# Advanced Computational Econometrics: Machine Learning

Chapter 6: Gaussian Mixture models

Thierry Denœux

July-August 2019





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





July-August 2019

#### Return to LDA and QDA

• In LDA and QDA, we assume that the conditional density of X given Y = k is multivariate Gaussian

$$\phi_k(x; \mu_k, \mathbf{\Sigma}_k) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_k^{-1} (x - \mu_k)\right).$$

(with  $\Sigma_k = \Sigma$  in the case of LDA)

• The marginal density of X is then a mixture of c Gaussian densities:

$$p(x) = \sum_{k=1}^{c} p(x|Y = k)P(Y = k) = \sum_{k=1}^{c} \pi_k \phi_k(x; \mu_k, \Sigma_k)$$

• This is called a Gaussian Mixture Model (GMM).



#### Gaussian Mixture Models

- GMMs are widely used in Machine Learning for
  - Density estimation
  - Clustering (finding groups in data)
  - Classification (modeling complex-shaped class distributions)
  - Regression (accounting for different linear relations within subgroups of a population)
  - etc.





## Example with p = 1







## Example with p = 2











#### How to generate data from a mixture?

- Assume  $X \sim \sum_{k=1}^{c} \pi_k \mathcal{N}(\mu_k, \mathbf{\Sigma}_k)$
- How to generate *X*?
  - **①** Generate  $Y \in \{1, ..., c\}$  with probabilities  $\pi_1, ..., \pi_c$ .
  - 2 If Y = k, generate X from  $p(x|Y = k) = \phi_k(x; \mu_k, \Sigma_k)$ .
- Remark: we can define mixtures of other distributions. In this chapter, we will focus (without loss of generality) on mixtures of normal distributions.





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





July-August 2019

#### Supervised learning

- In discriminant analysis, we observe both the input vector X and the response (class label) Y for n individuals taken randomly from the population.
- The learning set has the form  $\mathcal{L}_s = \{(x_i, y_i)\}_{i=1}^n$ .
- Learning a classifier from such data is called supervised learning.





#### Unsupervised learning

- In some situations, we observe X, but Y is not observed. We say that Y is a latent variable.
- The learning set has the form  $\mathcal{L}_{ns} = \{x_i\}_{i=1}^n$ .
- Estimating the model parameters from such data is called unsupervised learning.
- Applications: density estimation, clustering, feature extraction.
- Unsupervised learning is usually more difficult than supervised learning, because we have less information to estimate the parameters.





## Supervised vs. unsupervised learning







#### Semi-supervised learning

- Sometimes, we collect of lot of data, but we can label only a part of them.
- Examples: image data from the web, or from sensors on a robot.
- The data then have the form  $\mathcal{L}_{ss} = \{(x_i, y_i)\}_{i=1}^{n_s} \cup \{x_i\}_{i=n_s+1}^n$ .
- This is called a semi-supervised learning problem.
- Semi-supervised learning is intermediate between supervised and unsupervised learning.





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





## Maximum likelihood: supervised case

- In the case of supervised learning of GMMs, the maximum likelihood estimates (MLE) of  $\mu_k$ ,  $\Sigma_k$  and  $\pi_k$  have simple closed-form expressions.
- The likelihood function is

$$L(\theta; \mathcal{L}_s) = \prod_{i=1}^{n} p(x_i, y_i) = \prod_{i=1}^{n} p(x_i | Y_i = y_i) p(Y_i = y_i)$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{c} \phi(x_i; \mu_k, \mathbf{\Sigma}_k)^{y_{ik}} \pi_k^{y_{ik}}$$

• The log-likelihood function is

$$\ell(\theta; \mathcal{L}_s) = \sum_{k=1}^c \left\{ \sum_{i=1}^n y_{ik} \log \phi(x_i; \mu_k, \mathbf{\Sigma}_k) \right\} + \sum_{i=1}^n \sum_{k=1}^c y_{ik} \log \pi_k$$

• The parameters  $\mu_k, \Sigma_k$  can be estimated separately using the data from class k.



#### MLE in the supervised case

We have

$$\sum_{i=1}^{n} y_{ik} \log \phi(\mathbf{x}_i; \mu_k, \mathbf{\Sigma}_k) = -\frac{1}{2} \sum_{i=1}^{n} y_{ik} (\mathbf{x}_i - \mu_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x}_i - \mu_k)$$
$$-\frac{n_k}{2} \log |\mathbf{\Sigma}_k| - \frac{n_k p}{2} \log(2\pi)$$

• The derivative wrt to  $\mu_k$  is  $\sum_i y_{ik} \mathbf{\Sigma}_k^{-1} (x_i - \mu_k)$ . Hence,

$$\widehat{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n y_{ik} x_i$$

It can be shown that

$$\widehat{\boldsymbol{\Sigma}}_k = \frac{1}{n_k} \sum_{i=1}^n y_{ik} (x_i - \widehat{\mu}_k) (x_i - \widehat{\mu}_k)^T$$



## MLE in the supervised case (continued)

• To find the MLE of the  $\pi_k$ , we maximize

$$\sum_{i=1}^{n} \sum_{k=1}^{c} y_{ik} \log \pi_k$$

wrt to  $\pi_k$ , subject to the constraint  $\sum_{k=1}^{c} \pi_k = 1$ .

The solution is

$$\widehat{\pi}_k = \frac{n_k}{n}, \quad k = 1, \dots, c$$





#### Maximum likelihood: unsupervised case

In the case of unsupervised learning, the log-likelihood function is

$$\ell(\theta; \mathcal{L}_{ns}) = \sum_{i=1}^{n} \log p(x_i)$$

$$= \sum_{i=1}^{n} \left( \log \sum_{k=1}^{c} \pi_k \phi_k(x_i; \mu_k, \mathbf{\Sigma}_k) \right)$$

- We can no longer separate the terms corresponding to each class.
- Maximizing the log-likelihood becomes a difficult nonlinear optimization problem, for which no closed-form solution exists.
- A powerful method: the Expectation-Maximization (EM) algorithm.



#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





#### Notation

X : Observed variables

Y : Missing or latent variables

Z: Complete data Z = (X, Y)

 $\theta$ : Unknown parameter

 $L(\theta)$ : observed-data likelihood, short for  $L(\theta; \mathbf{x}) = p(\mathbf{x}; \theta)$ 

 $L_c(\theta)$ : complete-data likelihood, short for  $L(\theta; \mathbf{z}) = p(\mathbf{z}; \theta)$ 

 $\ell(\theta), \ell_c(\theta)$  : observed and complete-data log-likelihoods



## Notation (continued)

- Suppose we seek to maximize  $L(\theta)$  with respect to  $\theta$ .
- Define  $Q(\theta; \theta^{(t)})$  to be the expectation of the complete-data log-likelihood, conditional on the observed data  $\mathbf{X} = \mathbf{x}$ . Namely

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \left\{ \ell_c(\theta) \mid \mathbf{x} \right\}$$

$$= \mathbb{E}_{\theta^{(t)}} \left\{ \log p(\mathbf{Z}; \theta) \mid \mathbf{x} \right\}$$

$$= \int \left[ \log p(\mathbf{z}; \theta) \right] p(\mathbf{y} | \mathbf{x}; \theta^{(t)}) d\mathbf{y}$$

where the last equation emphasizes that  ${\bf Y}$  is the only random part of  ${\bf Z}$  once we are given  ${\bf X}={\bf x}.$ 



## The EM Algorithm (reminder)

Start with  $\theta^{(0)}$  and set t = 0. Then

- **1 E step**: Compute  $Q(\theta, \theta^{(t)})$ .
- **M step**: Maximize  $Q(\theta, \theta^{(t)})$  with respect to  $\theta$ . Set  $\theta^{(t+1)}$  equal to the maximizer of Q.
- Return to the E step and increment t unless a stopping criterion has been met, e.g.,

$$|\ell(\theta^{(t+1)}) - \ell(\theta^{(t)})| \le \epsilon$$





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





### Old Faithful geyser data



Waiting time between eruptions and duration of the eruption (in min) for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA (272 observations).

#### General GMM

• Let  $\boldsymbol{X} = (X_1, \dots, X_n)$  be an i.i.d. sample from a mixture of K multivariate normal distributions  $\mathcal{N}(\mu_k, \boldsymbol{\Sigma}_k)$  with proportions  $\pi_k$ . The pdf of  $X_i$  is

$$p(x_i; \theta) = \sum_{k=1}^{c} \pi_k \phi(x_i; \mu_k, \mathbf{\Sigma}_k),$$

where  $\theta$  is the vector of parameters.

- We introduce latent variables  $\mathbf{Y} = (Y_1, \dots, Y_n)$ , such that
  - $Y_i \sim \mathcal{M}(1, \pi_1, \ldots, \pi_c)$ ,
  - $p(x_i|Y_i=k) = \phi(x_i; \mu_k, \Sigma_k), k = 1..., c$





## Observed and complete-data likelihoods

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n} p(x_i; \theta) = \prod_{i=1}^{n} \sum_{k=1}^{c} \pi_k \phi(x_i; \mu_k, \mathbf{\Sigma}_k)$$

Complete-data likelihood:

$$L_{c}(\theta) = \prod_{i=1}^{n} p(x_{i}, y_{i}; \theta) = \prod_{i=1}^{n} p(x_{i}|y_{i}; \theta) p(y_{i}|\pi)$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{c} \phi(x_{i}; \mu_{k}, \Sigma_{k})^{y_{ik}} \pi_{k}^{y_{ik}},$$

with 
$$y_{ik} = I(y_i = k)$$
.





#### Derivation of function Q

Complete-data log-likelihood:

$$\ell_c(\theta) = \sum_{i=1}^n \sum_{k=1}^c y_{ik} \log \phi(x_i; \mu_k, \Sigma_k) + \sum_{i=1}^n \sum_{k=1}^c y_{ik} \log \pi_k$$

• It is linear in the  $y_{ik}$ . Consequently, the Q function is simply

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{c} y_{ik}^{(t)} \log \phi(x_i; \mu_k, \mathbf{\Sigma}_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} y_{ik}^{(t)} \log \pi_k$$

with 
$$y_{ik}^{(t)} = \mathbb{E}_{\theta^{(t)}}[Y_{ik}|x_i] = \mathbb{P}_{\theta^{(t)}}[Y_i = k|x_i].$$





#### EM algorithm

E-step: compute

$$y_{ik}^{(t)} = \mathbb{P}_{\theta^{(t)}}[Y_i = k | x_i]$$

$$= \frac{\phi(x_i; \mu_k^{(t)}, \mathbf{\Sigma}_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^{c} \phi(x_i; \mu_\ell^{(t)}, \mathbf{\Sigma}_\ell^{(t)}) \pi_\ell^{(t)}}$$

• M-step: Maximize  $Q(\theta, \theta^{(t)})$ . We get

$$\pi_k^{(t+1)} = \frac{n_k^{(t)}}{n}, \quad \mu_k^{(t+1)} = \frac{1}{n_k^{(t)}} \sum_{i=1}^n y_{ik}^{(t)} x_i$$

$$\mathbf{\Sigma}_{k}^{(t+1)} = \frac{1}{n_{k}^{(t)}} \sum_{i=1}^{n} y_{ik}^{(t)} (x_{i} - \mu_{k}^{(t+1)}) (x_{i} - \mu_{k}^{(t+1)})^{T}$$

with 
$$n_k^{(t)} = \sum_{i=1}^n y_{ik}^{(t)}$$
.



4日ト 4部ト 4回ト 4里ト

## GMM with the package mclust

```
library(mclust)
data(faithful)

faithfulMclust <- Mclust(faithful,G=2,modelNames="VVV")
plot(faithfulMclust)</pre>
```





#### Result

#### Classification







**∄**→

## Choosing the number of clusters

> faithfulMclust <- Mclust(faithful.modelNames="VVV")</pre>

-1130,264 272 11 -2322,192 -2322,695

- In clustering, selecting the number of clusters is often a difficult problem.
- This is a model selection problem. We can use the BIC criterion. (Reminder:  $BIC = -2\ell + d \log(N)$ )

```
> summary(faithfulMclust)
Gaussian finite mixture model fitted by EM algorithm
Mclust VVV (ellipsoidal, varying volume, shape, and orientation) model with 2 components:
log.likelihood n df BIC
```

Clustering table:

175 97

## Choosing the number of clusters

#### plot(faithfulMclust)







#### Reducing the number of parameters

- The general model has c[p + p(p+1)/2 + 1] 1 parameters.
- When n is small and/or p is large: we need more parsimonious models (i.e., models with fewer parameters).
- Simple approaches:
  - Assume equal covariance matrix (homoscedasticity)
  - Assume the covariance matrices to be diagonal, or scalar
- More flexible approach: use the eigendecomposition of matrix  $\Sigma_k$





# Eigendecomposition $\Sigma_k$

• As matrix  $\Sigma_k$  is symmetric, we can write

$$\mathbf{\Sigma}_k = \mathbf{D}_k \mathbf{\Lambda}_k \mathbf{D}_k^T = \lambda_k \mathbf{D}_k \mathbf{A}_k \mathbf{D}_k^T,$$

#### where

- $\Lambda = \text{diag}(\lambda_{k1}, \dots, \lambda_{kp})$  is a diagonal matrix whose components are the decreasing eigenvalues of  $\Sigma_k$
- $D_k$  is an orthogonal matrix  $(D_k D_k^T = I)$  whose columns are the normalized eigenvectors of  $\Sigma_k$
- $A_k$  is a diagonal matrix such that |A|=1, with decreasing diagonal values proportional to the eigenvalues of  $\Sigma_k$
- $\lambda_k = \left(\prod_{j=1}^p \lambda_{kj}\right)^{1/p} = |\mathbf{\Sigma}_k|^{1/p}$
- Interpretation:
  - A<sub>k</sub> describes the shape of the cluster
  - $D_k$  (a rotation matrix) describes its orientation
  - $\lambda_k$  describes its volume



## Example in $\mathbb{R}^2$



- D: rotation matrix, angle  $\theta$
- A: diagonal matrix with diagonal terms a and 1/a



#### Parsimonious models

- With this parametrization, the parameters of the GMM are: the centers, volumes, shapes, orientations and proportions.
- 28 different models
  - Spherical, diagonal, arbitrary
  - Volumes equal or not
  - Shapes equal or not
  - Directions equal or not
  - Proportions equal or not





# The 14 models based on assumptions on variance matrices







#### Parsimonious models in mclust

faithfulMclust <- Mclust(faithful)
plot(faithfulMclust)</pre>







#### Best model

Best model: EEE or  $\lambda DAD^T$  (ellipsoidal, equal volume, shape and orientation) model with 3 components







#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





#### Semi-supervised learning

In semi-supervised learning, the data have the form

$$\mathcal{L}_{ss} = \{(x_i, y_i)\}_{i=1}^{n_s} \cup \{x_i\}_{i=n_s+1}^n.$$

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n_s} p(x_i, y_i; \theta) \prod_{i=n_s+1}^{n} p(x_i; \theta)$$

$$= \left( \prod_{i=1}^{n_s} \prod_{k=1}^{c} \phi(x_i; \mu_k, \mathbf{\Sigma}_k)^{y_{ik}} \pi_k^{y_{ik}} \right) \left( \prod_{i=n_s+1}^{n} \sum_{k=1}^{c} \pi_k \phi(x_i; \mu_k, \mathbf{\Sigma}_k) \right)$$

• Complete-data likelihood: same as in the unsupervised case,

$$L_c(\theta) = \prod_{i=1}^n \prod_{k=1}^c \phi(x_i; \mu_k, \mathbf{\Sigma}_k)^{y_{ik}} \pi_k^{y_{ik}},$$

with  $y_{ik} = 1$  if  $y_i = k$  and  $y_{ik} = 0$  otherwise.



#### EM algorithm

E-step: compute

$$y_{ik}^{(t)} = \begin{cases} y_{ik} & i = 1, \dots, n_s \text{ (fixed)} \\ \frac{\phi(x_i; \mu_k^{(t)}, \mathbf{\Sigma}_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^c \phi(x_i; \mu_\ell^{(t)}, \mathbf{\Sigma}_\ell^{(t)}) \pi_\ell^{(t)}}, & i = n_s + 1, \dots, n \end{cases}$$

M-step: same as in the unsupervised case.

$$\pi_k^{(t+1)} = \frac{n_k^{(t)}}{n}, \quad \mu_k^{(t+1)} = \frac{1}{n_k^{(t)}} \sum_{i=1}^n y_{ik}^{(t)} x_i$$

$$\mathbf{\Sigma}_{k}^{(t+1)} = \frac{1}{n_{k}^{(t)}} \sum_{i=1}^{n} y_{ik}^{(t)} (x_{i} - \mu_{k}^{(t+1)}) (x_{i} - \mu_{k}^{(t+1)})^{T}$$

with 
$$n_k^{(t)} = \sum_{i=1}^n y_{ik}^{(t)}$$



. . . . . . . . . . . . . . .

## Package upclass

```
library(upclass)
data(iris)
X <- as.matrix(iris[,-5])</pre>
cl <- as.matrix(iris[,5])</pre>
indtrain <- sort(sample(1:150,110))</pre>
Xtrain <- X[indtrain.]</pre>
cltrain <- cl[indtrain]
indtest <- setdiff(1:150, indtrain)</pre>
Xtest <- X[indtest,]</pre>
models <- c("EII", "VII", "VEI", "EVI")</pre>
fitupmodels <- upclassify(Xtrain,cltrain,Xtest,modelscope=models)</pre>
fitupmodels$Best$modelName # What is the best model?
```

#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





## Mixture Discriminant Analysis

- GMM can also be useful in supervised classification.
- Here, we model the distribution of X in each class by a GMM:

$$p(x|Y=k) = \sum_{r=1}^{R_k} \pi_{kr} \phi(x; \mu_{kr}, \mathbf{\Sigma}_{kr})$$

with 
$$\sum_{r=1}^{R_k} \pi_{kr} = \pi_k$$
.

- This method is called Mixture Discriminant Analysis (MDA). It extends LDA.
- By varying the number of components in each mixture, we can handle classes of any shape, and obtain arbitrarily complex nonlinear decision boundaries.
- We may impose  $\Sigma_{kr} = \Sigma$ , or any other parsimonious model, to control the complexity of the model.

#### Observed-data likelihood

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n} p(x_i, y_i; \theta) = \prod_{i=1}^{n} p(x_i | y_i; \theta) p(y_i; \theta)$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{c} \left( \sum_{r=1}^{R_k} \pi_{kr} \phi(x; \mu_{kr}, \mathbf{\Sigma}_{kr}) \right)^{y_{ik}} \pi_k^{y_{ik}}$$

 Again, the EM algorithm can be used to estimate the model parameters, separately in each class (see ESL page 449 for details).





## MDA using package mclust

```
odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1
X.train <- iris[odd,-5]
Class.train <- iris[odd,5]
X.test <- iris[even,-5]
Class.test <- iris[even,5]
# general covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)</pre>
```





plot(irisMclustDA)

#### Result

```
> summary(irisMclustDA, newdata = X.test, newclass = Class.test)
Gaussian finite mixture model for classification
MclustDA model summary:
 log.likelihood n df
      -63.55015 75 53 -355.9272
Classes
             n Model G
             25 VFT 2
  setosa
  versicolor 25 EEV 2
 virginica 25 XXX 1
Training classification summary:
            Predicted
Class
             setosa versicolor virginica
  setosa
                             0
                           25
  versicolor
 virginica
Training error = 0
Test classification summary:
            Predicted
             setosa versicolor virginica
Class
                 25
  setosa
 versicolor
                 0
                            24
```





25

#### Result







#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





# Introductory example

#### 1996 GNP and Emissions Data







## Introductory example (continued)

- The data in the previous slide do not show any clear linear trend.
- However, there seem to be several groups for which a linear model would be a reasonable approximation.
- How to identify those groups and the corresponding linear models?





#### **Formalization**

- We assume that the response variable Y depends on the input variable X in different ways, depending on a latent variable Z. (Beware: we have switched back to the classical notation for regression models!)
- This model is called mixture of regressions or switching regressions. It has been widely studied in the econometrics literature.





#### Model

Model:

$$Y = \begin{cases} \beta_1^T X + \epsilon_1, \ \epsilon_1 \sim \mathcal{N}(0, \sigma_1) & \text{if } Z = 1, \\ \vdots \\ \beta_K^T X + \epsilon_K, \ \epsilon_K \sim \mathcal{N}(0, \sigma_K) & \text{if } Z = c, \end{cases}$$

with  $X=(1,X_1,\ldots,X_p)$ , and

$$\mathbb{P}(Z=k)=\pi_k, \quad k=1,\ldots,c.$$

So,

$$p(y|X=x) = \sum_{k=1}^{c} \pi_k \phi(y; \beta_k^T x, \sigma_k)$$





# Observed and complete-data likelihoods

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n} p(y_i; \theta) = \prod_{i=1}^{n} \sum_{k=1}^{c} \pi_k \phi(y_i; \beta_k^T x_i, \sigma_k)$$

Complete-data likelihood:

$$L_c(\theta) = \prod_{i=1}^n p(y_i, z_i; \theta) = \prod_{i=1}^n p(y_i|z_i; \theta) p(z_i|\pi)$$
$$= \prod_{i=1}^n \prod_{k=1}^c \phi(y_i; \beta_k^T x_i, \sigma_k)^{z_{ik}} \pi_k^{z_{ik}},$$

with  $z_{ik} = 1$  if  $z_i = k$  and  $z_{ik} = 0$  otherwise.





## Derivation of function Q

• Complete-data log-likelihood:

$$\ell_c(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik} \log \pi_k$$

• It is linear in the  $z_{ik}$ . Consequently, the Q function is simply

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \pi_k$$

with 
$$z_{ik}^{(t)} = \mathbb{E}_{\theta^{(t)}}[Z_{ik}|y_i] = \mathbb{P}_{\theta^{(t)}}[Z_i = k|y_i].$$





#### EM algorithm

E-step: compute

$$z_{ik}^{(t)} = \mathbb{P}_{\theta^{(t)}}[Z_i = k|y_i]$$

$$= \frac{\phi(y_i; \beta_k^{(t)T} x_i, \sigma_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^{c} \phi(y_i; \beta_\ell^{(t)T} x_i, \sigma_\ell^{(t)}) \pi_\ell^{(t)}}$$

• M-step: Maximize  $Q(\theta, \theta^{(t)})$ . As before, we get

$$\pi_k^{(t+1)} = \frac{n_k^{(t)}}{n},$$

with 
$$n_k^{(t)} = \sum_{i=1}^n z_{ik}^{(t)}$$
.





# M-step: update of the $\beta_k$ and $\sigma_k$

• In  $Q(\theta, \theta^{(t)})$ , the term depending on  $\beta_k$  is

$$SS_k = \sum_{i=1}^n z_{ik}^{(t)} (y_i - \beta_k^T x_i)^2.$$

• Minimizing  $SS_k$  w.r.t.  $\beta_k$  is a weighted least-squares (WLS) problem. In matrix form,

$$SS_k = (\mathbf{y} - \mathbf{X}\beta_k)^T \mathbf{W}_k (\mathbf{y} - \mathbf{X}\beta_k),$$

where  $\mathbf{W}_k = \text{diag}(z_{1k}^{(t)}, \dots, z_{nk}^{(t)})$  is a diagonal matrix of size n.





## M-step: update of the $\beta_k$ and $\sigma_k$ (continued)

• The solution is the WLS estimate of  $\beta_k$ :

$$\beta_k^{(t+1)} = (\boldsymbol{X}^T \boldsymbol{W}_k \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W}_k \boldsymbol{y}$$

• The value of  $\sigma_k$  minimizing  $Q(\theta, \theta^{(t)})$  is the weighted average of the residuals.

$$\sigma_k^{2(t+1)} = \frac{1}{n_k^{(t)}} \sum_{i=1}^n z_{ik}^{(t)} (y_i - \beta_k^{(t+1)T} x_i)^2$$

$$= \frac{1}{n_k^{(t)}} (\mathbf{y} - \mathbf{X} \beta_k^{(t+1)})^T \mathbf{W}_k (\mathbf{y} - \mathbf{X} \beta_k^{(t+1)})$$



61 / 76



## Mixture of regressions using mixtools

```
library(mixtools)
data(CO2data)
attach(CO2data)
CO2reg <- regmixEM(CO2, GNP)
summary(CO2reg)
ii1<-CO2reg$posterior>0.5
ii2<-CO2reg$posterior<=0.5
text(GNP[ii1],CO2[ii1],country[ii1],col='red')
text(GNP[Cii2],CO2[ii2],country[ii2],col='blue')
abline(CO2reg$beta[,1],col='red')
abline(CO2reg$beta[,2],col='blue')
```





#### Best solution in 10 runs







# Increase of log-likelihood







# Another solution (with lower log-likelihood)







# Increase of log-likelihood







#### Overview

- Introduction
  - Gaussian Mixture Model
  - Supervised vs. unsupervised learning
  - Maximum likelihood estimation
  - Reminder on the EM algorithm
- Parameter estimation in GMMs
  - Unsupervised learning
  - Semi-supervised learning
  - Mixture Discriminant Analysis
- Regression models
  - Mixture of regressions
  - Mixture of experts





# Making the mixing proportions predictor-dependent

- An interesting extension of the previous model is to assume the proportions  $\pi_k$  to be partially explained by a vector of concomitant variables W.
- If W = X, we can approximate the regression function by different linear functions in different regions of the predictor space.
- In ML, this method is referred to as the mixture of experts method.
- A useful parametric form for  $\pi_k$  that ensures  $\pi_k \geq 0$  and  $\sum_{k=1}^{c} \pi_k = 1$  is the multinomial logit (softmax) model

$$\pi_k(w, \alpha) = \frac{\exp(\alpha_k^T w)}{\sum_{l=1}^c \exp(\alpha_l^T w)}$$

with  $\alpha = (\alpha_1, \dots, \alpha_c)$  and  $\alpha_1 = 0$ .





#### EM algorithm

• The Q function is the same as before, except that the  $\pi_k$  now depend on the  $w_i$  and parameter  $\alpha$ :

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \pi_k(w_i, \alpha)$$

- In the M-step, the update formula for  $\beta_k$  and  $\sigma_k$  are unchanged.
- The last term of  $Q(\theta, \theta^{(t)})$  can be maximized w.r.t.  $\alpha$  using an iterative algorithm, such as the Newton-Raphson procedure. (See remark on next slide)





## Generalized EM algorithm

- To ensure convergence of EM, we only need to increase (but not necessarily maximize)  $Q(\theta, \theta^{(t)})$  at each step.
- Any algorithm that chooses  $\theta^{(t+1)}$  at each iteration to guarantee the above condition (without maximizing  $Q(\theta, \theta^{(t)})$ ) is called a Generalized EM (GEM) algorithm.
- Here, we can perform a single step of the Newton-Raphson algorithm to maximize

$$\sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \pi_k(w_i, \alpha)$$

with respect to  $\alpha$ .

Backtracking can be used to ensure ascent.





#### Example: motorcycle data

#### Motorcycle data



library('MASS')
x<-mcycle\$times
y<-mcycle\$accel
plot(x,y)</pre>





#### Mixture of experts using flexmix

```
library(flexmix)

K<-5
res<-flexmix(y ~ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula=~x))

beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef</pre>
```





## Plotting the posterior probabilities

```
xt<-seq(0,60,0.1)
Nt<-length(xt)
plot(x,y)
pit=matrix(0,Nt,K)
for(k in 1:K) pit[,k]<-exp(alpha[1,k]+alpha[2,k]*xt)
pit<-pit/rowSums(pit)

plot(xt,pit[,1],type="l",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)</pre>
```





## Posterior probabilities

#### Motorcycle data - posterior probabilities







## Plotting the predictions

```
yhat<-rep(0,Nt)
for(k in 1:K) yhat<-yhat+pit[,k]*(beta[1,k]+beta[2,k]*xt)

plot(x,y,main="Motorcycle data",xlab="time",ylab="acceleration")
for(k in 1:K) abline(beta[1:2,k],lty=2)
lines(xt,yhat,col='red',lwd=2)</pre>
```





# Regression lines and predictions

#### Motorcycle data





