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Support Vector classification and regression

In this chapter we describe new methods for linear and nonlinear
classification and regression.
Optimal separating hyperplanes are first introduced for the case when
two classes are linearly separable. Then we cover extensions to the
nonseparable case, where the classes overlap.
These techniques are then generalized to the support vector machine
(SVM), which produces nonlinear boundaries by constructing a linear
boundary in a large, transformed version of the predictor space.
Finally, we will transpose these ideas to regression, and introduce
support vector regression (SVR).
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Optimal Separating hyperplane Formalization

Hyperplane

In Rp, a hyperplane H is defined by the equation g(x) = 0 with
g(x) = β0 + βT x . We have g(x) > 0 on one side of H and g(x) < 0 on
the other side.

For any two points x1 and x2 lying in
H, we have

β0 + βT x1 = 0

β0 + βT x2 = 0.

Consequently, βT (x1 − x2) = 0,
hence β∗ = β/‖β‖ is the vector
normal to the surface of H.
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Optimal Separating hyperplane Formalization

Hyperplane (continued)

Let x0 ∈ H. The signed distance of
any point x to H is

ds(x ,H) = β∗T (x − x0)

As β0 = −βT x0, we have

ds(x ,H) =
βT x − βT x0
‖β‖

=
βT x + β0
‖β‖

=
g(x)

‖β‖
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Optimal Separating hyperplane Formalization

Linearly separable data

Consider a two-class data set
{(xi , yi )}ni=1 with yi ∈ {−1, 1}.
It is said to be linearly separable
if there exists a hyperplane
H : g(x) = 0 that separates the
two classes, i.e., such that

g(xi )yi > 0, ∀i .
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Optimal Separating hyperplane Formalization

Optimal separating hyperplane

Let H : g(x) = 0 be a separating hyperplane. The distance between H and
a learning vector xi is

d(xi ,H) =
g(xi )yi
‖β‖

Definition (Margin)

The margin of H is the smallest distance between H and a learning vector
xi :

M = min
i

d(xi ,H).

Definition (Optimal separating hyperplane, support vectors)

The optimal separating hyperplane (OSH) is the hyperplane with the
largest margin. The learning vectors xi such that d(xi ,H) = M are called
the support vectors (SVs) of H.
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Optimal Separating hyperplane Formalization

Example 1

M
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Optimal Separating hyperplane Formalization

Example 2

The shaded region delineates the maximum margin separating the two
classes. There are 3 SVs, and the OSH is the blue line. The boundary
found using logistic regression is the red line. In this case, it is very close to
the OSH.
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Optimal Separating hyperplane Formalization

The OSH is more likely to separate future data

r	
M	

Future data can be assumed to
be “close” to past data.
Assume they will lie with a
distance r of a past data point.
If M > r , the hyperplane will
classify future data perfectly.
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Optimal Separating hyperplane Solution in the separable case

How to find the OSH?

The OSH can be found by solving the following optimization problem:

max
β,β0

M

subject to
yi (β

T xi + β0)

‖β‖
≥ M, i = 1, . . . , n.

If (β, β0) is a solution, so is (λβ, λβ0) for any λ. Hence, we can fix
‖β‖ = 1/M and reformulate the problem as

min
β,β0

1
2
‖β‖2

subject to yi (β
T xi + β0) ≥ 1, i = 1, . . . , n.
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Optimal Separating hyperplane Solution in the separable case

Interpretation

The constraints define an empty
band or margin around the linear
decision boundary of thickness
1/|β‖.
The vectors xi such that

yi (β
T xi + β0)

‖β‖
=

1
‖β‖

,

i.e., yi (βT xi + β0) = 1, are the
SVs.
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Optimal Separating hyperplane Solution in the separable case

Reminder on constrained optimization
Lagrange function

Consider the following minimization problem:

min
β

f (β) (1)

subject to the constraints ci (β) ≥ 0, i = 1, . . . , n, where f and the ci ’s are
differentiable functions.

Definition (Lagrange function)

The Lagrange function is defined by

L(β, α) = f (β)−
n∑

i=1

αici (β),

where α = (α1, . . . , αn) is the vector of Lagrange multipliers.
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Optimal Separating hyperplane Solution in the separable case

Reminder on constrained optimization
Karush-Kuhn-Tucker conditions

Theorem (Karush-Kuhn-Tucker)

If function f has a minimum for some value β∗ in the feasibility region, the
following Karush-Kuhn-Tucker (KKT) conditions are verified for some
vector α∗ = (α∗1, . . . , α

∗
n):

∂L

∂β
(β∗, α∗) = 0 (2a)

ci (β
∗) ≥ 0, i = 1, . . . , n (2b)

α∗i ci (β
∗) = 0 i = 1, . . . , n (2c)
α∗i ≥ 0 i = 1, . . . , n. (2d)

Remark: if α∗i > 0, then ci (β
∗) = 0: constraint i is active.
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Optimal Separating hyperplane Solution in the separable case

Reminder on constrained optimization
Wolfe dual

Theorem (Wolfe dual)

Problem (1) is equivalent to the following problem (Wolfe dual):

max
β,α

L(β, α) (3)

subject to

∂L

∂β
= 0 (4)

αi ≥ 0 i = 1, . . . , n. (5)
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Optimal Separating hyperplane Solution in the separable case

Lagrange function

Let us come back to the problem minβ,β0
1
2‖β‖

2 subject to
yi (β

T xi + β0) ≥ 1, i = 1, . . . , n.
This is a convex optimization problem (quadratic criterion with linear
inequality constraints), so the solution exists and it is unique.
The Lagrange function is

L(β, β0, α) =
1
2
‖β‖2 −

n∑
i=1

αi [yi (β
T xi + β0)− 1] (6)

Setting the derivatives to zero, we obtain:

∂L

∂β
= β −

n∑
i=1

αiyixi = 0⇒ β =
n∑

i=1

αiyixi (7)

and
∂L

∂β0
= −

n∑
i=1

αiyi = 0 (8)
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Optimal Separating hyperplane Solution in the separable case

Lagrangian of the dual problem

Substituting (7) and (8) in (6), we get

LD(α) =
1
2

(
n∑

i=1

αiyixi

)T
 n∑

j=1

αjyjxj


︸ ︷︷ ︸∑

i,j αiαjyiyjx
T
i xj

−

∑
i

αiyi

 n∑
j=1

αjyjxj

T

xi︸ ︷︷ ︸∑
i,j αiαjyiyjx

T
i xj

−
∑
i

αiyiβ0︸ ︷︷ ︸
0

+
∑
i

αi

which can be written as

LD(α) =
n∑

i=1

αi −
1
2

∑
i ,j

αiαjyiyjx
T
i xj
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Optimal Separating hyperplane Solution in the separable case

Solving the dual problem

The solution is obtained by maximizing LD(α) subject to the
constraints

αi ≥ 0 and
n∑

i=1

αiyi = 0. (9)

This can be done using standard quadratic programming software. We
will discuss a specialized optimization algorithm later.
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Optimal Separating hyperplane Solution in the separable case

Interpreting the solution
Support vectors

The solution α∗ must satisfy the KKT conditions, which include (7),
(8), (9) and

α∗i [yi (β
∗T xi + β∗0)− 1] = 0, i = 1, . . . , n. (10)

From these we can see that, if α∗i > 0, then yi (β
∗T xi + β∗0) = 1, i.e.,

xi is a SV.
The SV’s are the input vectors xi such that α∗i > 0.
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Optimal Separating hyperplane Solution in the separable case

Interpreting the solution
Computing β∗ and β∗

0

From (7) we see that the solution vector β∗ is defined in terms of a
linear combination of the SVs:

β∗ =
n∑

i=1

α∗i yixi =
∑
i∈S

α∗i yixi (11)

with S = {i : α∗i > 0}.
The intercept β∗0 can be found from (10): for any SV xi , we have

yi (β
∗T xi + β∗0) = 1,

from which we can get β∗0 .
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Optimal Separating hyperplane Solution in the separable case

SVM classifier

The equation of the OSH is

g∗(x) = β∗T x + β∗0 =
∑
i∈S

α∗i yix
T
i x + β∗0 = 0

The corresponding classifier is

D(x) = sign g∗(x).

The classifier is based only on SVs, which are close to the boundary
between classes.
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Optimal Separating hyperplane Non-separable case
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Optimal Separating hyperplane Non-separable case

Extension to non-separable data

Until now, we have assumed that the data are linearly separable.
This will generally not be the case with real data, so the technique
derived so far is not really useful in practice.
We need to propose an alternative formulation for the non-separable
case.
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Optimal Separating hyperplane Non-separable case

Weakening the constraints

Suppose that the classes overlap in predictor space.
One way to deal with the overlap is to still maximize the margin M,
but allow for some points to be on the wrong side of the margin.
Define the slack variables ξ = (ξ1, ξ2, . . . , ξn) with ξi ≥ 0. The
constraints can be modified as

yi (β
T xi + β0)

‖β‖
≥ M(1− ξi ), i = 1, . . . , n.

As before, fixing ‖β‖ = 1/M, this is equivalent to

yi (β
T xi + β0) ≥ 1− ξi , i = 1, . . . , n.

The value ξi is the proportional amount by which vector xi is on the
wrong side of its margin.
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Optimal Separating hyperplane Non-separable case

Interpretation

H:	g(x)=0	

ξ=0	

0<ξM<M	 ξM>M	

ξ=0	

M	

M	
ξ=0	

ξ=0	

The filled points are on the wrong side of their margin by an amount
Mξi .
Points on the correct side have ξi = 0.
Misclassified points have ξi > 1.
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Optimal Separating hyperplane Non-separable case

Optimization problem

The optimization problem now becomes:

min
β,β0,{ξi}

1
2
‖β‖2 +

C

n

n∑
i=1

ξi , (12)

subject to
ξi ≥ 0, i = 1, . . . , n

yi (β
T xi + β0) ≥ 1− ξi , i = 1, . . . , n

where C is a hyperparameter.
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Optimal Separating hyperplane Non-separable case

Lagrange function

The Lagrange function is

L(β, β0, ξ, α, µ) =
1
2
‖β‖2 +

C

n

n∑
i=1

ξi

−
n∑

i=1

αi [yi (β
T xi + β0)− (1− ξi )]−

n∑
i=1

µiξi .

Setting the derivatives w.r.t. β, β0 and ξ to zero, we get, as before,

β =
n∑

i=1

αiyixi ,
n∑

i=1

αiyi = 0, (13)

and
C

n
− αi − µi = 0⇒ αi =

C

n
− µi (14)
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Optimal Separating hyperplane Non-separable case

Dual formulation

By substituting (13), we obtain the Lagrangian dual objective function

LD(α) =
n∑

i=1

αi −
1
2

∑
i ,j

αiαjyiyjx
T
i xj

+
n∑

i=1

(
C

n
− αi − µi

)
︸ ︷︷ ︸

0

ξi , (15)

which has exactly the same form as in the previous problem.
We maximize LD subject to 0 ≤ αi ≤ C

n and
∑n

i=1 αiyi = 0.
The sequential minimal optimization (SMO) algorithm gives an
efficient way of solving this problem.

Thierry Denœux ACE – Support Vector Machines Spring 2023 30 / 85



Optimal Separating hyperplane Non-separable case

SMO algorithm

The SMO algorithm is a grouped coordinate ascent procedure.
Maximizing LD(α) one αi at a time does not work, because due to the
constraint

n∑
i=1

αiyi = 0,

variable αi is uniquely determined from the other αj ’s through the
equation

αi = −yi
∑
j 6=i

αjyj .

Instead, the SMO algorithm maximizes LD(α) w.r.t. to each pair of
variables (αi , αj) sequentially.
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Optimal Separating hyperplane Non-separable case

SMO algorithm (continued)

Repeat until convergence {
1 Select some pair αi and αj to update next (using a

heuristic that tries to pick the two that will allow us
to make the biggest progress towards the global
maximum).

2 Reoptimize LD(α) with respect to αi and αj, while
holding all the other αk’s (k 6= i , j) fixed.

}

To test for convergence of this algorithm, we can check whether the KKT
conditions are satisfied to within some tolerance (see next slide).
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Optimal Separating hyperplane Non-separable case

Interpretation of the solution

The solution verifies the KKT conditions (13)-(14) and

α∗i [yi (β
∗T xi + β∗0)− (1− ξ∗i )] = 0, i = 1, . . . , n (16)

µ∗i ξ
∗
i = 0, i = 1, . . . , n (17)

As before, the SVs are defined as the points such that α∗i > 0.
From (14) and (17), the SVs such that α∗i < C/n verify µ∗i > 0 and
ξ∗i = 0: they lie on the edge of the margin (“in-bound SVs”). The
remainder (ξ∗i > 0) have α∗i = C/n and usually lie inside the margin
(“margin errors”).
The SVs such that ξ∗i > 1 are misclassified.
From (16) we can see that any of the in-bound SVs (α∗i > 0, ξ∗i = 0)
can be used to solve for β∗0 , and we typically use an average of all the
solutions for numerical stability.
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Optimal Separating hyperplane Non-separable case

Interpretation

H: g(x)=0

ai<C/n

ai=C/n ai=C/n

ai <C/n

M

M
ai=0

ai=0
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Optimal Separating hyperplane Non-separable case

Tuning C

The tuning parameter of this procedure is the cost parameter C .
The optimal value for C can be estimated by cross-validation.
From (12), the margin is smaller for larger C . Hence larger values of
C focus attention more on points near the decision boundary, while
smaller values involve data further away.
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Optimal Separating hyperplane Non-separable case

Bound on the LOO error

The LOO cross-validation error can be bounded above by the
proportion of SVs in the data.
The reason is that leaving out an observation that is not a SV will not
change the solution. Hence these observations, being classified
correctly by the original boundary, will be classified correctly in the
cross-validation process.
However this bound tends to be too high, and not generally useful for
choosing C .
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Optimal Separating hyperplane Non-separable case

Example

The SVs (α∗
i > 0) are all the points on the wrong side of their margin. The black

solid dots are in-bound SVs (α∗
i < C/n). In the left (resp., right) panel 62%

(resp., 85%) of the observations are SVs.
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Optimal Separating hyperplane Non-separable case

Application in R

library("kernlab")

ii<-which((pima$glucose>0) & (pima$bmi>0))

svmfit<-ksvm(as.factor(class)˜ glucose+bmi,data=pima[ii,],
type="C-svc",kernel="vanilladot",C=10)

plot(svmfit,data=pima[ii,],grid=100)
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Optimal Separating hyperplane Non-separable case

Result
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Optimal Separating hyperplane Non-separable case

Selection of C by cross-validation

CC<-c(0.01,0.1,1,10,100,1000)
N<-length(CC)
err<-rep(0,N)
for(i in 1:N){
err[i]<-cross(ksvm(as.factor(class)˜glucose+bmi,data=pima[ii,],

type="C-svc",kernel="vanilladot",C=CC[i],cross=5))
}
plot(CC,err,type="b",log="x",xlab="C",ylab="CV error")
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Optimal Separating hyperplane Non-separable case

Cross-validation result

1e−02 1e+00 1e+02

0.
23

4
0.

23
6

0.
23

8
0.

24
0

0.
24

2
0.

24
4

C

C
V

 e
rr

or

Thierry Denœux ACE – Support Vector Machines Spring 2023 41 / 85



Support Vector Machines

Overview

1 Optimal Separating hyperplane
Formalization
Solution in the separable case
Non-separable case

2 Support Vector Machines
The kernel trick
Kernel functions
SVM as a penalization method

3 Support Vector Regression
Loss function
Formalization
Solution and interpretation

Thierry Denœux ACE – Support Vector Machines Spring 2023 42 / 85



Support Vector Machines The kernel trick
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Support Vector Machines The kernel trick

Extension to non-linear classification

The support vector classifier described so far finds linear boundaries in
the predictor space.
As with other linear methods, we could make the procedure more
flexible by enlarging the predictor space using basis expansions such
as, e.g., polynomials or splines.
Linear boundaries in the enlarged space generally achieve better
training-class separation, and translate to nonlinear boundaries in the
original space.
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Support Vector Machines The kernel trick

Extension to non-linear classification (continued)

Once the basis functions Φj(x), j = 1, . . . , J are selected, the
procedure is the same as before:

We fit the SV classifier using predictors

Φ(xi ) = (Φ1(xi ),Φ2(xi ), . . . ,ΦJ(xi )), i = 1, . . . , n,

and produce the (nonlinear) function g∗(x) = Φ(x)Tβ∗ + β0.
The classifier is D∗(x) = sign(g∗(x)) as before.

In SVM, the mapping x → Φ(x) will be defined implicitly, and J will
be potentially very large (even infinite!).
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Support Vector Machines The kernel trick

The OSH depends only on dot-products

A key feature of the OSH is that it depends only on the dot products
between input vectors:

The solution is found by maximizing

LD(α) =
n∑

i=1

αi −
1
2

∑
i ,j

αiαjyiyjx
T
i xj , (18)

subject to 0 ≤ αi ≤ C/n and
∑n

i=1 αiyi = 0.
The optimal discriminant function is

g∗(x) =
∑
i∈S

α∗i yix
T
i x + β∗0 = 0,

where β∗0 also depends only on the dot products xTi xj .
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Support Vector Machines The kernel trick

Dot-products in the transformed input space

Assume that the input vector x is replaced by Φ(x) for some
transformation Φ : Rp → H.
The objective function will become

LD(α) =
n∑

i=1

αi −
1
2

∑
i ,j

αiαjyiyj〈Φ(xi ),Φ(xj)〉 (19)

and the optimal discriminant function will be

g∗(x) =
∑
i∈S

α∗i yi 〈Φ(xi ),Φ(x)〉+ β∗0 = 0,

where 〈·, ·〉 denotes the dot-product in H.
All we need is a method to compute dot-products in H.
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Support Vector Machines The kernel trick

The “kernel trick”

If there exists a kernel function K : Rp × Rp → R+ such that

K(x , x ′) = 〈Φ(x),Φ(x ′)〉,

then the transformation Φ will be defined implicitly.
This is the “kernel trick”.
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Support Vector Machines The kernel trick

Example

Assume p = 2 and K(x , x ′) = (xT x ′)2.
We have

K(x , x ′) = (x1x
′
1 + x2x

′
2)2

= x21 (x ′1)2 + 2x1x2x ′1x
′
2 + x22 (x ′2)2

= Φ(x)TΦ(x ′)

with

Φ : x −→

 x21√
2x1x2
x22


Function Φ is defined implicitly by the kernel function K.
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Support Vector Machines Kernel functions
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Support Vector Machines Kernel functions

Mercer condition

Theorem
A kernel function K corresponds to a dot-product in some space H iff it
verifies the following Mercer condition:

∀f : Rp → R s.t.
∫

f (x)2dx <∞,
∫
K(x , x ′)f (x)f (x ′)dxdx ′ ≥ 0.

If the Mercer condition is not verified, the Wolf dual problem may not
have a solution.
In practice, the method may still work most of the time with a kernel
function that does not meet this condition.
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Support Vector Machines Kernel functions

Popular kernel functions

Three popular choices for K in the SVM literature are

K(x , x ′) = (a + b · xT x ′)d , d > 0 (polynomial kernel)
K(x , x ′) = exp

[
−σ‖x − x ′‖2

]
, σ > 0 (RBF or Gaussian kernel)

K(x , x ′) = tanh(a + b · xT x ′) (MLP kernel).

The polynomial and Gaussian verify the Mercer condition, but the
MLP kernel does not.
With the MLP kernel, the discriminant function is

g(x) =
∑
i∈S

α∗i yi tanh(a + b · xTi x) + β∗0 .

It is the transfer function of a neural network with nS = card(S)
hidden units (see chapter on neural networks).

Thierry Denœux ACE – Support Vector Machines Spring 2023 52 / 85



Support Vector Machines Kernel functions

Influence of C

The role of parameter C is clearer in an enlarged predictor space, since
perfect separation is often achievable there. (The dimension of H may
be very large and even infinite.)
A small value of C will encourage a small value of ‖β‖, which in turn
causes g(x) and hence the boundary to be smoother.
Both C and the kernel parameters (a, b, d , σ, etc.) are usually tuned
by cross-validation.
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Support Vector Machines Kernel functions

Example
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Support Vector Machines Kernel functions

Application in R

x<-matrix(rnorm(200*2),ncol=2)
y<-as.factor(c(rep(-1,150),rep(1,50)))
x[1:100,]<- x[1:100,]+2
x[101:150,]<- x[101:150,]-2

svmfit<-ksvm(x,y,type="C-svc",kernel="rbfdot",
kpar=list(sigma=1),C=1)

plot(svmfit,data=x,grid=100)
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Support Vector Machines Kernel functions

Result
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Support Vector Machines Kernel functions

Estimation of posterior probabilities

The SVM classifier gives us a decision function, but it does not
provide estimates of conditional class probabilities
P(x) = P(Y = +1 | X = x).
One approach to estimate these probabilities is to use logistic
regression, with the output g(x) of the SVM classifier as the predictor.
We then have

P̂(x) =
1

1 + exp[−(a + b · g(x))]

To avoid overfitting, it is preferable to estimate the additional
parameters a and b from a validation dataset or using cross-validation.
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Support Vector Machines SVM as a penalization method
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Support Vector Machines SVM as a penalization method

Unconstrained formulation

Let g(xi ) = 〈β,Φ(xi )〉+ β0. The problem

min
β,β0,{ξi}

1
2
‖β‖2 +

C

n

n∑
i=1

ξi ,

subject to ξi ≥ 0 and yig(xi ) ≥ 1− ξi , i = 1, . . . , n is equivalent to
the unconstrained optimization problem:

min
β,β0

n∑
i=1

[1− yig(xi )]+︸ ︷︷ ︸
“hinge” loss

+
λ

2
‖β‖2︸ ︷︷ ︸

penalty

,

where [·]+ denotes the positive part, with λ = n/C .
Proof: see next slide.
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Support Vector Machines SVM as a penalization method

Hinge loss

Proof: from ξi ≥ 0 and ξi ≥ 1− yig(xi ), we get equivalently
ξi ≥ max(0, 1− yig(xi )) = [1− yig(xi )]+. Since we minimize ξi , we
set ξi = [1− yig(xi )]+.
The hinge loss can be compared to other loss functions such as:

Misclassification: I (sign(g(x)) 6= y)
Squared error loss: (y − g(x))2

(see next slide)
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Support Vector Machines SVM as a penalization method

Hinge loss (case y = +1)
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Support Vector Regression Loss function
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Support Vector Regression Loss function

From classification to regression

SVMs were first developed for classification.
As described in the previous chapter, they represent the decision
boundary in terms of a typically small subset of all training examples –
the Support Vectors.
To generalize the SV algorithm to regression, we need to find a way of
retaining this feature. This can be achieved using the ε-insensitive loss
function

|f (x)− y |ε =

{
0 if |f (x)− y | ≤ ε,
|f (x)− y | − ε otherwise.

= [|f (x)− y | − ε]+
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Support Vector Regression Loss function

ε-insensitive loss function

The ε-insensitive loss function does not penalize errors below some ε,
chosen a priori. The ε-insensitive zone is sometimes referred to as the
ε-tube.
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Support Vector Regression Loss function

Basic approach

The regression algorithm is then developed in close analogy to the
case of classification.
Again, we estimate linear functions, use a ‖β‖2 regularizer, and rewrite
everything in terms of dot products to generalize to the nonlinear case.
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Support Vector Regression Formalization

Problem formulation

We search for the linear function f (x) = βT x + β0 minimizing the
following criterion:

1
2
‖β‖2︸ ︷︷ ︸

regularization

+
C

n

n∑
i=1

|f (xi )− yi |ε︸ ︷︷ ︸
loss function

.

C is a hyperparameter, which balances training error and model
complexity.
To solve this problem, we transform it into an equivalent constrained
optimization problem.
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Support Vector Regression Formalization

Reformulation as a constrained optimization problem

We have

|f (xi )− yi |ε = [|f (xi )− yi | − ε]+

=

{
[f (xi )− yi − ε]+ = ξ−i if f (xi ) ≥ yi

[yi − f (xi )− ε]+ = ξ+i if f (xi ) < yi

Furthermore, ξ−i = 0 if f (xi ) < yi , and ξ+i = 0 if f (xi ) ≥ yi . We can
thus write

|f (xi )− yi |ε = ξ+i + ξ−i

The quantities ξ+i and ξ−i are called “slack variables” (they will
become slack variables in the constrained optimization formulation of
the problem)
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Support Vector Regression Formalization

Representation of the slack variables

x	

y	

ξ+>0	
ξ-=0	

ξ->0	
ξ+=0	

ε

ξ+=ξ-=0	

y=βTx+β0	
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Support Vector Regression Formalization

Primal objective function

Using the slack variables, the previous problem can be reformulated as a
quadratic optimization problem:

min
β,β0,ξ−,ξ+

1
2
‖β‖2 +

C

n

n∑
i=1

(ξ−i + ξ+i )

subject to:

ξ+i ≥ yi − βT xi − β0 − ε
ξ+i ≥ 0

ξ−i ≥ β
T xi + β0 − yi − ε

ξ−i ≥ 0

for i = 1, . . . , n.
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Support Vector Regression Formalization

Lagrange function

The Lagrange function is

L(β, β0, α
−
i , α

+
i , η

−
i , η

+
i ) =

1
2
‖β‖2 +

C

n

n∑
i=1

(ξ−i + ξ+i )

−
n∑

i=1

(η−i ξ
−
i + η+i ξ

+
i )−

n∑
i=1

α−i (ε+ ξ−i + yi − βT xi − β0)

−
n∑

i=1

α+
i (ε+ ξ+i − yi + βT xi + β0),

where α−i , α
+
i , η

−
i , η

+
i are Lagrange multipliers.
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Support Vector Regression Formalization

Derivatives of the Lagrange function

Setting the derivatives to zero, we obtain:

∂L

∂β
= β −

n∑
i=1

(α+
i − α

−
i )xi = 0,

∂L

∂β0
=

n∑
i=1

(α−i − α
+
i ) = 0,

∂L

∂ξ−i
=

C

n
− α−i − η

−
i = 0, i = 1, . . . , n

∂L

∂ξ+i
=

C

n
− α+

i − η
+
i = 0, i = 1, . . . , n.

We use these relations to simplify the expression of the Lagrange
function (see next slide).
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Support Vector Regression Formalization

Simplification of the Lagrange function

L =
1
2

(∑
i

(α+
i − α

−
i )xi

)T
∑

j

(α+
j − α

−
j )xj


+

n∑
i=1

ξ−i

(
C

n
− η−i − α

−
i

)
︸ ︷︷ ︸

0

+
n∑

i=1

ξ+i

(
C

n
− η+i − α

+
i

)
︸ ︷︷ ︸

0

− ε
∑
i

(α+
i + α−i )− β0

∑
i

(α+
i − α

−
i )︸ ︷︷ ︸

0

+
∑
i

yi (α
+
i − α

−
i )

−
n∑

i=1

(α+
i − α

−
i )

∑
j

(α+
j − α

−
j )xj

T

xi
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Support Vector Regression Formalization

Dual problem

LD(α−i , α
+
i ) = −1

2

∑
i ,j

(α+
i − α

−
i )(α+

j − α
−
j )xTi xj

− ε
n∑

i=1

(α+
i + α−i ) +

n∑
i=1

yi (α
+
i − α

−
i ),

to be maximized subject to
n∑

i=1

(α+
i − α

−
i ) = 0

0 ≤ α−i ≤
C

n
, i = 1, . . . , n,

0 ≤ α+
i ≤

C

n
, i = 1, . . . , n.
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Support Vector Regression Solution and interpretation
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Support Vector Regression Solution and interpretation

Support vectors

As in the case of SVMs, the dual problem can be solved using any
quadratic programming solver.
Let α−∗i , α+∗

i , i = 1, . . . , n be the solution.
The learning vectors xi such that α−∗i > 0 or α+∗

i > 0 are called the
support vectors. They lie outside the tube (or at the border).
Let S be the set of support vectors. We have

β∗ =
∑
i∈S

(α+∗
i − α

−∗
i )xi

and
f ∗(x) =

∑
i∈S

(α+∗
i − α

−∗
i )xTi x + β∗0
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Support Vector Regression Solution and interpretation

Sparsity of the SV expansion

We thus have a sparse expansion of β in terms of xi (we do not need
all xi to compute β∗).
The points inside the tube (i.e., which are not support vectors) do not
contribute to the solution: we could remove any one of them, and still
obtain the same solution.
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Support Vector Regression Solution and interpretation

Karush-Kuhn-Tucker conditions

The solution α−∗i , α+∗
i , i = 1, . . . , n must satisfy the KKT conditions

α−∗i (ε+ ξ−∗i + yi − β∗T xi − β∗0) = 0 (20a)

α+∗
i (ε+ ξ+∗i − yi + β∗T xi + β∗0) = 0 (20b)(

C

n
− α−∗i

)
ξ−∗i = 0,

(
C

n
− α+∗

i

)
ξ+∗i = 0 (20c)

Consequences:
Only examples (xi , yi ) with corresponding α−∗

i = C/n or α+∗
i = C/n

can lie outside the tube (i.e., ξ−∗
i > 0 or ξ+∗

i > 0).
When α+∗

i ∈ (0,C/n) or α−∗
i ∈ (0,C/n), we have ξ+∗

i = ξ−∗
i = 0.

The corresponding SVs lie at the border of the tube (see next slide).
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Support Vector Regression Solution and interpretation

Interpretation of α+
i and α−i

x

y

a+=C/n
a-=0

a-=C/n
a+=0

e

a+=a-=0

y=bTx+b0

0<a-<C/n
a+=0

0<a+<C/n
a-=0
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Support Vector Regression Solution and interpretation

Calculation of β0

β∗0 can be calculated from (20a) or (20b) for SVs at the border of the
tube as

β∗0 =

{
ε+ yi − β∗T xi for α−∗i ∈ (0,C/n)

yi − β∗T xi − ε for α+∗
i ∈ (0,C/n)

Theoretically, it suffices to use any Lagrange multiplier in (0,C/n).
If given the choice between several such multipliers in (0,C/n), it is
safer to use one that is not too close to 0 or C/n.
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Support Vector Regression Solution and interpretation

Parameter tuning

The solution depends on two parameters, ε and C . These play different
roles:

Parameter ε in the loss function specifies the desired accuracy of the
approximation. If we scale our response, then we might consider using
preset values for ε.
The quantity C is a more traditional regularization parameter. It can
be estimated, for example, by cross-validation.
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Support Vector Regression Solution and interpretation

Nonlinear extension

As in the classification case, the complete algorithm can be described
in terms of dot products between the data.
This makes it possible to formulate a nonlinear extension using
kernels, replacing dot products xTi xj in X with dot products

〈Φ(xi ),Φ(xj)〉 = K(xi , xj)

in H.
Additional kernel parameters may be determined by cross-validation.
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Support Vector Regression Solution and interpretation

Application in R

library(’kernlab’)
library(’MASS’)
mcycle.data<-data.frame(mcycle)
mcycle.data$accel<-scale(mcycle.data$accel)
t<- seq(min(mcycle.data$times),max(mcycle.data$times),0.5)
testdat<-data.frame(times=t)

svmfit<-ksvm(accel˜.,data=mcycle.data,scaled=TRUE,type="eps-svr",
kernel="rbfdot",C=100,epsilon=0.1,kpar=list(sigma=1))

yhat<-predict(svmfit,newdata=testdat)
plot(mcycle.data$times,mcycle.data$accel)
lines(t,yhat)
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Support Vector Regression Solution and interpretation

Result
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