Advanced Computational Econometrics:

Machine Learning

Chapter 4: Splines and Generalized Additive Models

Thierry Denceux

Thierry Denceux

Spring 2022

ACE - Splines and GAM

Spring 2022

o

3

s
Nl

a2

o e

kA

1/79



Introduction

Overview

© Introduction

ACE - Splines and GAM e Y



Introduction

Usefulness of linear models

@ Linear models are widely used and very useful in practice. In
particular, linear regression, linear discriminant analysis, logistic
regression all rely on a linear model.

@ In regression problems, f(X) = E(Y | X) will typically be nonlinear
and nonadditive in X. However, representing f(X) by a linear model is
usually a convenient, and sometimes a necessary, approximation:

e Convenient because a linear model is easy to interpret, and is the
first-order Taylor approximation to f(X).

e Sometimes necessary, because with n small and/or p large, a linear
model might be all we are able to fit to the data without overfitting.

o Likewise in classification, it is usually assumed that some monotone
transformation of P(Y = k | X) is linear in X. This is inevitably an
approximation.
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Moving beyond linearity

@ The core idea in this chapter is to augment/replace the vector of
inputs X with additional variables, which are transformations of X,
and then use linear models in this new space of derived input features.

e Denote by hp,(X) : RP — R the m-th transformation of X,
m=1,..., M. We then have the following model:

M
f(X) = Z Bmhm(X),
m=1

a linear basis expansion in X.

@ Once the basis functions h,, have been determined, the models are
linear in these new variables, and the fitting proceeds as for linear
models.
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Introduction

Popular choices for basis functions hj,

Some simple and widely used examples of the h, are the following:

@ hy(X) = Xn, m=1,...,p recovers the original linear model.

@ hy(X) = XJ-2 or hm(X) = Xj X allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. However,
the number of variables grows exponentially in the degree of the
polynomial. A full quadratic model in p variables requires O(p?)
square and cross-product terms, or more generally O(p9) for a
degree-d polynomial.
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Introduction

Popular choices for basis functions hy, (continued)

o hm(X) = log(X;), \/Xj, ... permits other nonlinear transformations of
single inputs. More generally one can use similar functions involving
several inputs, such as h,(X) = || X]].

@ hp(X)=1I(Lm < Xj < Up), an indicator for a region of X;. Breaking
the range of X; up into M; such non-overlapping regions results in a
model with a piecewise constant contribution for X;.

@ Remark: Sometimes the problem at hand will call for particular basis
functions h,, such as logarithms or power functions. More often,
however, we use the basis expansions as a device to achieve more
flexible representations for f(X).
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Simple approaches

Overview

© Simple approaches
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SINIEIELIEIS ECl  Polynomials

Overview

© Simple approaches
@ Polynomials
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bt
Fitting polynomials

@ In most parts of this lecture, we assume p = 1.

o Create new variables h1(X) = X, hy(X) = X2, h3(X) = X3, etc. and
then do multiple linear regression on the transformed variables.

@ We either fix the degree d at some reasonably low value, else use
cross-validation to choose d.

@ Polynomials are limited by their global nature — tuning the coefficients
to achieve a functional form in one region can strongly influence the
shape of the function in remote regions. As a consequence,
polynomials have unpredictable tail behavior — very bad for
extrapolation.

R
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Example: fitting data with a polynomial with d =7

degree = 7
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Step Functions

@ Another way of creating transformations of a variable is to cut the
variable into distinct regions:

hi(X) = I(X < &),
ha(X) = 1(§1 < X < &),

hm(X) = 1I(X > Em-1)
o The RSS for the model f(X) ="M . 8,,hm(X) is

n M
RSS(8) = > (F(xi) — yi)? = (Bm — yi)*.

i=1 m=1{i:hm(x;)=1} =

VAN

The LS estimates are Em =¥, the means of Y in the m-th region‘:l’:“;:iff;
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SINTIEELTEYL Il Step functions

Example in R

library("ISLR")

reg<-lm(wage ~ cut(age, c(18, 25, 50, 65, 90)),data=Wage)
ypred<-predict (reg,newdata=data.frame(age=18:80),interval="c")

plot (Wage$age,Wage$wage,cex=0.5,xlab="age" ,ylab="wage")
lines(18:80,ypred[,"fit"],1ty=1,col="blue",lwd=2)
lines(18:80,ypred[,"lwr"],1ty=2,col="blue",lwd=2)
lines(18:80,ypred[, "upr"],lty=2,col="blue",lwd=2)

R
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Step functions

Simple approaches

Result
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SINTIEELTEYL Il Step functions

Step functions — continued

@ Easy to work with. Creates a series of dummy variables representing
each group.

@ Useful way of creating interactions that are easy to interpret. For
example, interaction effect of Year and Age:

I(Year < 2005) - Age, [(Year > 2005) - Age

would allow for different linear functions in each period.

@ Choice of cutpoints or knots can be problematic. For creating
nonlinearities, smoother alternatives such as splines are available.
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© Splines

@ Regression splines
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Piecewise Polynomials

@ Instead of a single polynomial in X over its whole domain, we can
rather use different polynomials in regions defined by knots. E.g. (see
figure)

P =

Bor + Br1xi + Barx? + Barxd + € if x; <&,
Boz + Braxi + Baax? + Baax3 + € if x; > &,

@ Better to add constraints to the polynomials, e.g. continuity.

@ Splines have the “maximum” amount of continuity.
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Linear Splines

@ A linear spline with knots at &, k =1,..., K is a piecewise linear
polynomial continuous at each knot.
@ The set of linear splines with fixed knots is a vector space.
@ The number of degrees of freedom is 2(K + 1) — K = K 4+ 2. We can
thus decompose linear splines on a basis of K + 2 basis functions,
K+2

Y= Bmhm(x)+e.
m=1

@ The basis functions can be chosen as
hi(x)=1
ha(x) = x
heio(x) = (x — &)y, k=1,...,K,
where ()4 denotes the positive part, i.e., (x — &)+ = x — & if
x > &k and (x — &)+ = 0 otherwise.
ACE - Splines and GAM Spring 2022 20 / 79
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Roeseobplie
Cubic Splines

@ A cubic spline with knots at &, k =1,..., K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each knot.

@ Enforcing one more order of continuity would lead to a global cubic
polynomial.

@ Again, the set of cubic splines with fixed knots is a vector space, and
the number of degrees of freedom is 4(K +1) — 3K = K + 4. We can
thus decompose cubic splines on a basis of K + 4 basis functions,

K+4
y = Z Bmhm(x) + €.
m=1
@ We can choose truncated power basis functions,
he(x)=x5"1 k=1,...,4, =
hepa(x) = (x—&)3, k=1,...,K. \
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Sl
Order-M splines

@ More generally, an order-M spline with knots &, k=1,...,K is a
piecewise-polynomial of degree M — 1, which has continuous
derivatives up to order M — 2.

@ A cubic spline has M = 4. A piecewise-constant function is an order-1
spline, while a continuous piecewise linear function is an order-2 spline.

@ The general form for the truncated-power basis set is

he(x)=x5"1 k=1,..., M,
hem(x) = (x =&)Y k=1,....K.

@ In practice the most widely used orders are M = 1,2 and 4. There is
seldom any good reason to go beyond cubic-splines. =

g
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Roeseobplie
Splines in R

library(’splines’)
fit<-1lm(wage~bs(age,df=5) ,data=Wage)

ypred<-predict(fit,newdata=data.frame(age=18:80),interval="c")

plot (Wage$age,Wage$wage,cex=0.5,xlab="age",ylab="wage")
lines(18:80,ypred[,"fit"],1ty=1,col="blue",lwd=2)
lines(18:80,ypred[,"lwr"],1ty=2,col="blue",lwd=2)
lines(18:80,ypred[,"upr"],1ty=2,col="blue",lwd=2)

e By default, degree=3 (cubic splines), and the intercept is not included
in the basis functions. (It is added by function 1m.)

@ The number of knots, if not specified, is df -degree; the knots are
then placed at quantiles.

@ The actual number of degrees of freedom is df+1 (taking into ;
account the intercept). e
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Regression splines

Splines
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B-splines

@ Since the space of spline functions of a particular order and knot
sequence is a vector space, there are many equivalent bases for
representing them (just as there are for ordinary polynomials.)

@ While the truncated power basis is conceptually simple, it is not too
attractive numerically: powers of large numbers can lead to severe
rounding problems.

@ In practice, we often use another basis: the B-spline basis, which
allows for efficient computations even when the number of knots K is
large (each basis function has a local support).

%)
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B-splines of Order 1
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Sequence of B-splines up to order 4 with 9 knots evenly spaced from 0 to
1. The B-splines have local support; they are nonzero on an interval "
spanned by M + 1 knots. =
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Overview

© Splines

@ Natural splines

ACE - Splines and GAM

Spring 2022

R
& /)

Moy

28 / 79



Natural cubic spline

@ We know that the behavior of polynomials fit to data tends to be
erratic near the boundaries, and extrapolation can be dangerous.
These problems still exist with splines.

@ A natural cubic spline adds additional constraints, namely that the
function is linear beyond the boundary knots.

@ This frees up four degrees of freedom (two constraints each in both
boundary regions), which can be spent more profitably by putting
more knots in the interior region.

@ There will be a price paid in bias near the boundaries, but assuming
the function is linear near the boundaries (where we have less
information anyway) is often considered reasonable.
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Natural splines
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Natural cubic spline basis

@ A natural cubic spline with K knots has K degrees of freedom: it can
be represented by K basis functions.

@ One can start from a basis for cubic splines, and derive the reduced
basis by imposing the boundary constraints.

@ For example, starting from the truncated power series basis, we can
show that we arrive at

Ni(X) =1, No(X)=X,

Niso(X) = di(X) — dx_1(X), k=1,...,K -2
with
(X — &)1 — (X —&k)d

d(X) = Ek — &k s

(Sketch of proof in ).
ACE - Splines and GAM Spring 2022 31 /79



Example in R

fit1<-1lm(y ~ ns(x,df=5))
fit2<-1m(y ~ bs(x,df=5))

ypredi<-predict(fitl,newdata=data.frame(x=xtest),interval="c")
ypred2<-predict(fit2,newdata=data.frame(x=xtest),interval="c")

plot(x,y,xlim=range(xtest))

lines(xtest,ftest)
lines(xtest,ypredl[,"fit"],lty=1,col="red",lwd=2)
lines(xtest,ypred2[,"fit"],1ty=1,col="blue",1lwd=2)

R
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Natural splines

Result
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Using splines with logistic regression

@ Until now, we have discussed regression problems. However, splines
can also be used for classification.

e Consider, for instance, natural splines with K knots. For binary
classification, we can fit the logistic regression model,
P(Y=1|X=
(Y=11X=x
P(Y=0| X =x)

log

with £(x) = 31 BNk (x).
@ Once the basis functions have been defined, we just need to estimate
coefficients 3, using a standard logistic regression procedure.

@ A smooth estimate of the conditional probability P(Y =1 | x) can
then be used for classification or risk scoring.
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Example in R

class<-glm(I(wage>250) ~ ns(age,3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80) ,type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="1")
ii<-which(Wage$wage>250)

points(Wage$age[iil] ,rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii] ,rep(0,nrow(Wage)-length(ii)),cex=0.5)

R
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Overview

© Splines

@ Smoothing splines
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Problem formulation

@ Here we discuss a spline basis method that avoids the knot selection
problem completely by using a maximal set of knots. The complexity
of the fit is controlled by regularization.

@ Problem: among all functions f(x) with two continuous derivatives,
find one that minimizes the penalized residual sum of squares

n

RSS(F. ) = Y- — FGx)2 + A [ ()Pt

i=1

where ) is a fixed smoothing parameter.

@ The first term measures closeness to the data, while the second term
penalizes curvature in the function, and \ establishes a tradeoff
between the two. Special cases: A = 0 (no constraint on f) and
A = oo (f has to be linear).
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Solution

@ It can be shown that this problem has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the
unique values of the x;,i =1,...,n.

@ Although there are as many as n knots, the penalty term decreases the
number of degrees of freedom by shrinking the spline coefficients
toward the linear fit.

@ The solution is thus of the form

where the Nj(x) are an n-dimensional set of basis functions for
representing this family of natural splines.

e’
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Sneilsleelos
Computation

@ The criterion can be written as
RSS(6,)\) = (y — N&) " (y — NO) + X067 Q,6,
where N,'J' = NJ'(X,') and (Qn)jk = f Nj/(t)/\/;(/(t)dt.

@ The solution is R
6=(N"N+Q,) Ny,
a generalized ridge regression.

@ The fitted smoothing spline is given by
Fx) = Nj(x)6;.
j=1

e In practice, when n is large, we can use only a subset of the n interig="
knots (rule of thumb: number of knots proportional to log n). e
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Degrees of freedom

~

o Denote by f the n-vector of fitted values f(x;) at the training
predictors x;. Then,

f=NO=NN"N+1Q,) 'N"y =S,y

@ As matrix Sy does not depend on y, the smoothing spline is a linear
smoother.

@ As in ridge regression, we define the effective degrees of freedom of a
smoothing spline as

dfy = tr(S)\)

R
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Selection of smoothing parameters

@ AsA—0,dfy > nand Sy — . As A — oo, dfy -2 and S, — H,
the hat matrix for linear regression on x.

@ Since dfy is monotone in A\, we can invert the relationship and specify
A by fixing dfy (this can be achieved by simple numerical methods).

Using df in this way provides a uniform approach to compare many
different smoothing methods.

@ The leave-one-out (LOO) cross-validated error is given by

. ' " T 7]
RS0 = 30 A = 3 | 1B
i—1 i=1 !

3

0\
1

0
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Scollieline
Smoothing splines in R

ss1<-smooth.spline(x,y,df=3)
ss2<-smooth.spline(x,y,df=15)
ss<-smooth.spline(x,y)

plot(x,y)
lines(x,ss1$y,col="blue",lwd=2)
lines(x,ss2$y,col="blue",lwd=2,1ty=2)
lines(x,ss$y,col="red",lwd=2)

> ss$df
T7.459728
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Smoothing splines
Result
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Application to logistic regression

@ The smoothing spline problem has been posed in a regression setting,
but it is typically easy to transfer this technology to other domains.

@ Here we consider logistic regression with a single quantitative input X.

The model is B(Y =1 X )
= = X
By =0 X=x) )
which implies
ef ()

ACE - Splines and GAM Y



Scollieline
Penalized log-likelihood

@ We construct the penalized log-likelihood criterion
‘ 1
o0 = Z[y,- log P(x;) + (1 — yi) log(1 — P(x;))] — 2)\/{f”(t)}2dt
i=1
- 1
= D) —log(1+ €] - I [ (£ (6)) 2
i=1

o As before, the optimal f is a finite-dimensional natural spline with
knots at the unique values of x. We can represent f as

F(x) = Ni(x);.
j=1

3
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N ) Sc°thine spines

Optimization

@ We compute the first and second derivatives

ouwO) _ 1
T NT(y — p) — A\,
20 (y — p) — A\2,0
d20(6) -
= -NTWN - \Q,,
90007 A

where p is the n-vector with elements P(x;), and W is a diagonal
matrix of weights P(x;)(1 — P(x;)).
o Parameters §; can be estimated using the Newton method,

grew _ gola _ ((OPUE°)\ T 006
B 00007 00

S,
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Nonparametric logistic regression in R

library (gam)
class<-gam(I(wage>250) ~ s(age,df=3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80) ,type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="1")
ii<-which(Wage$wage>250)

points(Wage$age[ii] ,rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii] ,rep(0,nrow(Wage)-length(ii)),cex=0.5)

R
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Overview

© Splines

@ Multidimensional splines
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Multidimensional extension

@ So far we have focused on one-dimensional spline models. Each of
these approaches have multidimensional analogs.

@ Suppose X € R?, and we have a basis of functions hyx(X1),
k=1,..., My for representing functions of coordinate Xi, and
likewise a set of M, functions hy(X2) for coordinate X5.

@ Then the My x M, dimensional tensor product basis defined by
gjk(X):hlj(Xl)hgk(XQ), jZl,...,Ml, k:].,...,/\/’g

can be used for representing a two-dimensional function

My M

g(X) =" Ougi(X)

j=1 k=1

@ The coefficients can be fit by least squares, as before.
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Tensor product splines in R

library (mgcv)

# k=5 basis functions along each dimension
# (cubic regression splines by default)
fitl<-gam(wage~ te(year,age,k=5),data=Wage)

vis.gam(fitl,plot.type = "contour",color="heat")
points(Wage$year,Wage$age,pch=".")

%"
R
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Multidimensional splines
Result
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Curse of dimensionality

@ The tensor product approach can be generalized to p dimensions, but
the dimension of the basis grows exponentially fast — yet another
manifestation of the curse of dimensionality.

@ A more parsimonious approach will be described in the next section.

&,
R
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Multidimensional smoothing splines

@ One-dimensional smoothing splines (via regularization) generalize to
higher dimensions as well.
@ Suppose we have pairs (x;, y;) with x; € RP, and we seek a

p-dimensional regression function f(x). The idea is to set up the
problem

min ; Ly = FOa)) + MIf]

where J is an appropriate penalty functional for stabilizing a function
f in RP.

e’
v or e
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Thin-plate splines

@ A natural choice for J when p =2 is
02f (x PF(x)\°  [(PF(x)\°
f 2 ——= — dxid
1= JL1(58) +2(Gage) + () | aner

@ Optimizing the cost function with this penalty leads to a smooth
two-dimensional surface, known as a thin-plate spline.

@ It shares many properties with the one-dimensional cubic smoothing
spline:

e As A\ — 0, the solution approaches an interpolating function (the one
with smallest penalty)

e As A\ — o0, the solution approaches the least squares plane

o For intermediate values of A, the solution can be represented as a linear
expansion of basis functions, whose coefficients are obtained by a form:
of generalized ridge regression. \
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Radial basis functions

@ The general solution has the form

n
F(x)=Bo+BTx+ > ajhi(x)
j=1
where hy(x) = |x — x[2log | = x|
@ These h; are examples of radial basis functions, which will be
discussed later.

@ The coefficients are found by plugging the expression of f(x) in the
cost function, which reduces to a finite-dimensional penalized least
squares problem.

A Wm“
e

ACE - Splines and GAM Y



High-dimensional extension

@ Thin-plate splines are defined more generally for arbitrary dimension p,
for which an appropriately more general J is used.

o The computational complexity for thin-plate splines is O(n3).
However, as with univariate smoothing splines, we can get away with
substantially less than the n knots.

@ In practice, it is usually sufficient to work with a lattice of knots
covering the domain.

e With K knots, the complexity is reduced to O(nK? + K?3).

e’
v or e
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Thin plate splines in R

library (mgcv)

# The smoothing coefficient is automatically determines by CV
fit2<-gam(wage™ s(year,age),data=Wage)

vis.gam(fit2,plot.type = "contour",color="heat")
points(Wage$year,Wage$age ,pch=".")

H)

N <
e
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Multidimensional splines
Result
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Generalized Additive Models

Overview
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Generalized Additive Models Principle

Overview

@ Generalized Additive Models
@ Principle
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Generalized Additive Models Principle

Motivation

@ In general, extending the linear basis function approach to learning
problems with a large number p of inputs poses two main problems:
@ Curse of dimensionality: we have seen that, with the tensor product
spline basis with M basis functions in each dimension, we have MP
dimensions; for instance, with M =5 and p = 10, we have almost
510 — 9, 765,625 parameters to estimate.
@ Poor interpretability: for p > 2 it becomes impossible to understand
the effect of each input variable on the response variable.

@ In this section, we study flexible, yet interpretable models based on the
assumption that the effects of each input variables are additive: in this
way, we replace the problem of estimating a p-dimensional function by
that of simultaneously estimating p one-dimensional functions.

@ These methods are called generalized additive models (GAMs). 7o

R
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GAM for regression

@ In the regression setting, a generalized additive model has the form
E(Y | X1, X2,...,Xp) = a+ f(X1) + H(X2) + ...+ f(Xp)

@ As usual Xi,X3,..., X, represent predictors and Y is the outcome.

@ The f;'s are unspecified smooth (nonparametric) functions.

&,
R
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Bincric
GAM for binary classification

@ For two-class classification, recall the logistic regression model for
binary data discussed previously:
P(X
1-P(X)
with P(X) =P(Y =1 | X).
@ The additive logistic regression model replaces each linear term by a
more general functional form

P(X)
1 P(X)

=a+ 1 X1+ ...+ BpXp,

| =a+AX)+ ..+ H(Xp)

where again each f; is an unspecified smooth function.
@ While the nonparametric form for the functions f; makes the model

more flexible, the additivity is retained and allows us to interpret thé:

model in much the same way as before. e
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Generalized Additive Models Principle

Mixing linear and nonlinear effects

@ We can easily mix in linear and other parametric forms with the
nonlinear terms, a necessity when some of the inputs are qualitative
variables (factors).

@ For instance, we can have a regression model of the form

Y=X"8+) al(V=k)+f(Z)+e.
k

This is a semiparametric model, where
e X is a vector of predictors to be modeled linearly,
o «y the effect for the k-th level of a qualitative input V/, and
o the effect of predictor Z is modeled nonparametrically.
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Generalized Additive Models SRV

Overview

@ Generalized Additive Models

o Fitting GAMs

o
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GAMs with natural splines

o If we model each function f; as a natural spline, then we can fit the
resulting model using simple least square (regression) or likelihood
maximization algorithm (classification).

@ For instance, with natural cubic splines, we have the following GAM:

()

p K
Y = Z Z Bk Njw (X

Jj=1 k=1
(X))

where K(j) is the number of knots for variable j.

e Remark: if K(j) = K is constant for all j, the number of basis
functions remains linear in p.
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Generalized Additive Models Fitting GAMs

Example in R

library("ISLR") # For the Wage data
library("splines")

fitl<-1m(wage ~ ns(year,df=5)+ns(age,df=5)+education,data=Wage)
library("gam")

fit2<-gam(wage ~ ns(year,df=5)+ns(age,df=5)+education,data=Wage)
plot(£fit2,se=TRUE)

'Y
A

RN

ACE - Splines and GAM Y



Generalized Additive Models Fitting GAMs

Result
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fuikcoelClrs
GAMs with smoothing splines

@ Consider an additive model of the form

Y =a+ A(X1) + (X)) + ...+ (Xp) +e,

where the error term € has mean zero.

@ We can specify a penalized sum of squares for this problem,

n p p

SS(nfi f) =5 [yi—a =S 60a) | +3 N / ()2,
j=1

i=1

where the \; > 0 are tuning parameters.

@ It can be shown that the minimizer of SS is an additive cubic spline
model: each of the functions f; is a cubic spline in the component Xz
with knots at each of the unique values of x;;,i =1,...,n. A

R
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A G
Unicity of the solution

Without further restrictions on the model, the solution is not unique.

@ The constant « is not identifiable, since we can add or subtract any
constants to each of the functions f;, and adjust a accordingly.

e The standard convention is to assume that >_7 ; f;(x;) = 0 for all j -
the functions average zero over the data. It is easily seen that
a = Ave(y;) in this case.

e If in addition to this restriction, the matrix of input values (having
ij-th entry x;;) has full column rank, then SS is a strictly convex
criterion and the minimizer is unique.

@ A simple iterative procedure exists for finding the solution: the
backfitting algorithm
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fuikcoelClrs
Backfitting algorithm

o We set & = Ave(y;), and it never changes.

e We fit a cubic smoothing spline S; to the targets
{y; — =D fk(x,-k)}:’:l, as a function of x;j; to obtain a new
estimate f;.

o This is done for each predictor in turn, usmg the current estimates of
the other functions f, when computing y — a — Dokt Fe(xik)-

@ The process is continued until the estimates f; f; stabilize.

@ This procedure (known as backfitting) is a grouped cyclic coordinate
descent algorithm.
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fuikcoelClrs
Backfitting algorithm

~

Q Initialize: @ = Ave(y;), f; =0, Vj.
Q@ Cycle: j=1,2,...,p,1,2,...,p,...,

E<_SJ a folk}ll
ki
o~ 1
fi = fj— =D filxy)
n
i=1

until the functions Echange less than a prespecified threshold.

o
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Generalized Additive Models SRV
Example in R

library("gam")

fit3<-gam(wage ~ s(year,df=5)+s(age,df=5)+education,data=Wage)
plot(£fit3,se=TRUE)

5

W <
e
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Generalized Additive Models Fitting GAMs

Result
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Appendix

Natural cubic spline bases |

e From

3 K
= ZﬁijJrZ@k(X—fk)i (1)
=0 k=1

and the boundary conditions f/(X) = 0 and f®)(X) =0 for X < &
and X > £k, we get

K K
B2 = B3 =0, ZQkZO, ngekzo
k=1 k=1

@ This gives us the following relations between the coefficients:

K—-1
é‘K - fk T

Ok =—> 0 d Ox_ 0, }
K ;k an K-1= Z fK—§K1 ﬁ;
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Natural cubic spline bases Il

@ Using the first relation in (1) we get

K-1
FX)=Bo+ X+ > 0 [(X—&)} - (X—&)i].

k=t (Ex—&k)di(X)

@ Using the second relation, we get

K2
F(X) = Bo+ BiX + > Ok(Ek — &) [di(X) — dk—1(X)]

k=1
Ni42(X)

@ Denoting 0x(Ex — &k) as 6], we finally get

K-2

F(X)=Bo+ X+ > ONesa(X). QED
k=1

3

\
)

P
3

e
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