Σ.
Matrix U verifies UTU = I, i.e., U−1 = UT : it is an orthogonal
matrix, corresponding to a rotation.
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Principal component analysis Mathematical derivation

Properties (continued)

Consequently,

tr(Λ) = tr[UT (ΣU)] = tr[(ΣU)UT ] = tr(Σ)

Hence, the sum of the eigenvalues is the total variance

p∑
j=1

λj =

p∑
j=1

Var(Xj)

The proportion of the variance explained by the first q components is

q∑
j=1

λj

/
p∑

j=1

λj
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Principal component analysis Practical applications and examples
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Principal component analysis Practical applications and examples

Practical application

In practice, we center the data, and we estimate Σ by the empirical
variance matrix

Σ̂ =
1
n

n∑
i=1

xix
T
i

If we also standardize the data, then matrix Σ̂ is actually the
correlation matrix R (its diagonal elements equal 1, and its
off-diagonal elements are correlation coefficients).
Typically, we keep only q components Z1, . . . ,Zq such that the
cumulative proportion of explained variance is close enough to 1.

Thierry Denœux ACE - Model Selection Spring 2022 104 / 123



Principal component analysis Practical applications and examples

Example: Wine data

Results of a chemical analysis of 178 wines grown in the same region
in Italy but derived from three different cultivars.
The analysis determined the quantities of 13 constituents found in
each of the three types of wines.
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Principal component analysis Practical applications and examples

PCA in R

wine<-read.csv(’wine.data’,header=FALSE)
X<-wine[,2:14]
X<-scale(X)
pca<-princomp(X)
Z<-pca$scores
lambda<-pca$sdevˆ2

plot(cumsum(lambda)/sum(lambda),type="l",xlab="q",
ylab="proportion of explained variance")

pairs(Z[,1:3],col=wine[,1],pch=wine[,1])
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Principal component analysis Practical applications and examples

Proportion of explained variance
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Principal component analysis Practical applications and examples

First 3 principal components
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Principal component analysis Principal component regression
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Principal component analysis Principal component regression

Principal component regression (PCR)

The idea is to fit a regression model using least squares, taking as
predictors q < p principal components:

yi = θ0 +

q∑
m=1

θmzim + εi , i = 1, . . . , n

We have
q∑

m=1

θmzim =

q∑
m=1

θm

p∑
j=1

umjxij =

p∑
j=1

q∑
m=1

θmumj︸ ︷︷ ︸
βj

xij
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Principal component analysis Principal component regression

Principal component regression (continued)

Hence, the PCR model can be thought of as a special case of the
original linear regression model.
Dimension reduction serves to constrain the estimated βj coefficients,
which can yield a good bias-variance tradeoff.
As with ridge regression, principal components depend on the scaling
of the inputs, so typically we first standardize them.
The value of q can be determined by cross-validation.
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Principal component analysis Principal component regression

Principal component regression in R

library(pls)

pcr.fit<-pcr(Mortality ˜.-logNOx,data=pollution,scale=TRUE,
validation="CV")

summary(pcr.fit)
validationplot(pcr.fit,val.type = "MSEP",

legendpos = "topright")
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Principal component analysis Principal component regression

Cross-validation MSE as a function of M
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Factor discriminant analysis

Factor discriminant analysis

Factor discriminant analysis (FDA) is a supervised dimension reduction
techniques, suitable for classification problems.
It finds linear combinations of the original predictors, such that the
between-class variance is maximized with respect to the within-class
variance (i.e., such that the overlap between the classes is minimized).

Thierry Denœux ACE - Model Selection Spring 2022 115 / 123



Factor discriminant analysis

Decomposition of the variance matrix

Proposition

The variance matrix Σ = Var(X ) can be decomposed as

Σ = B + W,

where B and W are, respectively, the between-class and within-class
matrices:

W =
c∑

k=1

πkΣk

B =
c∑

k=1

πk(µk − µ)(µk − µ)T ,

where µk = E(X | Y = k), µ = E(X ) and Σk = Var(X | Y = k)
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Factor discriminant analysis

Proof

Σ =
c∑

k=1

πkE
[
(X − µ)(X − µ)T | Y = k

]
=

c∑
k=1

πkE
[
(X − µk + µk − µ)(X − µk + µk − µ)T | Y = k

]
=

c∑
k=1

πkE
[
(X − µk)(X − µk)T | Y = k

]
︸ ︷︷ ︸

W

+
c∑

k=1

πk(µk − µ)(µk − µ)T︸ ︷︷ ︸
B

+ 2
c∑

k=1

πk E
[
(X − µk)(µk − µ)T | Y = k

]
︸ ︷︷ ︸

0
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Factor discriminant analysis

Variance of Z = uTX

For a new variable Z = uTX , its variance is

Var(Z ) = uTΣu = uT (W + B)u = uTWu + uTBu.

Here,

uTWu = uT

(
c∑

k=1

πkΣk

)
u =

c∑
k=1

πku
TΣku =

c∑
k=1

πk Var(Z |Y = k)

and

uTBu =
c∑

k=1

πku
T (µk − µ)(µk − µ)Tu

=
c∑

k=1

πk(uTµk − uTµ)2 =
c∑

k=1

πk {E(Z |Y = k)− E(Z )}2
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Factor discriminant analysis

Maximization of class separation

Problem: Find Z such that the ratio

J(u) =
uTBu

uTWu

is maximized.
Solution: u is the eigenvector associated to the largest eigenvalue of
Σ−1B. Variable Z is called a discriminant coordinate.
Case c = 2: matrix B has rank one, and so has Σ−1B. We can show
that

u = Σ−1(µ1 − µ2).

It is the vector of coefficients of LDA. There is only one discriminant
coordinate Z = uTX .
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Factor discriminant analysis

Discriminant coordinates: case c > 2

When c > 2, matrix Σ−1B has rank min(c − 1, p).
There are q = min(c − 1, p) discriminant coordinates Z1, . . . ,Zq,
obtained from the eigenvectors of Σ−1B corresponding to its q
eigenvalues λ1 ≥ . . . ≥ λq.
Remark: matrix Σ−1B is not symmetric: its eigenvectors are not
orthogonal, and variables Zj are correlated.
Interpretation: each coordinate Zj = uTj X for j ≥ 2 maximizes the
ratio

J(uj) =
uTj Buj

uTj Wuj

under the constraints uTj Wu` = 0, for ` = 1, . . . , j − 1.
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Factor discriminant analysis

FDA in practice

Matrices Σ and B are estimated by

Σ̂ =
1
n

n∑
i=1

(xi − µ̂)(xi − µ̂)T

and

B̂ =
c∑

k=1

nk
n

(µ̂k − µ̂)(µ̂k − µ̂)T
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Factor discriminant analysis

FDA in R: Wine data

wine<-read.csv(’wine.data’,header=FALSE)

lda.wine<-lda(V1˜. ,data=wine)
U<-lda.wine$scaling
X<-as.matrix(wine[,2:14])
Z<-X%*%U

plot(Z[,1],Z[,2],pch=wine$V1,col=wine$V1,xlab=’Z1’,ylab=’Z2’)
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Factor discriminant analysis

Plot in the 2-D space of discriminant coordinates
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