
Advanced Computational Econometrics:
Machine Learning

Chapter 5: Tree-based and ensemble methods

Thierry Denœux

July 2019

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 1 / 65



Tree-based methods

Here we describe tree-based methods for regression and classification.
These involve recursively segmenting the predictor space into a
number of simple regions.
Since the set of splitting rules used to segment the predictor space can
be summarized in a tree, these types of approaches are known as
decision-tree methods.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 2 / 65



Tree-based methods

Tree-based methods are simple and useful for interpretation.
However they typically are not competitive with the best supervised
learning approaches in terms of prediction accuracy.
Hence we also discuss two methods for combining several trees:
bagging and random forests. These methods grow multiple trees
which are then combined to yield a single consensus prediction.
Combining a large number of trees can often result in dramatic
improvements in prediction accuracy, at the expense of some loss
interpretation.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 3 / 65



Regression/Classification Trees

The tree-based approach can be applied to both regression and
classification problems.
We first consider regression trees, and then move on to
classification/decision trees.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 4 / 65



Introductory example

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 5 / 65



Introductory example

Baseball salary data: how would you stratify it?

Salary is color-coded from low (blue, green) to high (yellow,red)

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 6 / 65



Introductory example

Regression tree for these data

At a given internal node, the
label (of the form Xj < tk)
indicates the left-hand branch
emanating from that split, and
the right-hand branch
corresponds to Xj ≥ tk .
The tree has two internal nodes
and three terminal nodes, or
leaves. The number in each leaf
is the mean of the response for
the observations that fall there.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 7 / 65



Introductory example

Results

Overall, the tree stratifies or segments the players into three regions of predictor
space: R1 = {X | Years < 4.5}, R2 = {X | Years ≥ 4.5,Hits < 117.5}, and
R3 = {X | Years ≥ 4.5,Hits ≥ 117.5}.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 8 / 65



Introductory example

Terminology for Trees

In keeping with the tree analogy, the regions R1, R2, and R3 are
known as terminal nodes
Decision trees are typically drawn upside down, in the sense that the
leaves are at the bottom of the tree.
The points along the tree where the predictor space is split are
referred to as internal nodes
In the hitters tree, the two internal nodes are indicated by the text
Years < 4.5 and Hits < 117.5.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 9 / 65



Introductory example

Interpretation of Results

Years is the most important factor in determining Salary, and players
with less experience earn lower salaries than more experienced players.
Given that a player is less experienced, the number of Hits that he
made in the previous year seems to play little role in his Salary.
But among players who have been in the major leagues for five or more
years, the number of Hits made in the previous year does affect Salary,
and players who made more Hits last year tend to have higher salaries.
Surely an over-simplification, but compared to a regression model, it is
easy to display, interpret and explain.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 10 / 65



Introductory example

Predictions

We predict the response for a given test observation using the mean of
the training observations in the region to which that test observation
belongs.
A five-region example of this approach is shown in the next slide.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 11 / 65



Introductory example

Example

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 12 / 65



Introductory example

Details of previous figure

Top Left: A partition of two-dimensional feature space that could not
result from recursive binary splitting.

Top Right: The output of recursive binary splitting on a two-dimensional
example.

Bottom Left: A tree corresponding to the partition in the top right panel.
Bottom Right: A perspective plot of the prediction surface corresponding

to that tree.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 13 / 65



Learning a regression tree

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 14 / 65



Learning a regression tree Tree building process

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 15 / 65



Learning a regression tree Tree building process

Growing a regression tree

We now turn to the question of how to grow a regression tree.
Our data consists of p inputs and a response, for each of n
observations: that is, (xi , yi ) for i = 1, 2, . . . , n, with
xi = (xi1, xi2, . . . , xip).
The algorithm needs to automatically decide on the splitting variables
and split points, and also what topology (shape) the tree should have.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 16 / 65



Learning a regression tree Tree building process

Growing a regression tree

Suppose first that we have a partition into M regions R1,R2, . . . ,RM ,
and we model the response as a constant cm in each region:

f̂ (x) =
M∑

m=1

cm I (x ∈ Rm)

If we adopt as our criterion minimization of the RSS error∑n
i=1(yi − f (xi ))2, it is easy to see that the best cm is just the

average of yi in region Rm:

cm = ave {yi | xi ∈ Rm} .

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 17 / 65



Learning a regression tree Tree building process

Growing a regression tree

Now, finding the best binary partition in terms of minimum sum of
squares is generally computationally infeasible. Hence we proceed with
a top-down, greedy approach.
The approach is top-down because it begins at the top of the tree and
then successively splits the predictor space; each split is indicated via
two new branches further down on the tree.
It is greedy because at each step of the tree-building process, the best
split is made at that particular step, rather than looking ahead and
picking a split that will lead to a better tree in some future step.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 18 / 65



Learning a regression tree Tree building process

Algorithm

Starting with all of the data, consider a splitting variable Xj and split
point s, and define the pair of half-spaces

R1(j , s) = {X | Xj ≤ s} and R2(j , s) = {X | Xj > s}

Then we seek the splitting variable Xj and split point s that solve

min
j ,s

 ∑
xi∈R1(j ,s)

(yi − ĉ1(j , s))2 +
∑

xi∈R2(j ,s)

(yi − ĉ2(j , s))2


with

ĉ1(j , s) = ave{yi | xi ∈ R1(j , s)} and ĉ2(j , s) = ave{yi | xi ∈ R2(j , s)}

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (j , s) is feasible.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 19 / 65



Learning a regression tree Tree building process

Algorithm

Having found the best split, we partition the data into the two
resulting regions and repeat the splitting process on each of the two
regions.
Then this process is repeated on all of the resulting regions.
How large should we grow the tree? Clearly a very large tree might
overfit the data, while a small tree might not capture the important
structure.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 20 / 65



Learning a regression tree Tree building process

Regression trees in R

library(rpart)
baseball <- read.table("baseball.dat",header=TRUE)
n<-nrow(baseball)

train = sample(n, 2*n/3)
fit<-rpart(salary˜.,data=baseball,subset=train,method="anova")

plot(fit) text(fit,pretty=0,cex=0.8)

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 21 / 65



Learning a regression tree Tree building process

Regression trees in R

|
runs< 46.5

freeagent< 0.5

arbitration< 0.5 runs< 35.5

hrsperso< 0.1836

freeagent< 0.5
arbitration< 0.5 obp< 0.353

triples< 2.5

freeagent< 0.5

soserrors< 394.5

obp< 0.356

234.4 834.6 779.6 1610

305.8 1633 1556 2654

989.5 2468 3354

2489 4063

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 22 / 65



Learning a regression tree Pruning

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 23 / 65



Learning a regression tree Pruning

Tuning the model’s complexity

Tree size is a tuning parameter governing the model’s complexity, and
the optimal tree size should be adaptively chosen from the data.
One approach would be to split tree nodes only if the decrease in
sum-of-squares due to the split exceeds some threshold. This strategy
is too short-sighted, however, since a seemingly worthless split might
lead to a very good split below it.
The preferred strategy is to grow a large tree T0, stopping the
splitting process only when some minimum node size (say 5) is
reached. Then this large tree is pruned using cost-complexity pruning.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 24 / 65



Learning a regression tree Pruning

Cost-complexity pruning

We define a subtree T ⊂ T0 to be any tree that can be obtained by
pruning T0, that is, collapsing any number of its internal
(non-terminal) nodes.
We index terminal nodes by t, with node t representing region Rt .
Let T̃ denote the set of terminal nodes in T . Letting

nt = #{xi ∈ Rt}, ĉt =
1
nt

∑
xi∈Rt

yi ,

Qt =
1
nt

∑
xi∈Rt

(yi − ĉt)
2, C (T ) =

∑
t∈T̃

ntQt

We define the cost-complexity criterion

Cα(T ) = C (T ) + α|T̃ |.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 25 / 65



Learning a regression tree Pruning

Cost-complexity pruning

The idea is to find, for each α, the subtree T (α) ⊆ T0 to minimize
Cα(T ).
The tuning parameter α ≥ 0 governs the tradeoff between tree size
and its goodness of fit to the data. Large values of α result in smaller
trees T (α), and conversely for smaller values of α.
For α = 0, the solution is the full tree T0.
For each α one can show that there is a unique smallest subtree T (α)
that minimizes Cα(T ).
Questions:

1 For given α, how to find a tree that minimizes Cα(T )?
2 How to choose α?

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 26 / 65



Learning a regression tree Pruning

Weakest link pruning

We start from the full tree T0.
For any internal node t, let Tt be the branch of T with root t.
If we prune Tt , the cost-complexity criterion becomes smaller if

C (t) + α < C (Tt) + α|T̃t | ⇔ α >
C (t)− C (Tt)

|T̃t | − 1
= g0(t)

The weakest link t0 in T0 is the node such that g0(t0) = mint g0(t).
Let α1 = g0(t0).
Meaning: if we increase α starting from 0, t0 is the first node t such
that pruning Tt improves the cost-complexity criterion.
Let T1 = T0 − Tt0 . We again find the weakest link t1 in T1, etc.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 27 / 65



Learning a regression tree Pruning

Weakest link pruning

By iterating the above process until the tree is reduced to the root
node troot , we get a decreasing sequence of trees

T0 ⊃ T1 ⊃ . . . ⊃ troot ,

and an increasing sequence of α values, 0 = α0 < α1 < α2 < . . ..
We can show that, for all k ≥ 0 and all αk ≤ α < αk+1, the optimum
tree T (α) is equal to Tk .

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 28 / 65



Learning a regression tree Pruning

Choosing α

If we have a lot of data, it is easy to estimate the sum-of-squares error
of each subtree in the sequence T0 ⊃ T1 ⊃ . . . ⊃ troot using a
validation set. We choose the tree Tk with minimum validation error.
Otherwise, cross-validation is the method of choice.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 29 / 65



Learning a regression tree Pruning

Cross-validation in detail

Using the whole training set, we get a sequence of trees,
T0 ⊃ T1 ⊃ . . . ⊃ troot , where Tk is the best tree for αk ≤ α < αk+1.
For k = 0, 1, 2, . . ., set βk =

√
αkαk+1

Assume we use K -fold cross validation: we partition the training data
in K blocks of approximately equal size.
We construct K sequences of trees by leaving each of K blocks out
and building the trees using the K − 1 remaining blocks. Let
T

(r)
0 ⊃ T

(r)
1 ⊃ . . . ⊃ t

(r)
root be the sequence of trees obtained by leaving

block r out.
Compute the cross-validated error Ccv (Tk) using the trees T (r)(βk),
r = 1, . . . ,K .
Select the tree Tk corresponding to the minimum cross-validated error.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 30 / 65



Learning a regression tree Pruning

Pruning a regression tree in R

fit<-rpart(salary˜.,data=baseball,subset=train,method="anova",
control = rpart.control(xval = 10, minbucket = 2, cp = 0))

printcp(fit)
plotcp(fit)

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 31 / 65



Learning a regression tree Pruning

Pruning a regression tree in R

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 32 / 65



Learning a regression tree Pruning

Pruning a regression tree in R

cp

X
−

va
l R

el
at

iv
e 

E
rr

or

0.
4

0.
6

0.
8

1.
0

1.
2

Inf 0.023 0.0074 0.002 0.00057 8.1e−05 2.1e−06

1 6 11 17 24 30 36 42 49 56 62 68

size of tree

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 33 / 65



Learning a regression tree Pruning

Pruning a regression tree in R

pruned_tree<-prune(fit,cp=2.5680e-02)
plot(pruned_tree)
text(pruned_tree,pretty=0)

|runs< 46.5

freeagent< 0.5 hrsperso< 0.1836

freeagent< 0.5 triples< 2.5

freeagent< 0.5 obp< 0.356

364.9 1169

848.6 1905

989.5 2892
2489 4063

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 34 / 65



Learning a regression tree Pruning

Prediction with a regression tree in R

yhat=predict(pruned_tree,newdata=baseball[-train,])
baseball.test=baseball[-train,"salary"]
plot(baseball.test,yhat)
abline(0,1)

0 1000 2000 3000 4000

10
00

20
00

30
00

40
00

baseball.test

pr
ed

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 35 / 65



Classification trees

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 36 / 65



Classification trees

Classification trees

If the target is a classification outcome taking values 1, 2, . . . , c , the
only changes needed in the tree-growing algorithm pertain to the
criteria for splitting nodes and pruning the tree.
For regression we used the MSE node impurity measure Qt ,

Qt =
1
nt

∑
xi∈Rt

(yi − ĉt)
2,

but this is not suitable for classification.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 37 / 65



Classification trees

Impurity measures

In a node t, representing a region Rt with nt observations, let

p̂tk =
1
nt

∑
xi∈Rt

I (yi = k)

be the proportion of class k observations in node t.
We classify the observations in node t to class k(t) = argmaxk p̂tk ,
the majority class in node t.
Different measures Qt of node impurity include the following:
Misclassification error: 1

nt

∑
xi∈Rt

I (yi 6= k(t)) = 1− p̂tk(t)
Gini index:

∑
k 6=k ′ p̂tk p̂tk ′ =

∑c
k=1 p̂tk(1− p̂tk)

Entropy: −
∑c

k=1 p̂tk log p̂tk

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 38 / 65



Classification trees

Comparison between impurity measures
Case c = 2

For two classes, if p is the proportion in the second class, these three
measures are 1−max(p, 1− p), 2p(1− p) and
−p log p − (1− p) log(1− p), respectively.
All three are similar, but entropy and the Gini index are differentiable,
and hence more amenable to numerical optimization.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 39 / 65



Classification trees

Selecting the best split

Consider a node t with size nt with impurity Qt

For some variable j and split point s, we split t in two nodes, tL and
tR , with sizes ntL and ntR , and with impurities QtL and QtR

The average decrease of impurity is

∆(j , s) = Qt −
(
ntL
nt

QtL +
ntR
nt

QtR

)
If Qt is the entropy, then ∆(j , s) is interpreted as an information gain.
We select at each step the splitting variable j and the split point s that
maximizes ∆(j , s) or, equivalently, that minimizes the average impurity

ntL
nt

QtL +
ntR
nt

QtR

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 40 / 65



Classification trees

Categorical predictors

When splitting a predictor having q possible unordered values, there
are 2q−1 − 1 possible partitions of the q values into two groups.
All the dichotomies can be explored for small q, but the computations
become prohibitive for large q.
In the 2-class case, this computation simplifies. We order the predictor
levels according to the proportion falling in outcome class 1. Then we
split this predictor as if it were an ordered predictor. One can show
this gives the optimal split, in terms of entropy or Gini index, among
all possible 2q−1 − 1 splits.
The partitioning algorithm tends to favor categorical predictors with
many levels q; the number of partitions grows exponentially in q, and
the more choices we have, the more likely we can find a good one for
the data at hand. This can lead to severe overfitting if q is large, and
such variables should be avoided.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 41 / 65



Classification trees

Heart data

A retrospective sample of males in a heart-disease high-risk region of
the Western Cape, South Africa.
There are roughly two controls per case of CHD.
Variables:

sbp: systolic blood pressure
tobacco: cumulative tobacco (kg)
ldl: low density lipoprotein cholesterol
adiposity
famhist: family history of heart disease (Present, Absent)
typea: type-A behavior
obesity
alcohol: current alcohol consumption
age: age at onset
chd: response, coronary heart disease

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 42 / 65



Classification trees

Tree growing in R

heart<-read.table(file = "SAheart.data",sep=",",header=T,
row.names=1)

n<-nrow(heart)

train = sample(n, 2*n/3)
fit <- rpart(chd ˜ ., data = heart, method="class",

subset=train, parms = list(split = ’gini’))
plot(fit,margin = 0.05)
text(fit,pretty=0,cex=0.8)

plotcp(fit)

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 43 / 65



Classification trees

Tree

|
age< 51.5

tobacco< 0.49
typea< 52.5

alcohol< 45.18

ldl< 6.29

famhist=Absent

tobacco< 7.605 ldl< 6.82
typea>=50.5

adiposity>=27.38

0
0

0 1
1

0 1 0 1

1
1

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 44 / 65



Classification trees

Cross-validation error

cp

X
−

va
l R

el
at

iv
e 

E
rr

or

0.
7

0.
8

0.
9

1.
0

1.
1

Inf 0.11 0.026 0.011

1 2 4 11

size of tree

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 45 / 65



Classification trees

Pruning

pruned_tree<-prune(fit,cp=0.026)
plot(pruned_tree,margin = 0.05)
text(pruned_tree,pretty=0)

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 46 / 65



Classification trees

Pruned tree

|
age< 51.5

famhist=Absent

tobacco< 7.605
0

0 1

1

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 47 / 65



Classification trees

Test error rate estimation

yhat=predict(pruned_tree,newdata=heart[-train,],type=’class’)
y.test=heart[-train,"chd"]
table(y.test,yhat)
err<-1-mean(y.test==yhat)

Confusion matrix:

prediction
true class 0 1

0 95 11
1 31 17

Test error rate: 0.27

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 48 / 65



Classification trees

Advantages and disadvantages of trees

Trees can be displayed graphically, and are easily interpreted even by a
non-expert (especially if they are small).
Trees can easily handle qualitative predictors without the need to
create dummy variables.
Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other modern regression and classification
approaches.
However, by aggregating many decision trees, the predictive
performance of trees can be substantially improved.
We will see two combination methods, both based on the same
resampling technique: the bootstrap, which we introduce first.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 49 / 65



Combining trees

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 50 / 65



Combining trees Bagging

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 51 / 65



Combining trees Bagging

Bagging

Bootstrap aggregation, or bagging, is a general-purpose procedure for
reducing the variance of a statistical learning method; we introduce it
here because it is particularly useful and frequently used in the context
of decision trees.
Recall that given a set of n independent observations X1, . . . ,Xn, each
with variance σ2, the variance of the mean X of the observations is
given by σ2/n.
In other words, averaging a set of observations reduces variance. Of
course, this is not practical because we generally do not have access to
multiple training sets.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 52 / 65



Combining trees Bagging

Bagging – continued

Instead, we can bootstrap, by taking repeated samples from the
(single) training data set.
In this approach we generate B different bootstrapped training data
sets. We then train our method on the b-th bootstrapped training set
in order to get f̂ ∗b(x), the prediction at a point x . We then average
all the predictions to obtain

f̂bag (x) =
1
B

B∑
b=1

f̂ ∗b(x)

This is called bagging.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 53 / 65



Combining trees Bagging

Bagging classification trees

The above prescription applied to regression trees.
For classification trees: for each test observation, we record the class
predicted by each of the B trees, and take a majority vote: the overall
prediction is the most commonly occurring class among the B
predictions.
If we are interested in the posterior probabilities, we can rather
average the class proportions in the terminal nodes.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 54 / 65



Combining trees Bagging

Example

We generated a sample of size n = 30, with two classes and p = 5
features, each having a standard Gaussian distribution with pairwise
correlation 0.95.
The response Y was generated according to
Pr(Y = 1|x1 ≤ 0.5) = 0.2, Pr(Y = 1|x1 > 0.5) = 0.8. The Bayes
error is 0.2.
A test sample of size 2000 was also generated from the same
population.
We fit classification trees to the training sample and to each of 200
bootstrap samples. No pruning was used.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 55 / 65



Combining trees Bagging

Bagged decision trees

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 56 / 65



Combining trees Bagging

Error curves

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 57 / 65



Combining trees Bagging

Out-of-Bag Error Estimation

It turns out that there is a very straightforward way to estimate the
test error of a bagged model.
Recall that the key to bagging is that trees are repeatedly fit to
bootstrapped subsets of the observations. One can show that on
average, each bagged tree makes use of around two-thirds of the
observations.
The remaining one-third of the observations not used to fit a given
bagged tree are referred to as the out-of-bag (OOB) observations.
We can predict the response for the ith observation using each of the
trees in which that observation was OOB. This will yield around B/3
predictions for the ith observation, which we average.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 58 / 65



Combining trees Random Forests

Overview

1 Introductory example

2 Learning a regression tree
Tree building process
Pruning

3 Classification trees

4 Combining trees
Bagging
Random Forests

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 59 / 65



Combining trees Random Forests

Random Forests

Random forests provide an improvement over bagged trees by way of a
small tweak that decorrelates the trees. This reduces the variance
when we average the trees.
As in bagging, we build a number of decision trees on bootstrapped
training samples.
But when building these decision trees, each time a split in a tree is
considered, a random selection of m predictors is chosen as split
candidates from the full set of p predictors. The split is allowed to use
only one of those m predictors.
A fresh selection of m predictors is taken at each split, and typically
we choose m ≈ √p – that is, the number of predictors considered at
each split is approximately equal to the square root of the total
number of predictors.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 60 / 65



Combining trees Random Forests

Example: gene expression data

We applied random forests to a high-dimensional biological data set
consisting of expression measurements of 4,718 genes measured on
tissue samples from 349 patients. (There are around 20,000 genes in
humans, and individual genes have different levels of activity, or
expression, in particular cells, tissues, and biological conditions.)
Each of the patient samples has a qualitative label with 15 different
levels: either normal or one of 14 different types of cancer.
We use random forests to predict cancer type based on the 500 genes
that have the largest variance in the training set.
We randomly divided the observations into a training and a test set,
and applied random forests to the training set for three different values
of the number of splitting variables m.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 61 / 65



Combining trees Random Forests

Results: gene expression data

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 62 / 65



Combining trees Random Forests

Details of previous figure

Results from random forests for the fifteen-class gene expression data
set with p = 500 predictors.
The test error is displayed as a function of the number of trees. Each
colored line corresponds to a different value of m, the number of
predictors available for splitting at each interior tree node.
Random forests (m < p) lead to a slight improvement over bagging
(m = p). A single classification tree has an error rate of 45.7%.

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 63 / 65



Combining trees Random Forests

Bagging in R

library(randomForest)
p<-ncol(heart)-1
bag.heart=randomForest(as.factor(chd) ˜.,data=heart,subset=train,

mtry=p)
yhat1=predict(bag.heart,newdata=heart[-train,],type="response")
table(y.test,yhat1)
1-mean(y.test==yhat1)

Confusion matrix:

prediction
true class 1 2

1 83 23
2 28 20

Test error rate: 0.33

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 64 / 65



Combining trees Random Forests

Random forests in R

library(randomForest)
RF.heart=randomForest(as.factor(chd) ˜.,data=heart,subset=train,

mtry=3)
yhat2=predict(RF.heart,newdata=heart[-train,],type="response")
table(y.test,yhat2)
1-mean(y.test==yhat2)

Confusion matrix:

prediction
true class 1 2

1 83 17
2 30 18

Test error rate: 0.31

Thierry Denœux ACE - Tree-based & ensemble methods July 2019 65 / 65


	Introductory example
	Learning a regression tree
	Tree building process
	Pruning

	Classification trees
	Combining trees
	Bagging
	Random Forests


