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Gaussian Mixture Model
Return to LDA and QDA

@ In LDA and QDA, we assume that the conditional density of X given
Y = k is multivariate Gaussian

1

¢k(Xyl’Lk’ k) (27T)p/2|zk|1/2

exp (50— 1) TEL - )

(with X4 = X in the case of LDA)

@ The marginal density of X is then a mixture of ¢ Gaussian densities:

p(x) = S p(X|Y = K)P(Y = k) = 3 medux s i)
k=1

k=1
@ This is called a Gaussian Mixture Model (GMM). S
LY
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(DI Gaussian Mixture Model

Gaussian Mixture Models

@ GMMs are widely used in Machine Learning for

Density estimation

Clustering (finding groups in data)

Classification (modeling complex-shaped class distributions)

Regression (accounting for different linear relations within subgroups of
a population)

e etc.
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Example with p =1
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(DI Gaussian Mixture Model

Example with p = 2

0.5
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St (s (]
How to generate data from a mixture?

o Assume X ~ > N (pk, k)
N

@ How to generate X7
© Generate Y € {1,..., c} with probabilities 7y,
@ If Y =k, generate X from p(x|Y = k) = ¢r(x; pix, Xk).
@ Remark: we can define mixtures of other distributions. In this chapter,

we will focus (without loss of generality) on mixtures of normal

distributions.
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Introduction Supervised vs. unsupervised learning
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(DALt Supervised vs. unsupervised learning

Supervised learning

@ In discriminant analysis, we observe both the input vector X and the
response (class label) Y for n individuals taken randomly from the
population.

@ The learning set has the form £s = {(xi,yi)}7_;.

@ Learning a classifier from such data is called supervised learning.
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(DALt Supervised vs. unsupervised learning

Unsupervised learning

@ In some situations, we observe X, but Y is not observed. We say that
Y is a latent variable.

@ The learning set has the form L,s = {x;}7_;.

e Estimating the model parameters from such data is called
unsupervised learning.

@ Applications: density estimation, clustering, feature extraction.

@ Unsupervised learning is usually more difficult than supervised learning,
because we have less information to estimate the parameters.
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Introduction Supervised vs. unsupervised learning

Supervised vs. unsupervised learning
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(DALt Supervised vs. unsupervised learning

Semi-supervised learning

them.

unsupervised learning.

Thierry Denceux

ACE - Gaussian Mixture models

Examples: image data from the web, or from sensors on a robot.
The data then have the form Lss = {(x;, yi)}i=2, U {xi}_, 4 1-
This is called a semi-supervised learning problem.

Semi-supervised learning is intermediate between supervised and

July-August 2019

Sometimes, we collect of lot of data, but we can label only a part of
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Introduction Maximum likelihood estimation
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Introduction Maximum likelihood estimation

Maximum likelihood: supervised case

@ In the case of supervised learning of GMMs, the maximum likelihood
estimates (MLE) of ux, Xk and 7, have simple closed-form
expressions.

@ The likelihood function is

L(9: £s) = [ [ pCxi i) = [T p(xil Yi = yi)p(Yi = vi)
i=1 i=1

- H H QS(Xi; Mk, Zk)}’ikﬂ.iik

i=1 k=1
@ The log-likelihood function is

00, Ls) = Z {Z}/ik log ¢(xi; ik, Zk)} + ZZYik log 7

k=1 \i=1 i=1 k=1

@ The parameters pk, Xy can be estimated separately using the data 3
=

from class k.
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Introduction Maximum likelihood estimation

MLE in the supervised case

o We have

Zy/k log ¢(xii pik, i) = —5 Zy,k )T E (0 — )
i=1
— 2 log | X4 — 5F log(2r)

@ The derivative wrt to ju is Ziy,-kZ;l(x,- — pg). Hence,

1 n
= - E YikXi
ng “
=1

@ It can be shown that

Z yik(x — k)"
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Introduction Maximum likelihood estimation

MLE in the supervised case (continued)

@ To find the MLE of the 7, we maximize

n C
Z ZYIk log
i=1 k=1
wrt to 7, subject to the constraint Y} _; m = 1.
@ The solution is

~ Ny
Ty — —, k:].,...,C
n

LY
e
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Introduction Maximum likelihood estimation

Maximum likelihood: unsupervised case

@ In the case of unsupervised learning, the log-likelihood function is

00; Lns) = Z log p(x;)

- Z <Iog Z kO (Xi; b, Zk))
i=1 k=1

@ We can no longer separate the terms corresponding to each class.

@ Maximizing the log-likelihood becomes a difficult nonlinear
optimization problem, for which no closed-form solution exists.

o A powerful method: the Expectation-Maximization (EM) algorithm. __
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© Introduction

@ Reminder on the EM algorithm
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Notation

: Observed variables

: Complete data Z = (X,Y)

X
Y : Missing or latent variables
z
0 : Unknown parameter

) : observed-data likelihood, short for L(6; x) = p(x; 6)
Lc(6) : complete-data likelihood, short for L(0; z) = p(z; 6)
)

: observed and complete-data log-likelihoods

L7
Hi by
L\l

e
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Notation (continued)

@ Suppose we seek to maximize L(6) with respect to 6.

e Define Q(6; H(f)) to be the expectation of the complete-data
log-likelihood, conditional on the observed data X = x. Namely

Q(0,00)) =y {€c(0 \x}
=Ey {logp(Z:0) | x}

:/[log p(z;0)] p(ylx; 61)) dy

where the last equation emphasizes that Y is the only random part of
Z once we are given X = x.
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Reminder on the EM algorithm
The EM Algorithm (reminder)

Start with #(®) and set t = 0. Then
© E step: Compute Q(6,6(1).
@ M step: Maximize Q(6, () with respect to 8. Set #(t+1) equal to
the maximizer of Q.

© Return to the E step and increment t unless a stopping criterion has

been met, e.g.,
£(00D)) — £(0M)] < e
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Parameter estimation in GMMs

Overview

© Parameter estimation in GMMs
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Overview

© Parameter estimation in GMMs
@ Unsupervised learning
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Old Faithful geyser data
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Waiting time between eruptions and duration of the eruption (in min) fo
the Old Faithful geyser in Yellowstone National Park, Wyoming, USA (27

g

observations).

ACE - Gaussian Mixture models July-August 2019 25 / 76



Parameter estimation in GMMs Unsupervised learning
General GMM

o Let X = (Xi,...,X,) be an i.i.d. sample from a mixture of K
multivariate normal distributions N (1, Zx) with proportions m. The
pdf of X; is

c
p(xi;0) = > md(i; prk T,
k=1
where 0 is the vector of parameters.
e We introduce latent variables Y = (Y1,...,Y},), such that
o Vi~ M(1,71,...,7c),
o p(xi|Yi=k)=od(xi; uk, Xk), k=1...,c

=

e e
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Parameter estimation in GMMs Unsupervised learning

Observed and complete-data likelihoods

@ Observed-data likelihood:

= Hp(X, H 7Tk¢ Xiy Mk, zk)
i=1

o Complete-data likelihood:

n n
= [ pCxi, i 0) = [ [ p(xilyi: 0)p(yilm)
i=1 i=1
n C
=TT IT ¢Ga 1 )5,
i=1 k=1
with yi = I(y; = k). )
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Parameter estimation in GMMs Unsupervised learning

Derivation of function @

o Complete-data log-likelihood:
n (o} n Cc
e(0) =D virlog (xii i Tue) + > > yik log i
i=1 k=1 i=1 k=1
@ It is linear in the y;. Consequently, the @ function is simply
Q(8,01) ZZy,k log ¢ (xi: pui, Tu)) + ZZy,k log 7
i=1 k=1 i=1 k=1

with y{ = By [ Yilxi] = Py [Yi = k|xi].
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Sissecniellpie
EM algorithm

@ E-step: compute
vi) = Byo[ i = kix]
(s 10, z“)) (1
Zé 1¢(XI'W ; (t))ﬂét)
o M-step: Maximize Q(6,6(Y)). We get

()
+1 n +1)
T S t)zy,k x
kt+1) (t)zyl . t+1))(XI Hgﬂ))-’—
with ng(t) =3 lyl(;). \L
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Sissecniellpie
GMM with the package mclust

library(mclust)
data(faithful)

faithfulMclust <- Mclust(faithful,G=2,modelNames="VVV")
plot(faithfulMclust)

LY
e
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RETETC TS BT RN NE VIV  Unsupervised learning

Result

waiting
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RETETC TS BT RN NE VIV  Unsupervised learning

Choosing the number of clusters

@ In clustering, selecting the number of clusters is often a difficult
problem.

@ This is a model selection problem. We can use the BIC criterion.
(Reminder: BIC = —2¢ + d log(N))

> faithfulMclust <- Mclust(faithful,modelNames="VVV")
> summary(faithfulMclust)

Mclust WV (ellipsoidal, varying volume, shape, and orientation) model with 2 components:

log.likelihood n df BIC ICL
-1130.264 272 11 -2322.192 -2322.695

Clustering table:

1 2
175 97
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RETETC TS BT RN NE VIV  Unsupervised learning

Choosing the number of clusters

plot(faithfulMclust)
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Parameter estimation in GMMs Unsupervised learning

Reducing the number of parameters

@ The general model has c[p + p(p + 1)/2 + 1] — 1 parameters.

@ When n is small and/or p is large: we need more parsimonious models
(i.e., models with fewer parameters).

@ Simple approaches:

o Assume equal covariance matrix (homoscedasticity)
e Assume the covariance matrices to be diagonal, or scalar

@ More flexible approach: use the eigendecomposition of matrix X

%’- ¢
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Parameter estimation in GMMs Unsupervised learning

Eigendecomposition X

@ As matrix X, is symmetric, we can write
¥, = DiND] = \D AD]
k kN D kDiAD

where
o A =diag(A«1,- .., k) is a diagonal matrix whose components are the
decreasing eigenvalues of X
o D is an orthogonal matrix (DD] = I) whose columns are the
normalized eigenvectors of X,
o A is a diagonal matrix such that |A| = 1, with decreasing diagonal
values proportional to the eigenvalues of X

p p 1/
o M= (T2 hg) = %l

@ Interpretation:

o A describes the shape of the cluster
e Dy (a rotation matrix) describes its orientation %y
e M\ describes its volume =

ACE - Gaussian Mixture models July-August 2019 35 /76
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RETETC TS BT RN NE VIV  Unsupervised learning

Example in R?

a 0 cosO sinf
A= 0 l/a b= -sin O cosO

@ D: rotation matrix, angle 0

e A: diagonal matrix with diagonal terms a and 1/a

o
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Parameter estimation in GMMs Unsupervised learning

Parsimonious models

e With this parametrization, the parameters of the GMM are: the
centers, volumes, shapes, orientations and proportions.
e 28 different models
e Spherical, diagonal, arbitrary
o Volumes equal or not
e Shapes equal or not
e Directions equal or not
e Proportions equal or not
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Parameter estimation in GMMs

Unsupervised learning

The 14 models based on assumptions on variance matrices
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RETETC TS BT RN NE VIV  Unsupervised learning

Parsimonious models in mclust

faithfulMclust <- Mclust(faithful)
plot (faithfulMclust)
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RETETC TS BT RN NE VIV  Unsupervised learning

Best model

Best model: EEE or ADADT (ellipsoidal, equal volume, shape and
orientation) model with 3 components
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EETETC SRS BV NG VIV Semi-supervised learning

Overview

© Parameter estimation in GMMs

@ Semi-supervised learning

o
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EETETC SRS BV NG VIV Semi-supervised learning

Semi-supervised learning

@ In semi-supervised learning, the data have the form
Lss = {(Xivyi)}7;1 U {xi ?:ns—f—l'
@ Observed-data likelihood:

1) = [T pbeosis) T plxi0)

i=ns+1
ns ¢ n c
= (Hqu(x,-;yk,Zk)y"‘ﬂ{’k> ( H ZWH?(XH,Ukazk))
i=1 k=1 i=ns+1 k=1
@ Complete-data likelihood: same as in the unsupervised case,

n C
Le(0) = [T TT ¢Cxi: paser Zoe)75f,

i=1 k=1 e~

e’
v or e

with vy = 1 if y; = k and y; = 0 otherwise.
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Sssasllianhe
EM algorithm

@ E-step: compute
(t) Yik i=1,...,ns (fixed)

Y = ¢(X;;u(kt Z(t)) ()
Py ¢(Xi?ﬂzt) Z ) o7

@ M-step: same as in the unsupervised case.

w0 ey 1S
N O P
ne’ =1
1 1 1
ZE(H (t) Zy/ t+ ))(X, MS{H ))T
with nf(t) = 21—1 y:(kt) w::,,.
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EETETC SRS BV NG VIV Semi-supervised learning

Package upclass

library(upclass)

data(iris)

X <- as.matrix(iris[,-5])

cl <- as.matrix(iris[,5])

indtrain <- sort(sample(1:150,110))
Xtrain <- X[indtrain,]

cltrain <- cl[indtrain]

indtest <- setdiff(1:150, indtrain)
Xtest <- X[indtest,]

models <- c("EII", "VII", "VEI","EVI")

fitupmodels <- upclassify(Xtrain,cltrain,Xtest,modelscope=models)
fitupmodels$Best$modelName # What is the best model? N
%)

R
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Parameter estimation in GMMs Mixture Discriminant Analysis

Overview

© Parameter estimation in GMMs

@ Mixture Discriminant Analysis
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Parameter estimation in GMMs Mixture Discriminant Analysis

Mixture Discriminant Analysis

@ GMM can also be useful in supervised classification.
@ Here, we model the distribution of X in each class by a GMM:

Ry
p(X| Y = k) = Z 7rkr¢(X; Hkr zkr)

r=1

with Zfél Tkr = Tk-
@ This method is called Mixture Discriminant Analysis (MDA). It
extends LDA.

@ By varying the number of components in each mixture, we can handle
classes of any shape, and obtain arbitrarily complex nonlinear decision
boundaries.

@ We may impose X, = X, or any other parsimonious model, to contT -
the complexity of the model. S
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Mixture Discriminant Analysis
Observed-data likelihood

@ Observed-data likelihood:

= H p(xi,yi; 0) = H p(xilyi; 0)p(yi; 0)

c = Yik
= H H <Z 7Tkr¢ X5 Wkry zkr)) ilk
i=1 k=1

@ Again, the EM algorithm can be used to estimate the model
parameters, separately in each class (see ESL page 449 for details).

R
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AT
MDA using package mclust

odd <- seq(from = 1, to = nrow(iris), by = 2)
even <- odd + 1

X.train <- iris[odd,-5]

Class.train <- iris[odd,5]

X.test <- iris[even,-5]

Class.test <- iris[even,5]

# general covariance structure selected by BIC
irisMclustDA <- MclustDA(X.train, Class.train)

summary (irisMclustDA, newdata = X.test, newclass = Class.test)

plot(irisMclustDA)

=
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arameter estimation in GMMs Mixture Discriminant Analysis

Result

> summary(irisMclustDA, newdata =

X.test, newclass =

Class.test)

MclustDA model summary:

log. likelihood

n df

BIC

-63.55@15 75 53 -355.9272

Classes n Model G
setosa 25 VEI 2
versicolor 25 EEV 2
virginica 25 XXX 1

Training classification summary:

Predicted
Class setosa versicolor virginica
setosa 5 @ @
versicolor a 25 @
virginica a ] 25
Training error = @
Test classification summary:
Predicted
Class setosa versicolor virginica
setosa 25 ] ]
versicolor -] 24 1
virginica a @ 5
Test error = 0.01333333

Thierry Dencei
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rameter estimation in GMMs Mixture Discriminant Analysis

Result
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Regression models

Overview

© Regression models
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Regression models Mixture of regressions

Overview

© Regression models
@ Mixture of regressions
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Regression models Mixture of regressions

Introductory example

1996 GNP and Emissions Data
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Regression models Mixture of regressions

Introductory example (continued)

@ The data in the previous slide do not show any clear linear trend.

@ However, there seem to be several groups for which a linear model
would be a reasonable approximation.

@ How to identify those groups and the corresponding linear models?

%"
R
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Regression models Mixture of regressions

Formalization

@ We assume that the response variable Y depends on the input variable
X in different ways, depending on a latent variable Z. (Beware: we
have switched back to the classical notation for regression models!)

@ This model is called mixture of regressions or switching regressions. It
has been widely studied in the econometrics literature.

)
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Regression models Mixture of regressions

o Model:
,317—X+61,61NN(0,01) ifZ:].,

Y=4(:
ﬁ;x—l—EK, €K NN(O,UK) if Z=rc,
with X = (1, Xq,...,X;), and

P(Z=ky=m k=1,...,c.

e So,

p(yIX =x) = mo(y: B x,0%)
k=1 o

= N
&, L

S
e
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Regression models Mixture of regressions

Observed and complete-data likelihoods

o Observed-data likelihood:
= Hp(y: H 7Tk¢ Yis /Bk Xis Uk)
i=1

o Complete-data likelihood:

n n
= [ p(vi.zi:0) = [ [ p(yilzi; 0)p(zi|)
i=1 i=1
n ¢
= H H ¢(}/i; /BIZ—XH O-k)ZikWiik7
i=1 k=1
with zj = 1 if z; = k and z;, = 0 otherwise. i;‘\\
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Regression models Mixture of regressions

Derivation of function @

o Complete-data log-likelihood:
n Cc n (o}
=3 zilog d(yii: Bi xiyok) + > D zik log i
i=1 k=1 i=1 k=1
@ It is linear in the zj. Consequently, the @ function is simply
Q0.09) = 375" 2 log olyis AT + 3 5 2 log me
i=1 k=1 i=1 k=1

with 28 = By [Zilyi] = Py [Zi = Klyi].

A e =
e
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bl el
EM algorithm

@ E-step: compute
t
24 = Byo|Z: = Kly]

. (yi; By v XMUI((t)) W
ISR ,,B(t)T o ’)wé”

o M-step: Maximize Q(6,6(Y)). As before, we get

(t+1) ﬁ
U =

with n{") =57 ().

L5
e
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DTS =
M-step: update of the S, and oy

o In Q(6,0(), the term depending on fy is
SSk=">_ 2y — B xi)2.
i=1

@ Minimizing SSyx w.r.t. B is a weighted least-squares (WLS) problem.
In matrix form,

SSk=(y — XBk)"Wi(y — XBx),

where W, = diag(z&), . ,zr(lf()) is a diagonal matrix of size n.
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Mixture of regressions
M-step: update of the Bx and oy (continued)

@ The solution is the WLS estimate of [3:
Bl((f-‘rl) — (XTka)—le ka

o The value of o) minimizing Q(6,0(!)) is the weighted average of the
residuals,

2(t+1 1 o TT
ol = 5 2w B Ty
ne” i=1

_ 1

t)

5y = X8 T Wiy — xgHY)
My

o,

= N
&, L

DI
e
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Regression models Mixture of regressions

Mixture of regressions using mixtools

library(mixtools)
data(C02data)
attach(C02data)

CO2reg <- regmixEM(C02, GNP)
summary (C02reg)

i11<-C02reg$posterior>0.5
112<-C02reg$posterior<=0.5

text (GNP[ii1],C02[iil],country[iil],col=’red’)
text (GNP[C1i2] ,C02[ii2],country[ii2] ,col=’blue’)
abline(CO2reg$betal,1],col="red’)
abline(CO2reg$betal,2],col="blue’)

Thierry Denceux ACE - Gaussian Mixture models

July-August 2019
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Regression models Mixture of regressions

Best solution in 10 runs
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Regression models Mixture of regressions

Increase of log-likelihood
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Regression models Mixture of regressions

Another solution (with lower log-likelihood)
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DTS =
Increase of log-likelihood
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Overview

© Regression models

@ Mixture of experts

R
& /)

Moy
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TSR
Making the mixing proportions predictor-dependent

@ An interesting extension of the previous model is to assume the
proportions 7, to be partially explained by a vector of concomitant
variables W.

e If W = X, we can approximate the regression function by different
linear functions in different regions of the predictor space.

@ In ML, this method is referred to as the mixture of experts method.

o A useful parametric form for 7, that ensures m, > 0 and
> %—1 Tk = 1 is the multinomial logit (softmax) model

T
exp(o, w
m(w, ) =
>or-1exp(e] w)
with o = (a1, ..., ac) and g = 0.
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TSR
EM algorithm

@ The Q function is the same as before, except that the 7, now depend
on the w; and parameter a:

G(t ZZzlk log &( y,,ﬂk Xi, Ok +ZZz,k log 7x(wj, &)

i=1 k=1 i=1 k=1

@ In the M-step, the update formula for 8, and o) are unchanged.

@ The last term of Q(6,0(")) can be maximized w.r.t. a using an
iterative algorithm, such as the Newton-Raphson procedure. (See
remark on next slide)
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TSR
Generalized EM algorithm

@ To ensure convergence of EM, we only need to increase (but not
necessarily maximize) Q(#,6()) at each step.

@ Any algorithm that chooses #(t+1) at each iteration to guarantee the
above condition (without maximizing Q(6, (")) is called a
Generalized EM (GEM) algorithm.

@ Here, we can perform a single step of the Newton-Raphson algorithm

to maximize
n C
Z Z z,.(kt) log 7k (w;j, @)
i=1 k=1

with respect to a.

@ Backtracking can be used to ensure ascent.

e’
v or e
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Example: motorcycle data

acceleration

Thierry Denceux
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library (’MASS’)
x<-mcycle$times
y<-mcycle$accel
plot(x,y)

models July-August 2019

z
a“
‘% S

71/ 76



REACEOTH NN EI  Mixture of experts

Mixture of experts using flexmix

library (flexmix)

K<-5
res<-flexmix(y ~ x,k=K,model=FLXMRglm(family="gaussian"),
concomitant=FLXPmultinom(formula="x))

beta<- parameters(res)[1:2,]
alpha<-res@concomitant@coef

5

W <
e
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Plotting the posterior probabilities

xt<-seq(0,60,0.1)
Nt<-length(xt)
plot(x,y)
pit=matrix(0,Nt,K)

for(k in 1:K) pit[,k]l<-exp(alphall,k]+alphal2,k]*xt)

pit<-pit/rowSums (pit)

plot(xt,pit[,1],type="1",col=1)
for(k in 2:K) lines(xt,pit[,k],col=k)

Thierry Denceux ACE - Gaussian Mixture models

July-August 2019
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Posterior probabilities

Motorcycle data — posterior probabilities
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Plotting the predictions

yhat<-rep(0,Nt)
for(k in 1:K) yhat<-yhat+pit[,k]*(beta[l,k]+betal[2,k]*xt)

plot(x,y,main="Motorcycle data",xlab="time",ylab="acceleration")
for(k in 1:K) abline(beta[1:2,k],1lty=2)
lines(xt,yhat,col=’red’,lwd=2)

H)

N <
e
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Regression lines and predictions

Motorcycle data
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