Advanced Computational Econometrics: Machine Learning

Chapter 6: Gaussian Mixture models

Thierry Denœux

July-August 2019

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

July-August 2019

Return to LDA and QDA

• In LDA and QDA, we assume that the conditional density of X given Y = k is multivariate Gaussian

$$\phi_k(x; \mu_k, \mathbf{\Sigma}_k) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_k)^T \mathbf{\Sigma}_k^{-1} (x - \mu_k)\right).$$

(with $\Sigma_k = \Sigma$ in the case of LDA)

• The marginal density of X is then a mixture of c Gaussian densities:

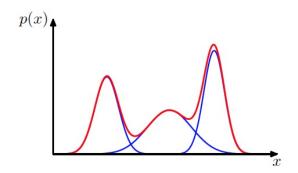
$$p(x) = \sum_{k=1}^{c} p(x|Y = k)P(Y = k) = \sum_{k=1}^{c} \pi_k \phi_k(x; \mu_k, \Sigma_k)$$

• This is called a Gaussian Mixture Model (GMM).

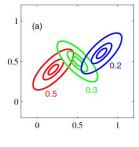
Gaussian Mixture Models

- GMMs are widely used in Machine Learning for
 - Density estimation
 - Clustering (finding groups in data)
 - Classification (modeling complex-shaped class distributions)
 - Regression (accounting for different linear relations within subgroups of a population)
 - etc.

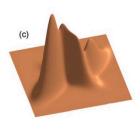
Example with p = 1



Example with p = 2







How to generate data from a mixture?

- Assume $X \sim \sum_{k=1}^{c} \pi_k \mathcal{N}(\mu_k, \mathbf{\Sigma}_k)$
- How to generate *X*?
 - **①** Generate $Y \in \{1, ..., c\}$ with probabilities $\pi_1, ..., \pi_c$.
 - 2 If Y = k, generate X from $p(x|Y = k) = \phi_k(x; \mu_k, \Sigma_k)$.
- Remark: we can define mixtures of other distributions. In this chapter, we will focus (without loss of generality) on mixtures of normal distributions.

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

July-August 2019

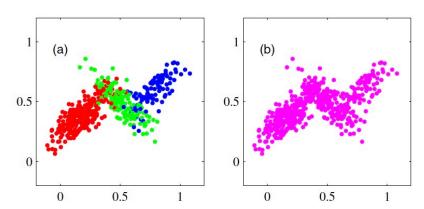
Supervised learning

- In discriminant analysis, we observe both the input vector X and the response (class label) Y for n individuals taken randomly from the population.
- The learning set has the form $\mathcal{L}_s = \{(x_i, y_i)\}_{i=1}^n$.
- Learning a classifier from such data is called supervised learning.

Unsupervised learning

- In some situations, we observe X, but Y is not observed. We say that Y is a latent variable.
- The learning set has the form $\mathcal{L}_{ns} = \{x_i\}_{i=1}^n$.
- Estimating the model parameters from such data is called unsupervised learning.
- Applications: density estimation, clustering, feature extraction.
- Unsupervised learning is usually more difficult than supervised learning, because we have less information to estimate the parameters.

Supervised vs. unsupervised learning



Semi-supervised learning

- Sometimes, we collect of lot of data, but we can label only a part of them.
- Examples: image data from the web, or from sensors on a robot.
- The data then have the form $\mathcal{L}_{ss} = \{(x_i, y_i)\}_{i=1}^{n_s} \cup \{x_i\}_{i=n_s+1}^n$.
- This is called a semi-supervised learning problem.
- Semi-supervised learning is intermediate between supervised and unsupervised learning.

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Maximum likelihood: supervised case

- In the case of supervised learning of GMMs, the maximum likelihood estimates (MLE) of μ_k , Σ_k and π_k have simple closed-form expressions.
- The likelihood function is

$$L(\theta; \mathcal{L}_s) = \prod_{i=1}^{n} p(x_i, y_i) = \prod_{i=1}^{n} p(x_i | Y_i = y_i) p(Y_i = y_i)$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{c} \phi(x_i; \mu_k, \mathbf{\Sigma}_k)^{y_{ik}} \pi_k^{y_{ik}}$$

• The log-likelihood function is

$$\ell(\theta; \mathcal{L}_s) = \sum_{k=1}^c \left\{ \sum_{i=1}^n y_{ik} \log \phi(x_i; \mu_k, \mathbf{\Sigma}_k) \right\} + \sum_{i=1}^n \sum_{k=1}^c y_{ik} \log \pi_k$$

• The parameters μ_k, Σ_k can be estimated separately using the data from class k.

MLE in the supervised case

We have

$$\sum_{i=1}^{n} y_{ik} \log \phi(\mathbf{x}_i; \mu_k, \mathbf{\Sigma}_k) = -\frac{1}{2} \sum_{i=1}^{n} y_{ik} (\mathbf{x}_i - \mu_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x}_i - \mu_k)$$
$$-\frac{n_k}{2} \log |\mathbf{\Sigma}_k| - \frac{n_k p}{2} \log(2\pi)$$

• The derivative wrt to μ_k is $\sum_i y_{ik} \mathbf{\Sigma}_k^{-1} (x_i - \mu_k)$. Hence,

$$\widehat{\mu}_k = \frac{1}{n_k} \sum_{i=1}^n y_{ik} x_i$$

It can be shown that

$$\widehat{\boldsymbol{\Sigma}}_k = \frac{1}{n_k} \sum_{i=1}^n y_{ik} (x_i - \widehat{\mu}_k) (x_i - \widehat{\mu}_k)^T$$

MLE in the supervised case (continued)

• To find the MLE of the π_k , we maximize

$$\sum_{i=1}^{n} \sum_{k=1}^{c} y_{ik} \log \pi_k$$

wrt to π_k , subject to the constraint $\sum_{k=1}^{c} \pi_k = 1$.

The solution is

$$\widehat{\pi}_k = \frac{n_k}{n}, \quad k = 1, \dots, c$$

Maximum likelihood: unsupervised case

In the case of unsupervised learning, the log-likelihood function is

$$\ell(\theta; \mathcal{L}_{ns}) = \sum_{i=1}^{n} \log p(x_i)$$

$$= \sum_{i=1}^{n} \left(\log \sum_{k=1}^{c} \pi_k \phi_k(x_i; \mu_k, \mathbf{\Sigma}_k) \right)$$

- We can no longer separate the terms corresponding to each class.
- Maximizing the log-likelihood becomes a difficult nonlinear optimization problem, for which no closed-form solution exists.
- A powerful method: the Expectation-Maximization (EM) algorithm.

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Notation

X : Observed variables

Y : Missing or latent variables

Z: Complete data Z = (X, Y)

 θ : Unknown parameter

 $L(\theta)$: observed-data likelihood, short for $L(\theta; \mathbf{x}) = p(\mathbf{x}; \theta)$

 $L_c(\theta)$: complete-data likelihood, short for $L(\theta; \mathbf{z}) = p(\mathbf{z}; \theta)$

 $\ell(\theta), \ell_c(\theta)$: observed and complete-data log-likelihoods

Notation (continued)

- Suppose we seek to maximize $L(\theta)$ with respect to θ .
- Define $Q(\theta; \theta^{(t)})$ to be the expectation of the complete-data log-likelihood, conditional on the observed data $\mathbf{X} = \mathbf{x}$. Namely

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} \left\{ \ell_c(\theta) \mid \mathbf{x} \right\}$$

$$= \mathbb{E}_{\theta^{(t)}} \left\{ \log p(\mathbf{Z}; \theta) \mid \mathbf{x} \right\}$$

$$= \int \left[\log p(\mathbf{z}; \theta) \right] p(\mathbf{y} | \mathbf{x}; \theta^{(t)}) d\mathbf{y}$$

where the last equation emphasizes that ${\bf Y}$ is the only random part of ${\bf Z}$ once we are given ${\bf X}={\bf x}.$

The EM Algorithm (reminder)

Start with $\theta^{(0)}$ and set t = 0. Then

- **1 E step**: Compute $Q(\theta, \theta^{(t)})$.
- **M step**: Maximize $Q(\theta, \theta^{(t)})$ with respect to θ . Set $\theta^{(t+1)}$ equal to the maximizer of Q.
- Return to the E step and increment t unless a stopping criterion has been met, e.g.,

$$|\ell(\theta^{(t+1)}) - \ell(\theta^{(t)})| \le \epsilon$$

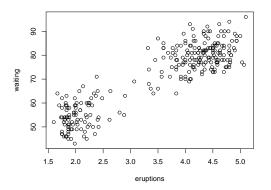
Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Old Faithful geyser data



Waiting time between eruptions and duration of the eruption (in min) for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA (272 observations).

General GMM

• Let $\boldsymbol{X} = (X_1, \dots, X_n)$ be an i.i.d. sample from a mixture of K multivariate normal distributions $\mathcal{N}(\mu_k, \boldsymbol{\Sigma}_k)$ with proportions π_k . The pdf of X_i is

$$p(x_i; \theta) = \sum_{k=1}^{c} \pi_k \phi(x_i; \mu_k, \mathbf{\Sigma}_k),$$

where θ is the vector of parameters.

- We introduce latent variables $\mathbf{Y} = (Y_1, \dots, Y_n)$, such that
 - $Y_i \sim \mathcal{M}(1, \pi_1, \ldots, \pi_c)$,
 - $p(x_i|Y_i=k) = \phi(x_i; \mu_k, \Sigma_k), k = 1..., c$

Observed and complete-data likelihoods

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n} p(x_i; \theta) = \prod_{i=1}^{n} \sum_{k=1}^{c} \pi_k \phi(x_i; \mu_k, \mathbf{\Sigma}_k)$$

Complete-data likelihood:

$$L_{c}(\theta) = \prod_{i=1}^{n} p(x_{i}, y_{i}; \theta) = \prod_{i=1}^{n} p(x_{i}|y_{i}; \theta) p(y_{i}|\pi)$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{c} \phi(x_{i}; \mu_{k}, \Sigma_{k})^{y_{ik}} \pi_{k}^{y_{ik}},$$

with
$$y_{ik} = I(y_i = k)$$
.

Derivation of function Q

Complete-data log-likelihood:

$$\ell_c(\theta) = \sum_{i=1}^n \sum_{k=1}^c y_{ik} \log \phi(x_i; \mu_k, \Sigma_k) + \sum_{i=1}^n \sum_{k=1}^c y_{ik} \log \pi_k$$

• It is linear in the y_{ik} . Consequently, the Q function is simply

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{c} y_{ik}^{(t)} \log \phi(x_i; \mu_k, \mathbf{\Sigma}_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} y_{ik}^{(t)} \log \pi_k$$

with
$$y_{ik}^{(t)} = \mathbb{E}_{\theta^{(t)}}[Y_{ik}|x_i] = \mathbb{P}_{\theta^{(t)}}[Y_i = k|x_i].$$

EM algorithm

E-step: compute

$$y_{ik}^{(t)} = \mathbb{P}_{\theta^{(t)}}[Y_i = k | x_i]$$

$$= \frac{\phi(x_i; \mu_k^{(t)}, \mathbf{\Sigma}_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^{c} \phi(x_i; \mu_\ell^{(t)}, \mathbf{\Sigma}_\ell^{(t)}) \pi_\ell^{(t)}}$$

• M-step: Maximize $Q(\theta, \theta^{(t)})$. We get

$$\pi_k^{(t+1)} = \frac{n_k^{(t)}}{n}, \quad \mu_k^{(t+1)} = \frac{1}{n_k^{(t)}} \sum_{i=1}^n y_{ik}^{(t)} x_i$$

$$\mathbf{\Sigma}_{k}^{(t+1)} = \frac{1}{n_{k}^{(t)}} \sum_{i=1}^{n} y_{ik}^{(t)} (x_{i} - \mu_{k}^{(t+1)}) (x_{i} - \mu_{k}^{(t+1)})^{T}$$

with
$$n_k^{(t)} = \sum_{i=1}^n y_{ik}^{(t)}$$
.

4日ト 4部ト 4回ト 4里ト

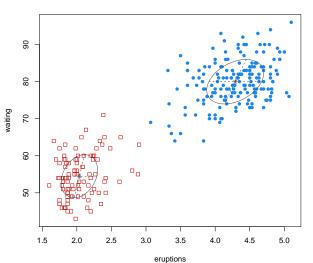
GMM with the package mclust

```
library(mclust)
data(faithful)

faithfulMclust <- Mclust(faithful,G=2,modelNames="VVV")
plot(faithfulMclust)</pre>
```


Result

Classification



∄→

Choosing the number of clusters

> faithfulMclust <- Mclust(faithful.modelNames="VVV")</pre>

-1130,264 272 11 -2322,192 -2322,695

- In clustering, selecting the number of clusters is often a difficult problem.
- This is a model selection problem. We can use the BIC criterion. (Reminder: $BIC = -2\ell + d \log(N)$)

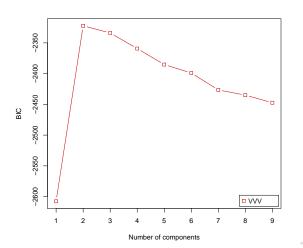
```
> summary(faithfulMclust)
Gaussian finite mixture model fitted by EM algorithm
Mclust VVV (ellipsoidal, varying volume, shape, and orientation) model with 2 components:
log.likelihood n df BIC
```

Clustering table:

175 97

Choosing the number of clusters

plot(faithfulMclust)



Reducing the number of parameters

- The general model has c[p + p(p+1)/2 + 1] 1 parameters.
- When n is small and/or p is large: we need more parsimonious models (i.e., models with fewer parameters).
- Simple approaches:
 - Assume equal covariance matrix (homoscedasticity)
 - Assume the covariance matrices to be diagonal, or scalar
- More flexible approach: use the eigendecomposition of matrix Σ_k

Eigendecomposition Σ_k

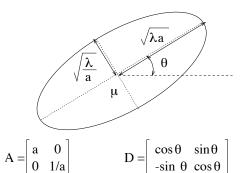
• As matrix Σ_k is symmetric, we can write

$$\mathbf{\Sigma}_k = \mathbf{D}_k \mathbf{\Lambda}_k \mathbf{D}_k^T = \lambda_k \mathbf{D}_k \mathbf{A}_k \mathbf{D}_k^T,$$

where

- $\Lambda = \text{diag}(\lambda_{k1}, \dots, \lambda_{kp})$ is a diagonal matrix whose components are the decreasing eigenvalues of Σ_k
- D_k is an orthogonal matrix $(D_k D_k^T = I)$ whose columns are the normalized eigenvectors of Σ_k
- A_k is a diagonal matrix such that |A|=1, with decreasing diagonal values proportional to the eigenvalues of Σ_k
- $\lambda_k = \left(\prod_{j=1}^p \lambda_{kj}\right)^{1/p} = |\mathbf{\Sigma}_k|^{1/p}$
- Interpretation:
 - A_k describes the shape of the cluster
 - D_k (a rotation matrix) describes its orientation
 - λ_k describes its volume

Example in \mathbb{R}^2

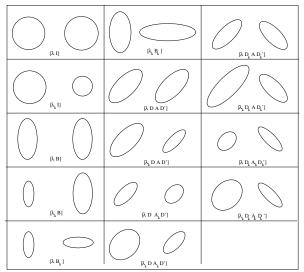


- D: rotation matrix, angle θ
- A: diagonal matrix with diagonal terms a and 1/a

Parsimonious models

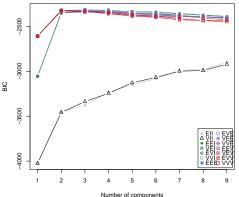
- With this parametrization, the parameters of the GMM are: the centers, volumes, shapes, orientations and proportions.
- 28 different models
 - Spherical, diagonal, arbitrary
 - Volumes equal or not
 - Shapes equal or not
 - Directions equal or not
 - Proportions equal or not

The 14 models based on assumptions on variance matrices



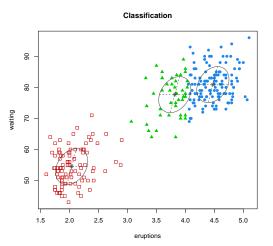
Parsimonious models in mclust

faithfulMclust <- Mclust(faithful)
plot(faithfulMclust)</pre>



Best model

Best model: EEE or λDAD^T (ellipsoidal, equal volume, shape and orientation) model with 3 components



Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Semi-supervised learning

In semi-supervised learning, the data have the form

$$\mathcal{L}_{ss} = \{(x_i, y_i)\}_{i=1}^{n_s} \cup \{x_i\}_{i=n_s+1}^n.$$

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n_s} p(x_i, y_i; \theta) \prod_{i=n_s+1}^{n} p(x_i; \theta)$$

$$= \left(\prod_{i=1}^{n_s} \prod_{k=1}^{c} \phi(x_i; \mu_k, \mathbf{\Sigma}_k)^{y_{ik}} \pi_k^{y_{ik}} \right) \left(\prod_{i=n_s+1}^{n} \sum_{k=1}^{c} \pi_k \phi(x_i; \mu_k, \mathbf{\Sigma}_k) \right)$$

• Complete-data likelihood: same as in the unsupervised case,

$$L_c(\theta) = \prod_{i=1}^n \prod_{k=1}^c \phi(x_i; \mu_k, \mathbf{\Sigma}_k)^{y_{ik}} \pi_k^{y_{ik}},$$

with $y_{ik} = 1$ if $y_i = k$ and $y_{ik} = 0$ otherwise.

EM algorithm

E-step: compute

$$y_{ik}^{(t)} = \begin{cases} y_{ik} & i = 1, \dots, n_s \text{ (fixed)} \\ \frac{\phi(x_i; \mu_k^{(t)}, \mathbf{\Sigma}_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^c \phi(x_i; \mu_\ell^{(t)}, \mathbf{\Sigma}_\ell^{(t)}) \pi_\ell^{(t)}}, & i = n_s + 1, \dots, n \end{cases}$$

M-step: same as in the unsupervised case.

$$\pi_k^{(t+1)} = \frac{n_k^{(t)}}{n}, \quad \mu_k^{(t+1)} = \frac{1}{n_k^{(t)}} \sum_{i=1}^n y_{ik}^{(t)} x_i$$

$$\mathbf{\Sigma}_{k}^{(t+1)} = \frac{1}{n_{k}^{(t)}} \sum_{i=1}^{n} y_{ik}^{(t)} (x_{i} - \mu_{k}^{(t+1)}) (x_{i} - \mu_{k}^{(t+1)})^{T}$$

with
$$n_k^{(t)} = \sum_{i=1}^n y_{ik}^{(t)}$$

.

Package upclass

```
library(upclass)
data(iris)
X <- as.matrix(iris[,-5])</pre>
cl <- as.matrix(iris[,5])</pre>
indtrain <- sort(sample(1:150,110))</pre>
Xtrain <- X[indtrain.]</pre>
cltrain <- cl[indtrain]
indtest <- setdiff(1:150, indtrain)</pre>
Xtest <- X[indtest,]</pre>
models <- c("EII", "VII", "VEI", "EVI")</pre>
fitupmodels <- upclassify(Xtrain,cltrain,Xtest,modelscope=models)</pre>
fitupmodels$Best$modelName # What is the best model?
```

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Mixture Discriminant Analysis

- GMM can also be useful in supervised classification.
- Here, we model the distribution of X in each class by a GMM:

$$p(x|Y=k) = \sum_{r=1}^{R_k} \pi_{kr} \phi(x; \mu_{kr}, \mathbf{\Sigma}_{kr})$$

with
$$\sum_{r=1}^{R_k} \pi_{kr} = \pi_k$$
.

- This method is called Mixture Discriminant Analysis (MDA). It extends LDA.
- By varying the number of components in each mixture, we can handle classes of any shape, and obtain arbitrarily complex nonlinear decision boundaries.
- We may impose $\Sigma_{kr} = \Sigma$, or any other parsimonious model, to control the complexity of the model.

Observed-data likelihood

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n} p(x_i, y_i; \theta) = \prod_{i=1}^{n} p(x_i | y_i; \theta) p(y_i; \theta)$$
$$= \prod_{i=1}^{n} \prod_{k=1}^{c} \left(\sum_{r=1}^{R_k} \pi_{kr} \phi(x; \mu_{kr}, \mathbf{\Sigma}_{kr}) \right)^{y_{ik}} \pi_k^{y_{ik}}$$

 Again, the EM algorithm can be used to estimate the model parameters, separately in each class (see ESL page 449 for details).

MDA using package mclust

```
odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1
X.train <- iris[odd,-5]
Class.train <- iris[odd,5]
X.test <- iris[even,-5]
Class.test <- iris[even,5]
# general covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train)
summary(irisMclustDA, newdata = X.test, newclass = Class.test)</pre>
```

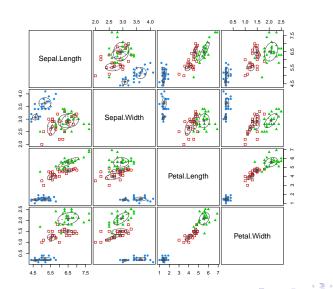

plot(irisMclustDA)

Result

```
> summary(irisMclustDA, newdata = X.test, newclass = Class.test)
Gaussian finite mixture model for classification
MclustDA model summary:
 log.likelihood n df
      -63.55015 75 53 -355.9272
Classes
             n Model G
             25 VFT 2
  setosa
  versicolor 25 EEV 2
 virginica 25 XXX 1
Training classification summary:
            Predicted
Class
             setosa versicolor virginica
  setosa
                             0
                           25
  versicolor
 virginica
Training error = 0
Test classification summary:
            Predicted
             setosa versicolor virginica
Class
                 25
  setosa
 versicolor
                 0
                            24
```


25

Result



Overview

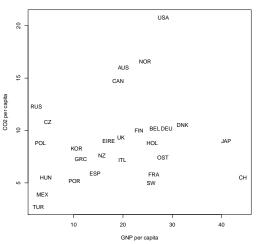
- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Introductory example

1996 GNP and Emissions Data



Introductory example (continued)

- The data in the previous slide do not show any clear linear trend.
- However, there seem to be several groups for which a linear model would be a reasonable approximation.
- How to identify those groups and the corresponding linear models?

Formalization

- We assume that the response variable Y depends on the input variable X in different ways, depending on a latent variable Z. (Beware: we have switched back to the classical notation for regression models!)
- This model is called mixture of regressions or switching regressions. It has been widely studied in the econometrics literature.

Model

Model:

$$Y = \begin{cases} \beta_1^T X + \epsilon_1, \ \epsilon_1 \sim \mathcal{N}(0, \sigma_1) & \text{if } Z = 1, \\ \vdots \\ \beta_K^T X + \epsilon_K, \ \epsilon_K \sim \mathcal{N}(0, \sigma_K) & \text{if } Z = c, \end{cases}$$

with $X=(1,X_1,\ldots,X_p)$, and

$$\mathbb{P}(Z=k)=\pi_k, \quad k=1,\ldots,c.$$

So,

$$p(y|X=x) = \sum_{k=1}^{c} \pi_k \phi(y; \beta_k^T x, \sigma_k)$$

Observed and complete-data likelihoods

Observed-data likelihood:

$$L(\theta) = \prod_{i=1}^{n} p(y_i; \theta) = \prod_{i=1}^{n} \sum_{k=1}^{c} \pi_k \phi(y_i; \beta_k^T x_i, \sigma_k)$$

Complete-data likelihood:

$$L_c(\theta) = \prod_{i=1}^n p(y_i, z_i; \theta) = \prod_{i=1}^n p(y_i|z_i; \theta) p(z_i|\pi)$$
$$= \prod_{i=1}^n \prod_{k=1}^c \phi(y_i; \beta_k^T x_i, \sigma_k)^{z_{ik}} \pi_k^{z_{ik}},$$

with $z_{ik} = 1$ if $z_i = k$ and $z_{ik} = 0$ otherwise.

Derivation of function Q

• Complete-data log-likelihood:

$$\ell_c(\theta) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik} \log \pi_k$$

• It is linear in the z_{ik} . Consequently, the Q function is simply

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \pi_k$$

with
$$z_{ik}^{(t)} = \mathbb{E}_{\theta^{(t)}}[Z_{ik}|y_i] = \mathbb{P}_{\theta^{(t)}}[Z_i = k|y_i].$$

EM algorithm

E-step: compute

$$z_{ik}^{(t)} = \mathbb{P}_{\theta^{(t)}}[Z_i = k|y_i]$$

$$= \frac{\phi(y_i; \beta_k^{(t)T} x_i, \sigma_k^{(t)}) \pi_k^{(t)}}{\sum_{\ell=1}^{c} \phi(y_i; \beta_\ell^{(t)T} x_i, \sigma_\ell^{(t)}) \pi_\ell^{(t)}}$$

• M-step: Maximize $Q(\theta, \theta^{(t)})$. As before, we get

$$\pi_k^{(t+1)} = \frac{n_k^{(t)}}{n},$$

with
$$n_k^{(t)} = \sum_{i=1}^n z_{ik}^{(t)}$$
.

M-step: update of the β_k and σ_k

• In $Q(\theta, \theta^{(t)})$, the term depending on β_k is

$$SS_k = \sum_{i=1}^n z_{ik}^{(t)} (y_i - \beta_k^T x_i)^2.$$

• Minimizing SS_k w.r.t. β_k is a weighted least-squares (WLS) problem. In matrix form,

$$SS_k = (\mathbf{y} - \mathbf{X}\beta_k)^T \mathbf{W}_k (\mathbf{y} - \mathbf{X}\beta_k),$$

where $\mathbf{W}_k = \text{diag}(z_{1k}^{(t)}, \dots, z_{nk}^{(t)})$ is a diagonal matrix of size n.

M-step: update of the β_k and σ_k (continued)

• The solution is the WLS estimate of β_k :

$$\beta_k^{(t+1)} = (\boldsymbol{X}^T \boldsymbol{W}_k \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{W}_k \boldsymbol{y}$$

• The value of σ_k minimizing $Q(\theta, \theta^{(t)})$ is the weighted average of the residuals.

$$\sigma_k^{2(t+1)} = \frac{1}{n_k^{(t)}} \sum_{i=1}^n z_{ik}^{(t)} (y_i - \beta_k^{(t+1)T} x_i)^2$$

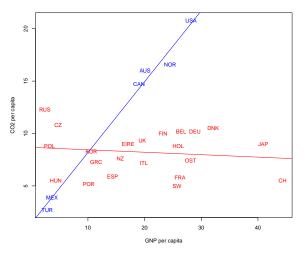
$$= \frac{1}{n_k^{(t)}} (\mathbf{y} - \mathbf{X} \beta_k^{(t+1)})^T \mathbf{W}_k (\mathbf{y} - \mathbf{X} \beta_k^{(t+1)})$$

61 / 76

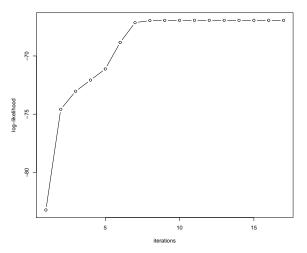
Mixture of regressions using mixtools

```
library(mixtools)
data(CO2data)
attach(CO2data)
CO2reg <- regmixEM(CO2, GNP)
summary(CO2reg)
ii1<-CO2reg$posterior>0.5
ii2<-CO2reg$posterior<=0.5
text(GNP[ii1],CO2[ii1],country[ii1],col='red')
text(GNP[Cii2],CO2[ii2],country[ii2],col='blue')
abline(CO2reg$beta[,1],col='red')
abline(CO2reg$beta[,2],col='blue')
```

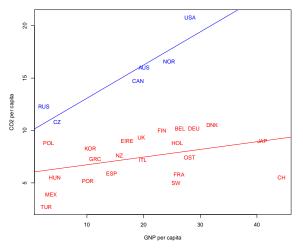

Best solution in 10 runs



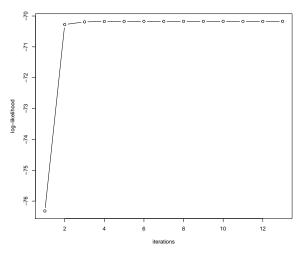
Increase of log-likelihood



Another solution (with lower log-likelihood)



Increase of log-likelihood



Overview

- Introduction
 - Gaussian Mixture Model
 - Supervised vs. unsupervised learning
 - Maximum likelihood estimation
 - Reminder on the EM algorithm
- Parameter estimation in GMMs
 - Unsupervised learning
 - Semi-supervised learning
 - Mixture Discriminant Analysis
- Regression models
 - Mixture of regressions
 - Mixture of experts

Making the mixing proportions predictor-dependent

- An interesting extension of the previous model is to assume the proportions π_k to be partially explained by a vector of concomitant variables W.
- If W = X, we can approximate the regression function by different linear functions in different regions of the predictor space.
- In ML, this method is referred to as the mixture of experts method.
- A useful parametric form for π_k that ensures $\pi_k \geq 0$ and $\sum_{k=1}^{c} \pi_k = 1$ is the multinomial logit (softmax) model

$$\pi_k(w, \alpha) = \frac{\exp(\alpha_k^T w)}{\sum_{l=1}^c \exp(\alpha_l^T w)}$$

with $\alpha = (\alpha_1, \dots, \alpha_c)$ and $\alpha_1 = 0$.

EM algorithm

• The Q function is the same as before, except that the π_k now depend on the w_i and parameter α :

$$Q(\theta, \theta^{(t)}) = \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \phi(y_i; \beta_k^T x_i, \sigma_k) + \sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \pi_k(w_i, \alpha)$$

- In the M-step, the update formula for β_k and σ_k are unchanged.
- The last term of $Q(\theta, \theta^{(t)})$ can be maximized w.r.t. α using an iterative algorithm, such as the Newton-Raphson procedure. (See remark on next slide)

Generalized EM algorithm

- To ensure convergence of EM, we only need to increase (but not necessarily maximize) $Q(\theta, \theta^{(t)})$ at each step.
- Any algorithm that chooses $\theta^{(t+1)}$ at each iteration to guarantee the above condition (without maximizing $Q(\theta, \theta^{(t)})$) is called a Generalized EM (GEM) algorithm.
- Here, we can perform a single step of the Newton-Raphson algorithm to maximize

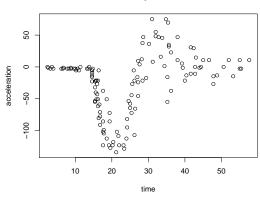
$$\sum_{i=1}^{n} \sum_{k=1}^{c} z_{ik}^{(t)} \log \pi_k(w_i, \alpha)$$

with respect to α .

Backtracking can be used to ensure ascent.

Example: motorcycle data

Motorcycle data



library('MASS')
x<-mcycle\$times
y<-mcycle\$accel
plot(x,y)</pre>

Mixture of experts using flexmix

```
library(flexmix)

K<-5
res<-flexmix(y ~ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula=~x))

beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef</pre>
```

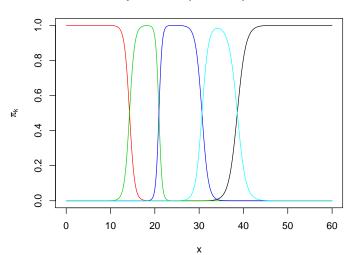

Plotting the posterior probabilities

```
xt<-seq(0,60,0.1)
Nt<-length(xt)
plot(x,y)
pit=matrix(0,Nt,K)
for(k in 1:K) pit[,k]<-exp(alpha[1,k]+alpha[2,k]*xt)
pit<-pit/rowSums(pit)

plot(xt,pit[,1],type="l",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)</pre>
```


Posterior probabilities

Motorcycle data - posterior probabilities



Plotting the predictions

```
yhat<-rep(0,Nt)
for(k in 1:K) yhat<-yhat+pit[,k]*(beta[1,k]+beta[2,k]*xt)

plot(x,y,main="Motorcycle data",xlab="time",ylab="acceleration")
for(k in 1:K) abline(beta[1:2,k],lty=2)
lines(xt,yhat,col='red',lwd=2)</pre>
```


Regression lines and predictions

Motorcycle data

