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Introduction

Usefulness of linear models

Linear models are widely used and very useful in practice. In
particular, linear regression, linear discriminant analysis, logistic
regression all rely on a linear model.
In regression problems, f (X ) = E(Y | X ) will typically be nonlinear
and nonadditive in X . However, representing f (X ) by a linear model is
usually a convenient, and sometimes a necessary, approximation:

Convenient because a linear model is easy to interpret, and is the
first-order Taylor approximation to f (X ).
Sometimes necessary, because with n small and/or p large, a linear
model might be all we are able to fit to the data without overfitting.

Likewise in classification, it is usually assumed that some monotone
transformation of P(Y = k | X ) is linear in X . This is inevitably an
approximation.

Thierry Denœux ACE - Splines and GAM Spring 2022 3 / 79



Introduction

Moving beyond linearity

The core idea in this chapter is to augment/replace the vector of
inputs X with additional variables, which are transformations of X ,
and then use linear models in this new space of derived input features.
Denote by hm(X ) : Rp → R the m-th transformation of X ,
m = 1, ...,M. We then have the following model:

f (X ) =
M∑

m=1

βmhm(X ),

a linear basis expansion in X .
Once the basis functions hm have been determined, the models are
linear in these new variables, and the fitting proceeds as for linear
models.
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Introduction

Popular choices for basis functions hm

Some simple and widely used examples of the hm are the following:
hm(X ) = Xm, m = 1, . . . , p recovers the original linear model.
hm(X ) = X 2

j or hm(X ) = XjXk allows us to augment the inputs with
polynomial terms to achieve higher-order Taylor expansions. However,
the number of variables grows exponentially in the degree of the
polynomial. A full quadratic model in p variables requires O(p2)
square and cross-product terms, or more generally O(pd) for a
degree-d polynomial.
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Introduction

Popular choices for basis functions hm (continued)

hm(X ) = log(Xj),
√

Xj , ... permits other nonlinear transformations of
single inputs. More generally one can use similar functions involving
several inputs, such as hm(X ) = ‖X‖.
hm(X ) = I (Lm ≤ Xj < Um), an indicator for a region of Xj . Breaking
the range of Xj up into Mj such non-overlapping regions results in a
model with a piecewise constant contribution for Xj .
Remark: Sometimes the problem at hand will call for particular basis
functions hm, such as logarithms or power functions. More often,
however, we use the basis expansions as a device to achieve more
flexible representations for f (X ).
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Simple approaches Polynomials

Fitting polynomials

In most parts of this lecture, we assume p = 1.
Create new variables h1(X ) = X , h2(X ) = X 2, h3(X ) = X 3, etc. and
then do multiple linear regression on the transformed variables.
We either fix the degree d at some reasonably low value, else use
cross-validation to choose d .
Polynomials are limited by their global nature – tuning the coefficients
to achieve a functional form in one region can strongly influence the
shape of the function in remote regions. As a consequence,
polynomials have unpredictable tail behavior – very bad for
extrapolation.
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Simple approaches Polynomials

Example: fitting data with a polynomial with d = 7
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Simple approaches Step functions

Step Functions

Another way of creating transformations of a variable is to cut the
variable into distinct regions:

h1(X ) = I (X < ξ1),

h2(X ) = I (ξ1 ≤ X < ξ2),

...
hM(X ) = I (X ≥ ξM−1)

The RSS for the model f (X ) =
∑M

m=1 βmhm(X ) is

RSS(β) =
n∑

i=1

(f (xi )− yi )
2 =

M∑
m=1

∑
{i :hm(xi )=1}

(βm − yi )
2.

The LS estimates are β̂m = ym, the means of Y in the m-th region.
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Simple approaches Step functions

Example in R

library("ISLR")

reg<-lm(wage ˜ cut(age, c(18, 25, 50, 65, 90)),data=Wage)
ypred<-predict(reg,newdata=data.frame(age=18:80),interval="c")

plot(Wage$age,Wage$wage,cex=0.5,xlab="age",ylab="wage")
lines(18:80,ypred[,"fit"],lty=1,col="blue",lwd=2)
lines(18:80,ypred[,"lwr"],lty=2,col="blue",lwd=2)
lines(18:80,ypred[,"upr"],lty=2,col="blue",lwd=2)
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Simple approaches Step functions

Result
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Simple approaches Step functions

Step functions – continued

Easy to work with. Creates a series of dummy variables representing
each group.
Useful way of creating interactions that are easy to interpret. For
example, interaction effect of Year and Age:

I (Year < 2005) · Age, I (Year ≥ 2005) · Age

would allow for different linear functions in each period.
Choice of cutpoints or knots can be problematic. For creating
nonlinearities, smoother alternatives such as splines are available.
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Splines Regression splines

Piecewise Polynomials

Instead of a single polynomial in X over its whole domain, we can
rather use different polynomials in regions defined by knots. E.g. (see
figure)

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + εi if xi < ξ,

β02 + β12xi + β22x
2
i + β32x

3
i + εi if xi ≥ ξ,

Better to add constraints to the polynomials, e.g. continuity.
Splines have the “maximum” amount of continuity.
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Splines Regression splines
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Splines Regression splines

Linear Splines

A linear spline with knots at ξk , k = 1, . . . ,K is a piecewise linear
polynomial continuous at each knot.
The set of linear splines with fixed knots is a vector space.
The number of degrees of freedom is 2(K + 1)− K = K + 2. We can
thus decompose linear splines on a basis of K + 2 basis functions,

y =
K+2∑
m=1

βmhm(x) + ε.

The basis functions can be chosen as

h1(x) = 1
h2(x) = x

hk+2(x) = (x − ξk)+, k = 1, . . . ,K ,

where (·)+ denotes the positive part, i.e., (x − ξk)+ = x − ξk if
x > ξk and (x − ξk)+ = 0 otherwise.
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Splines Regression splines
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Splines Regression splines

Cubic Splines

A cubic spline with knots at ξk , k = 1, . . . ,K is a piecewise cubic
polynomial with continuous derivatives up to order 2 at each knot.
Enforcing one more order of continuity would lead to a global cubic
polynomial.
Again, the set of cubic splines with fixed knots is a vector space, and
the number of degrees of freedom is 4(K + 1)− 3K = K + 4. We can
thus decompose cubic splines on a basis of K + 4 basis functions,

y =
K+4∑
m=1

βmhm(x) + ε.

We can choose truncated power basis functions,

hk(x) = xk−1, k = 1, . . . , 4,

hk+4(x) = (x − ξk)3+, k = 1, . . . ,K .

Thierry Denœux ACE - Splines and GAM Spring 2022 22 / 79



Splines Regression splines

Order-M splines

More generally, an order-M spline with knots ξk , k = 1, . . . ,K is a
piecewise-polynomial of degree M − 1, which has continuous
derivatives up to order M − 2.
A cubic spline has M = 4. A piecewise-constant function is an order-1
spline, while a continuous piecewise linear function is an order-2 spline.
The general form for the truncated-power basis set is

hk(x) = xk−1, k = 1, . . . ,M,

hk+M(x) = (x − ξk)M−1
+ , k = 1, . . . ,K .

In practice the most widely used orders are M = 1, 2 and 4. There is
seldom any good reason to go beyond cubic-splines.
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Splines Regression splines

Splines in R

library(’splines’)
fit<-lm(wage˜bs(age,df=5),data=Wage)

ypred<-predict(fit,newdata=data.frame(age=18:80),interval="c")

plot(Wage$age,Wage$wage,cex=0.5,xlab="age",ylab="wage")
lines(18:80,ypred[,"fit"],lty=1,col="blue",lwd=2)
lines(18:80,ypred[,"lwr"],lty=2,col="blue",lwd=2)
lines(18:80,ypred[,"upr"],lty=2,col="blue",lwd=2)

By default, degree=3 (cubic splines), and the intercept is not included
in the basis functions. (It is added by function lm.)
The number of knots, if not specified, is df-degree; the knots are
then placed at quantiles.
The actual number of degrees of freedom is df+1 (taking into
account the intercept).
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Splines Regression splines

Result
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Splines Regression splines

B-splines

Since the space of spline functions of a particular order and knot
sequence is a vector space, there are many equivalent bases for
representing them (just as there are for ordinary polynomials.)
While the truncated power basis is conceptually simple, it is not too
attractive numerically: powers of large numbers can lead to severe
rounding problems.
In practice, we often use another basis: the B-spline basis, which
allows for efficient computations even when the number of knots K is
large (each basis function has a local support).
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Splines Regression splines

Sequence of B-splines up to order 4 with 9 knots evenly spaced from 0 to
1. The B-splines have local support; they are nonzero on an interval
spanned by M + 1 knots.
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Splines Natural splines
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Splines Natural splines

Natural cubic spline

We know that the behavior of polynomials fit to data tends to be
erratic near the boundaries, and extrapolation can be dangerous.
These problems still exist with splines.
A natural cubic spline adds additional constraints, namely that the
function is linear beyond the boundary knots.
This frees up four degrees of freedom (two constraints each in both
boundary regions), which can be spent more profitably by putting
more knots in the interior region.
There will be a price paid in bias near the boundaries, but assuming
the function is linear near the boundaries (where we have less
information anyway) is often considered reasonable.
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Splines Natural splines

Example

Thierry Denœux ACE - Splines and GAM Spring 2022 30 / 79



Splines Natural splines

Natural cubic spline basis

A natural cubic spline with K knots has K degrees of freedom: it can
be represented by K basis functions.
One can start from a basis for cubic splines, and derive the reduced
basis by imposing the boundary constraints.
For example, starting from the truncated power series basis, we can
show that we arrive at

N1(X ) = 1, N2(X ) = X ,

Nk+2(X ) = dk(X )− dK−1(X ), k = 1, . . . ,K − 2

with

dk(X ) =
(X − ξk)3+ − (X − ξK )3+

ξK − ξk
(Sketch of proof in appendix ).
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Splines Natural splines

Example in R

fit1<-lm(y ˜ ns(x,df=5))
fit2<-lm(y ˜ bs(x,df=5))

ypred1<-predict(fit1,newdata=data.frame(x=xtest),interval="c")
ypred2<-predict(fit2,newdata=data.frame(x=xtest),interval="c")

plot(x,y,xlim=range(xtest))
lines(xtest,ftest)
lines(xtest,ypred1[,"fit"],lty=1,col="red",lwd=2)
lines(xtest,ypred2[,"fit"],lty=1,col="blue",lwd=2)
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Splines Natural splines

Result
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Splines Natural splines

Using splines with logistic regression

Until now, we have discussed regression problems. However, splines
can also be used for classification.
Consider, for instance, natural splines with K knots. For binary
classification, we can fit the logistic regression model,

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= f (x)

with f (x) =
∑K

k=1 βkNk(x).
Once the basis functions have been defined, we just need to estimate
coefficients βk using a standard logistic regression procedure.
A smooth estimate of the conditional probability P(Y = 1 | x) can
then be used for classification or risk scoring.
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Splines Natural splines

Example in R

class<-glm(I(wage>250) ˜ ns(age,3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80),type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="l")
ii<-which(Wage$wage>250)
points(Wage$age[ii],rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii],rep(0,nrow(Wage)-length(ii)),cex=0.5)
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Splines Natural splines

Result
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Splines Smoothing splines

Problem formulation

Here we discuss a spline basis method that avoids the knot selection
problem completely by using a maximal set of knots. The complexity
of the fit is controlled by regularization.
Problem: among all functions f (x) with two continuous derivatives,
find one that minimizes the penalized residual sum of squares

RSS(f , λ) =
n∑

i=1

(yi − f (xi ))
2 + λ

∫
[f ′′(t)]2dt,

where λ is a fixed smoothing parameter.
The first term measures closeness to the data, while the second term
penalizes curvature in the function, and λ establishes a tradeoff
between the two. Special cases: λ = 0 (no constraint on f ) and
λ =∞ (f has to be linear).
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Splines Smoothing splines

Solution

It can be shown that this problem has an explicit, finite-dimensional,
unique minimizer which is a natural cubic spline with knots at the
unique values of the xi , i = 1, . . . , n.
Although there are as many as n knots, the penalty term decreases the
number of degrees of freedom by shrinking the spline coefficients
toward the linear fit.
The solution is thus of the form

f (x) =
n∑

j=1

Nj(x)θj ,

where the Nj(x) are an n-dimensional set of basis functions for
representing this family of natural splines.
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Splines Smoothing splines

Computation

The criterion can be written as

RSS(θ, λ) = (y −Nθ)T (y −Nθ) + λθTΩnθ,

where Nij = Nj(xi ) and (Ωn)jk =
∫
N ′′j (t)N

′′
k (t)dt.

The solution is
θ̂ = (NTN + λΩn)

−1NTy,

a generalized ridge regression.
The fitted smoothing spline is given by

f̂ (x) =
n∑

j=1

Nj(x)θ̂j .

In practice, when n is large, we can use only a subset of the n interior
knots (rule of thumb: number of knots proportional to log n).
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Splines Smoothing splines

Degrees of freedom

Denote by f̂ the n-vector of fitted values f̂ (xi ) at the training
predictors xi . Then,

f̂ = Nθ̂ = N(NTN + λΩn)
−1NTy = Sλy

As matrix Sλ does not depend on y, the smoothing spline is a linear
smoother.
As in ridge regression, we define the effective degrees of freedom of a
smoothing spline as

dfλ = tr(Sλ)

Thierry Denœux ACE - Splines and GAM Spring 2022 41 / 79



Splines Smoothing splines

Selection of smoothing parameters

As λ→ 0, dfλ → n and Sλ → I. As λ→∞, dfλ → 2 and Sλ → H,
the hat matrix for linear regression on x.
Since dfλ is monotone in λ, we can invert the relationship and specify
λ by fixing dfλ (this can be achieved by simple numerical methods).
Using df in this way provides a uniform approach to compare many
different smoothing methods.
The leave-one-out (LOO) cross-validated error is given by

RSScv (λ) =
n∑

i=1

(yi − f̂
(−i)
λ (xi ))

2 =
n∑

i=1

[
yi − f̂λ(xi )

1− {Sλ}ii

]2
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Splines Smoothing splines

Smoothing splines in R

ss1<-smooth.spline(x,y,df=3)
ss2<-smooth.spline(x,y,df=15)
ss<-smooth.spline(x,y)

plot(x,y)
lines(x,ss1$y,col="blue",lwd=2)
lines(x,ss2$y,col="blue",lwd=2,lty=2)
lines(x,ss$y,col="red",lwd=2)

> ss$df
7.459728
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Splines Smoothing splines

Result
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Splines Smoothing splines

Application to logistic regression

The smoothing spline problem has been posed in a regression setting,
but it is typically easy to transfer this technology to other domains.
Here we consider logistic regression with a single quantitative input X .
The model is

log
P(Y = 1 | X = x)

P(Y = 0 | X = x)
= f (x),

which implies

P(Y = 1 | X = x) =
ef (x)

1+ ef (x)
= P(x).

Thierry Denœux ACE - Splines and GAM Spring 2022 45 / 79



Splines Smoothing splines

Penalized log-likelihood

We construct the penalized log-likelihood criterion

`(f ;λ) =
n∑

i=1

[yi logP(xi ) + (1− yi ) log(1− P(xi ))]−
1
2
λ

∫
{f ′′(t)}2dt

=
n∑

i=1

[yi f (xi )− log(1+ ef (x))]− 1
2
λ

∫
{f ′′(t)}2dt

As before, the optimal f is a finite-dimensional natural spline with
knots at the unique values of x. We can represent f as

f (x) =
n∑

j=1

Nj(x)θj .
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Splines Smoothing splines

Optimization

We compute the first and second derivatives

∂`(θ)

∂θ
= NT (y − p)− λΩnθ

∂2`(θ)

∂θ∂θT
= −NTWN− λΩn,

where p is the n-vector with elements P(xi ), and W is a diagonal
matrix of weights P(xi )(1− P(xi )).
Parameters θj can be estimated using the Newton method,

θnew = θold −
(
∂2`(θold)

∂θ∂θT

)−1
∂`(θold)

∂θ
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Splines Smoothing splines

Nonparametric logistic regression in R

library(gam)
class<-gam(I(wage>250) ˜ s(age,df=3),data=Wage,family=’binomial’)
proba<-predict(class,newdata=data.frame(age=18:80),type=’response’)

plot(18:80,proba,xlab="age",ylab="P(wage>250)",type="l")
ii<-which(Wage$wage>250)
points(Wage$age[ii],rep(max(proba),length(ii)),cex=0.5)
points(Wage$age[-ii],rep(0,nrow(Wage)-length(ii)),cex=0.5)
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Splines Smoothing splines

Result
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Splines Multidimensional splines
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Splines Multidimensional splines

Multidimensional extension

So far we have focused on one-dimensional spline models. Each of
these approaches have multidimensional analogs.
Suppose X ∈ R2, and we have a basis of functions h1k(X1),
k = 1, . . . ,M1 for representing functions of coordinate X1, and
likewise a set of M2 functions h2k(X2) for coordinate X2.
Then the M1 ×M2 dimensional tensor product basis defined by

gjk(X ) = h1j(X1)h2k(X2), j = 1, . . . ,M1, k = 1, . . . ,M2

can be used for representing a two-dimensional function

g(X ) =

M1∑
j=1

M2∑
k=1

θjkgjk(X )

The coefficients can be fit by least squares, as before.
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Splines Multidimensional splines

A tensor product basis of B-splines, showing some selected pairs. Each
two-dimensional function is the tensor product of the corresponding one
dimensional marginals.
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Splines Multidimensional splines

Tensor product splines in R

library(mgcv)

# k=5 basis functions along each dimension
# (cubic regression splines by default)
fit1<-gam(wage˜ te(year,age,k=5),data=Wage)

vis.gam(fit1,plot.type = "contour",color="heat")
points(Wage$year,Wage$age,pch=".")
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Splines Multidimensional splines

Result
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Splines Multidimensional splines

Curse of dimensionality

The tensor product approach can be generalized to p dimensions, but
the dimension of the basis grows exponentially fast – yet another
manifestation of the curse of dimensionality.
A more parsimonious approach will be described in the next section.
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Splines Multidimensional splines

Multidimensional smoothing splines

One-dimensional smoothing splines (via regularization) generalize to
higher dimensions as well.
Suppose we have pairs (xi , yi ) with xi ∈ Rp, and we seek a
p-dimensional regression function f (x). The idea is to set up the
problem

min
f

n∑
i=1

[yi − f (xi )]
2 + λJ[f ]

where J is an appropriate penalty functional for stabilizing a function
f in Rp.
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Splines Multidimensional splines

Thin-plate splines

A natural choice for J when p = 2 is

J[f ] =

∫∫
R2

[(
∂2f (x)

∂x2
1

)2

+ 2
(
∂2f (x)

∂x1∂x2

)2

+

(
∂2f (x)

∂x2
2

)2
]
dx1dx2

Optimizing the cost function with this penalty leads to a smooth
two-dimensional surface, known as a thin-plate spline.
It shares many properties with the one-dimensional cubic smoothing
spline:

As λ→ 0, the solution approaches an interpolating function (the one
with smallest penalty)
As λ→∞, the solution approaches the least squares plane
For intermediate values of λ, the solution can be represented as a linear
expansion of basis functions, whose coefficients are obtained by a form
of generalized ridge regression.
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Splines Multidimensional splines

Radial basis functions

The general solution has the form

f (x) = β0 + βT x +
n∑

j=1

αjhj(x)

where hj(x) = ‖x − xj‖2 log ‖x − xj‖.
These hj are examples of radial basis functions, which will be
discussed later.
The coefficients are found by plugging the expression of f (x) in the
cost function, which reduces to a finite-dimensional penalized least
squares problem.
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Splines Multidimensional splines

High-dimensional extension

Thin-plate splines are defined more generally for arbitrary dimension p,
for which an appropriately more general J is used.
The computational complexity for thin-plate splines is O(n3).
However, as with univariate smoothing splines, we can get away with
substantially less than the n knots.
In practice, it is usually sufficient to work with a lattice of knots
covering the domain.
With K knots, the complexity is reduced to O(nK 2 + K 3).
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Splines Multidimensional splines

Thin plate splines in R

library(mgcv)

# The smoothing coefficient is automatically determines by CV
fit2<-gam(wage˜ s(year,age),data=Wage)

vis.gam(fit2,plot.type = "contour",color="heat")
points(Wage$year,Wage$age,pch=".")
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Splines Multidimensional splines

Result
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Generalized Additive Models Principle

Motivation

In general, extending the linear basis function approach to learning
problems with a large number p of inputs poses two main problems:

1 Curse of dimensionality: we have seen that, with the tensor product
spline basis with M basis functions in each dimension, we have Mp

dimensions; for instance, with M = 5 and p = 10, we have almost
510 = 9, 765, 625 parameters to estimate.

2 Poor interpretability: for p > 2 it becomes impossible to understand
the effect of each input variable on the response variable.

In this section, we study flexible, yet interpretable models based on the
assumption that the effects of each input variables are additive: in this
way, we replace the problem of estimating a p-dimensional function by
that of simultaneously estimating p one-dimensional functions.
These methods are called generalized additive models (GAMs).
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Generalized Additive Models Principle

GAM for regression

In the regression setting, a generalized additive model has the form

E(Y | X1,X2, . . . ,Xp) = α+ f1(X1) + f2(X2) + . . .+ fp(Xp)

As usual X1,X2, . . . ,Xp represent predictors and Y is the outcome.
The fj ’s are unspecified smooth (nonparametric) functions.
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Generalized Additive Models Principle

GAM for binary classification

For two-class classification, recall the logistic regression model for
binary data discussed previously:

log
P(X )

1− P(X )
= α+ β1X1 + . . .+ βpXp,

with P(X ) = P(Y = 1 | X ).
The additive logistic regression model replaces each linear term by a
more general functional form

log
P(X )

1− P(X )
= α+ f1(X1) + . . .+ fp(Xp)

where again each fj is an unspecified smooth function.
While the nonparametric form for the functions fj makes the model
more flexible, the additivity is retained and allows us to interpret the
model in much the same way as before.
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Generalized Additive Models Principle

Mixing linear and nonlinear effects

We can easily mix in linear and other parametric forms with the
nonlinear terms, a necessity when some of the inputs are qualitative
variables (factors).
For instance, we can have a regression model of the form

Y = XTβ +
∑
k

αk I (V = k) + f (Z ) + ε.

This is a semiparametric model, where
X is a vector of predictors to be modeled linearly,
αk the effect for the k-th level of a qualitative input V , and
the effect of predictor Z is modeled nonparametrically.

Thierry Denœux ACE - Splines and GAM Spring 2022 67 / 79



Generalized Additive Models Fitting GAMs

Overview

1 Introduction

2 Simple approaches
Polynomials
Step functions

3 Splines
Regression splines
Natural splines
Smoothing splines
Multidimensional splines

4 Generalized Additive Models
Principle
Fitting GAMs

Thierry Denœux ACE - Splines and GAM Spring 2022 68 / 79



Generalized Additive Models Fitting GAMs

GAMs with natural splines

If we model each function fj as a natural spline, then we can fit the
resulting model using simple least square (regression) or likelihood
maximization algorithm (classification).
For instance, with natural cubic splines, we have the following GAM:

Y =

p∑
j=1

K(j)∑
k=1

βjkNjk(Xj)︸ ︷︷ ︸
fj (Xj )

+ε,

where K (j) is the number of knots for variable j .
Remark: if K (j) = K is constant for all j , the number of basis
functions remains linear in p.
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Generalized Additive Models Fitting GAMs

Example in R

library("ISLR") # For the Wage data
library("splines")

fit1<-lm(wage ˜ ns(year,df=5)+ns(age,df=5)+education,data=Wage)

library("gam")
fit2<-gam(wage ˜ ns(year,df=5)+ns(age,df=5)+education,data=Wage)
plot(fit2,se=TRUE)
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Generalized Additive Models Fitting GAMs

Result
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Generalized Additive Models Fitting GAMs

GAMs with smoothing splines

Consider an additive model of the form

Y = α+ f1(X1) + f2(X2) + . . .+ fp(Xp) + ε,

where the error term ε has mean zero.
We can specify a penalized sum of squares for this problem,

SS(α, f1, . . . , fp) =
n∑

i=1

yi − α−
p∑

j=1

fj(xij)

2

+

p∑
j=1

λj

∫
f ′′j (tj)

2dtj ,

where the λj ≥ 0 are tuning parameters.
It can be shown that the minimizer of SS is an additive cubic spline
model: each of the functions fj is a cubic spline in the component Xj ,
with knots at each of the unique values of xij , i = 1, . . . , n.
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Generalized Additive Models Fitting GAMs

Unicity of the solution

Without further restrictions on the model, the solution is not unique.
The constant α is not identifiable, since we can add or subtract any
constants to each of the functions fj , and adjust α accordingly.
The standard convention is to assume that

∑n
i=1 fj(xij) = 0 for all j –

the functions average zero over the data. It is easily seen that
α̂ = Ave(yi ) in this case.
If in addition to this restriction, the matrix of input values (having
ij-th entry xij) has full column rank, then SS is a strictly convex
criterion and the minimizer is unique.
A simple iterative procedure exists for finding the solution: the
backfitting algorithm
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Generalized Additive Models Fitting GAMs

Backfitting algorithm

We set α̂ = Ave(yi ), and it never changes.
We fit a cubic smoothing spline Sj to the targets{
yi − α̂−

∑
k 6=j f̂k(xik)

}n

i=1
, as a function of xij to obtain a new

estimate f̂j .
This is done for each predictor in turn, using the current estimates of
the other functions f̂k when computing y − α̂−

∑
k 6=j f̂k(xik).

The process is continued until the estimates f̂j stabilize.
This procedure (known as backfitting) is a grouped cyclic coordinate
descent algorithm.
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Generalized Additive Models Fitting GAMs

Backfitting algorithm

1 Initialize: α̂ = Ave(yi ), f̂j = 0, ∀j .
2 Cycle: j = 1, 2, . . . , p, 1, 2, . . . , p, . . .,

f̂j ← Sj

{yi − α̂−∑
k 6=j

f̂k(xik)}ni=1


f̂j ← f̂j −

1
n

n∑
i=1

f̂j(xij)

until the functions f̂j change less than a prespecified threshold.
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Generalized Additive Models Fitting GAMs

Example in R

library("gam")

fit3<-gam(wage ˜ s(year,df=5)+s(age,df=5)+education,data=Wage)
plot(fit3,se=TRUE)
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Generalized Additive Models Fitting GAMs

Result
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Appendix

Natural cubic spline bases I

From

f (X ) =
3∑

j=0

βjX
j +

K∑
k=1

θk(X − ξk)3+ (1)

and the boundary conditions f ′′(X ) = 0 and f (3)(X ) = 0 for X < ξ1
and X > ξK , we get

β2 = β3 = 0,
K∑

k=1

θk = 0,
K∑

k=1

ξkθk = 0

This gives us the following relations between the coefficients:

θK = −
K−1∑
k=1

θk and θK−1 = −
K−2∑
k=1

θk
ξK − ξk
ξK − ξK−1

(2)
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Appendix

Natural cubic spline bases II
Using the first relation in (1) we get

f (X ) = β0 + β1X +
K−1∑
k=1

θk
[
(X − ξk)3+ − (X − ξK )3+

]︸ ︷︷ ︸
(ξK−ξk )dk (X )

.

Using the second relation, we get

f (X ) = β0 + β1X +
K−2∑
k=1

θk(ξK − ξk) [dk(X )− dK−1(X )]︸ ︷︷ ︸
Nk+2(X )

Denoting θk(ξK − ξk) as θ′k , we finally get

f (X ) = β0 + β1X +
K−2∑
k=1

θ′kNk+2(X ). QED

Back
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