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Support Vector classification and regression

@ In this chapter we describe new methods for linear and nonlinear
classification and regression.

e Optimal separating hyperplanes are first introduced for the case when
two classes are linearly separable. Then we cover extensions to the
nonseparable case, where the classes overlap.

@ These techniques are then generalized to the support vector machine
(SVM), which produces nonlinear boundaries by constructing a linear
boundary in a large, transformed version of the predictor space.

o Finally, we will transpose these ideas to regression, and introduce
support vector regression (SVR).
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Optimal Separating hyperplane

Overview

@ Optimal Separating hyperplane
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Optimal Separating hyperplane Formalization

Overview

@ Optimal Separating hyperplane
@ Formalization
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Optimal Separating hyperplane Formalization
Hyperplane

In RP, a hyperplane H is defined by the equation g(x) = 0 with
g(x) = Bo + BT x. We have g(x) > 0 on one side of H and g(x) < 0 on
the other side.

For any two points x; and x; lying in

H, we have
Bo+pBTx =0
jrg/: Bo+B"x = 0.
4 fo+ BTz =0 Consequently, 87 (x; — x2) =0,

Vi
W hence 5* = 3/||3]| is the vector
normal to the surface of H.
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{unalicsiay
Hyperplane (continued)

Let xog € H. The signed distance of

\/ any point x to H is
z T
N As B = —3 7 xp, we have
/ Bo+BTz=0
o BTx —BTxg
/B ds(x,H) = —————
/ ) 11l
_ BTx+ Bo
11l
_8(x)
181
< utc
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Optimal Separating hyperplane Formalization

Linearly separable data

o Consider a two-class data set
{(xi, yi) iy with yj € {—1,1}.
@ It is said to be linearly separable
if there exists a hyperplane
H : g(x) = 0 that separates the
two classes, i.e., such that

g(xi)yi >0, Vi.
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Optimal separating hyperplane

Let H : g(x) = 0 be a separating hyperplane. The distance between H and
a learning vector x; is

o 8y
4l H) =15

Definition (Margin)

The margin of H is the smallest distance between H and a learning vector
X!

M = min d(x;, H).

Definition (Optimal separating hyperplane, support vectors)

The optimal separating hyperplane (OSH) is the hyperplane with the
largest margin. The learning vectors x; such that d(x;, H) = M are called
the support vectors (SVs) of H.

v
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Optimal Separating hyperplane Formalization

Example 1

Thierry Denceux
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Optimal Separating hyperplane Formalization
Example 2

The shaded region delineates the maximum margin separating the two
classes. There are 3 SVs, and the OSH is the blue line. The boundary
found using logistic regression is the red line. In this case, it is very cleselto

Gompitane
the OSH.
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Optimal Separating hyperplane Formalization

The OSH is more likely to separate future data

@ Future data can be assumed to
be “close” to past data.

@ Assume they will lie with a
distance r of a past data point.

e If M > r, the hyperplane will
classify future data perfectly.
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Overview

@ Optimal Separating hyperplane

@ Solution in the separable case
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Solution in the separable case
How to find the OSH?

@ The OSH can be found by solving the following optimization problem:

max M
B,Bo

WEM’ i=1,...,n.

e If (B, Bo) is a solution, so is (A3, A\Bp) for any . Hence, we can fix
IB]| = 1/M and reformulate the problem as

subject to

1
min —
min 5191

subject to  yi(BTxi+Bo)>1, i=1,...,n.
< utc

Compiégne.
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Interpretation

LB+ o =0

Thierry Denceux

ACE — Support Vector Machines

@ The constraints define an empty
band or margin around the linear
decision boundary of thickness

1/161-

@ The vectors x; such that

vi(BTxi + Bo) 1

B 8l

i.e., yi(BTx; + Bo) = 1, are the
SVs.
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Reminder on constrained optimization
Lagrange function

Consider the following minimization problem:
min (5) 1

subject to the constraints ¢;(5) >0, i =1,...,n, where f and the ¢;'s are
differentiable functions.

Definition (Lagrange function)
The Lagrange function is defined by

L(B,0) = f(8 Zac,

where o = (aa, . .., ) is the vector of Lagrange multipliers.
v
ACE — Support Vector Machines
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Reminder on constrained optimization

Karush-Kuhn-Tucker conditions

Theorem (Karush-Kuhn-Tucker)

If function f has a minimum for some value 3* in the feasibility region, the
following Karush-Kuhn-Tucker (KKT) conditions are verified for some

vector o = (af,...,a):
oL, . .
8,8(5 ) & ) =0 (23)
Cl(/B*) - 9 = 1a - n (2b)
aic(p*) = i=1,...,n (2¢)
af > i=1,...,n. (2d)

Remark: if af > 0, then ¢;(5*) = 0: constraint i is active.
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Reminder on constrained optimization
Wolfe dual

Theorem (Wolfe dual)
Problem (1) is equivalent to the following problem (Wolfe dual):

max L(6,) 3)
subject to
oL
B (4)
aj > 0 i=1,...,n (5)
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Lagrange function

o Let us come back to the problem ming s, 1||3]|* subject to
vilBTxi+Bo)>1,i=1,...,n

@ This is a convex optimization problem (quadratic criterion with linear
inequality constraints), so the solution exists and it is unique.

@ The Lagrange function is

(8. 60.0) = SR = D ailu(8Txi + 50) 11| (6)
i=1

@ Setting the derivatives to zero, we obtain:

oL d .
8—5 =p- Za;y,-x,- =0=|8= Zai)’ixi (7)
i=1 i=1

— >
and BN 50 Z ajyi =0 K’mgi)
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Lagrangian of the dual problem

Substituting (7) and (8) in (6), we get

.
1 n n

Lp(a) = 5 (Z aiYiX;) Zajijj
i=1 j=1

vy T s
Zi,j QO YiyiX; Xj

T
n
Za,-y,- Zajijj' Xi—ZOéi}/iﬁo+Zai
i j=1 N i
0

vy T s
D0 oy Yiyix; X

which can be written as

n
1
Lp(a) = E ai =3 E Oéiaj)/iijiTXj
i—1 i

- ‘l‘JtC‘

Compiégne.
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I e
Solving the dual problem

@ The solution is obtained by maximizing Lp(«) subject to the
constraints

n
a; > 0 and Zoz,-y,- =0. (9)
i=1
@ This can be done using standard quadratic programming software. We
will discuss a specialized optimization algorithm later.

- ‘l‘JtC‘

BT
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Interpreting the solution

Support vectors

@ The solution o* must satisfy the KKT conditions, which include (7),
(8), (9) and

Alyi(B Txi +65) -1 =0, i=1,...,n (10)

o From these we can see that, if af > 0, then y;(8*Tx; + 35) = 1, i.e.,
X; is a SV.

@ The SV's are the input vectors x; such that aj > 0.
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case

Interpreting the solution
Computing 8* and 3

@ From (7) we see that the solution vector 5* is defined in terms of a
linear combination of the SVs:

B = ajyixi= Y aiyixi (11)
i=1 ieS
with S = {i : o} > 0}.
@ The intercept 35 can be found from (10): for any SV x;, we have
vi(B*Txi + B5) = 1,

from which we can get ;.
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(1IN EV RSN ETEV N AL WOIIELISM  Solution in the separable case
SVM classifier

@ The equation of the OSH is

g (x)=B"Tx+ 85 = ajyix/x+ ;=0
i€S

@ The corresponding classifier is
D(x) = sign g*(x).

@ The classifier is based only on SVs, which are close to the boundary
between classes.
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Overview

@ Optimal Separating hyperplane

@ Non-separable case
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Extension to non-separable data

@ Until now, we have assumed that the data are linearly separable.

@ This will generally not be the case with real data, so the technique
derived so far is not really useful in practice.

@ We need to propose an alternative formulation for the non-separable
case.
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Weakening the constraints

Suppose that the classes overlap in predictor space.

One way to deal with the overlap is to still maximize the margin M,
but allow for some points to be on the wrong side of the margin.

@ Define the slack variables £ = (&1, &2, ...,&,) with § > 0. The
constraints can be modified as

(BT x;
Wz/\/l(l—g,), i=1,...,n

@ As before, fixing ||3]] = 1/M, this is equivalent to

vilBTxi+6o)>1—¢&, i=1,...,n

The value &; is the proportional amount by which vector x; is on the
wrong side of its margin. Sutc

Compiégne.
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Interpretation

@ The filled points are on the wrong side of their margin by an amount

ME;.
@ Points on the correct side have & = 0.
; H : < utc_
@ Misclassified points have & > 1. B
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Optimization problem

The optimization problem now becomes:

2 4 f 12
wm{&}Qllﬁll ;5 (12)

subject to
>0, i=1,....n

vil(BTxi+Bo)>1—6&, i=1,...,n

where C is a hyperparameter.
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Lagrange function

@ The Lagrange function is
1 C <
_ 2 E .
L(/87607£7a7u)_ EH/BH +; ‘- §I

= ailyi(BTxi + Bo) — (L= &) = > ik
i=1

i=1

@ Setting the derivatives w.r.t. 3, By and £ to zero, we get, as before,

B=Y aiyixi, > aiyi=0, (13)
i—1 i—1

and . c
- ai—pi=0=q;= P Hi —{14)

Compicgne

ACE — Support Vector Machines Spring 2023 29 / 85



(o1 IS EI RS ETEV A A W IESM  Non-separable case

Dual formulation

e By substituting (13), we obtain the Lagrangian dual objective function
. 1
Lp(a) = Z ai— 3 Z aiyyiyix;’ x;
i=1

iJj
+Zn: E_ai_ﬂi &, (15)
—~ \n ’
=1 ,
0

which has exactly the same form as in the previous problem.
@ We maximize Lp subject to 0 < ¢ < % and Y I ajy; = 0.
@ The sequential minimal optimization (SMO) algorithm gives an

efficient way of solving this problem.
= utc__
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SIS R
SMO algorithm

@ The SMO algorithm is a grouped coordinate ascent procedure.

e Maximizing Lp(«) one «; at a time does not work, because due to the

constraint .
Z Qjyp = 07
i=1
variable «; is uniquely determined from the other «;’s through the

equation
ap ==y Zajyj.
J#i
@ Instead, the SMO algorithm maximizes Lp(«) w.r.t. to each pair of

variables (o, aj) sequentially.

- ‘l‘JtC‘

Compiégne.
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Non-separable case
SMO algorithm (continued)

Repeat until convergence {

O Select some pair «; and «; to update next (using a
heuristic that tries to pick the two that will allow us
to make the biggest progress towards the global
maximum) .

@ Reoptimize Lp(a) with respect to «; and «j, while
holding all the other ay’s (k #i,j) fixed.

¥

To test for convergence of this algorithm, we can check whether the KKT
conditions are satisfied to within some tolerance (see next slide).
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Optimal Separating hyperplane Non-separable case

Interpretation of the solution

@ The solution verifies the KKT conditions (13)-(14) and
i lyi(B T xi+ fg) — (L—€) =0, i=1...,n  (16)
wi& =0, i=1,...,n (17)

o As before, the SVs are defined as the points such that af > 0.

e From (14) and (17), the SVs such that aF < C/n verify p¥ > 0 and
& = 0: they lie on the edge of the margin (“in-bound SVs"). The
remainder (£ > 0) have of = C/n and usually lie inside the margin
(“margin errors’”).

@ The SVs such that & > 1 are misclassified.

e From (16) we can see that any of the in-bound SVs (a} > 0, £ = 0)
can be used to solve for 33, and we typically use an average of all the
solutions for numerical stability. o e
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Interpretation
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(o1 IS EI RS ETEV A A W IESM  Non-separable case
Tuning C

@ The tuning parameter of this procedure is the cost parameter C.
@ The optimal value for C can be estimated by cross-validation.

e From (12), the margin is smaller for larger C. Hence larger values of
C focus attention more on points near the decision boundary, while
smaller values involve data further away.
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Non-separable case
Bound on the LOO error

@ The LOO cross-validation error can be bounded above by the
proportion of SVs in the data.

@ The reason is that leaving out an observation that is not a SV will not
change the solution. Hence these observations, being classified
correctly by the original boundary, will be classified correctly in the
cross-validation process.

@ However this bound tends to be too high, and not generally useful for
choosing C.
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Example

Training Error: 0.26 -=~"

Training Error: 0.270
Test Error: 0.288 Test Error: 0.30
Bayes Error:  0.210 Bayes Error:  0.21

C = 10000 C =0.01

The SVs (af > 0) are all the points on the wrong side of their margin. The black
solid dots are in-bound SVs (af < C/n). In the left (resp., right) panel 62%

(resp., 85%) of the observations are SVs.

ACE — Support Vector Machines
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SIS R
Application in R

library("kernlab")
ii<-which((pima$glucose>0) & (pima$bmi>0))

svmfit<-ksvm(as.factor(class)”~ glucose+bmi,data=pimalii,],
type="C-svc" ,kernel="vanilladot",C=10)

plot(svmfit,data=pimalii,],grid=100)

<r—pmv

BT
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Optimal Separating hyperplane Non-separable case
Result

SVM classification plot

glucose

L]
R

T T T T —4
20 30 40 50 60

bmi
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Selection of C by cross-validation

CC<-¢c(0.01,0.1,1,10,100,1000)

N<-length(CC)

err<-rep(0,N)

for(i in 1:N){

err[i]l<-cross(ksvm(as.factor(class) “glucose+bmi,data=pimalii,],
type="C-svc" ,kernel="vanilladot",C=CC[i],cross=5))

}

plot(CC,err,type="b",log="x",xlab="C",ylab="CV error")
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(o1 IS EI RS ETEV A A W IESM  Non-separable case

Cross-validation result

CV error
0.240 0.242 0.244

0.238
1
o
o

0.236
1

0.234
|
o

1le-02 1le+00 le+02
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Support Vector Machines

Overview

© Support Vector Machines
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ST LT VG VEY TSI The kernel trick

Overview

© Support Vector Machines
@ The kernel trick
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ST LT VG VEY TSI The kernel trick

Extension to non-linear classification

@ The support vector classifier described so far finds linear boundaries in
the predictor space.

@ As with other linear methods, we could make the procedure more
flexible by enlarging the predictor space using basis expansions such
as, e.g., polynomials or splines.

@ Linear boundaries in the enlarged space generally achieve better
training-class separation, and translate to nonlinear boundaries in the
original space.
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ST LT VG VEY TSI The kernel trick

Extension to non-linear classification (continued)

@ Once the basis functions ®;(x), j = 1,...,J are selected, the
procedure is the same as before:

o We fit the SV classifier using predictors
(D(X,') = ((Dl(X,'), ¢2(X,'), ey cDJ(X,')), i = 1, ceeyny

and produce the (nonlinear) function g*(x) = ®(x) 8* + fo.
o The classifier is D*(x) = sign(g*(x)) as before.
@ In SVM, the mapping x — ®(x) will be defined implicitly, and J will
be potentially very large (even infinite!).

- ‘l‘JtC‘

Compiégne.
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Uil G
The OSH depends only on dot-products

A key feature of the OSH is that it depends only on the dot products
between input vectors:

@ The solution is found by maximizing

n
1
Lp(a) = Z a5 Z i yiyixi X, (18)
i=1 i
subject to 0 < o; < C/nand Y i ajy; = 0.
@ The optimal discriminant function is
g (x) =) _alyixx+ 5 =0,
ieS

-
where 35 also depends only on the dot products x;’ x;. Sutc

Compiégne.
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ST LT VG VEY TSI The kernel trick

Dot-products in the transformed input space

@ Assume that the input vector x is replaced by ®(x) for some
transformation ¢ : RP — H.

@ The objective function will become
z 1
=> ai- > > aiajyivi(®(x), (x)) (19)
i=1 ij

and the optimal discriminant function will be

=D alyi(®(x), ®(x)) + 55 =0,
i€S
where (-, ) denotes the dot-product in H.

@ All we need is a method to compute dot-products in #. utc

Eompieane
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The kernel trick
The “kernel trick”

o If there exists a kernel function K : R? x RP — R, such that
K(x,x') = (d(x), ®(x)),

then the transformation ® will be defined implicitly.
@ This is the “kernel trick”.

ACE — Support Vector Machines Spring 2023 48 / 85



ST LT VG VEY TSI The kernel trick

Example

@ Assume p =2 and K(x, x") = (x"x')2.

o We have
K(x,x") = (x1x1 + X2x§)2
= X7 (x1)* + 2x00x1% + X5 (x5)°
= o(x)To(x)
with
X{
b x — | V2x10
2
X2

@ Function @ is defined implicitly by the kernel function £.
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Overview

© Support Vector Machines

@ Kernel functions
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Support Vector Machines Kernel functions

Mercer condition

Theorem

A kernel function K corresponds to a dot-product in some space H iff it
verifies the following Mercer condition:

Vf:RP - R st /f(x)zdx < 00, /K(X,x’)f(x)f(x’)dxdx’ > 0.

o If the Mercer condition is not verified, the Wolf dual problem may not
have a solution.

@ In practice, the method may still work most of the time with a kernel
function that does not meet this condition.
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Support Vector Machines Kernel functions

Popular kernel functions

@ Three popular choices for K in the SVM literature are

K, x)= (a+b-x"x)¥ d>0 (polynomial kernel)
K(x,x') = exp[—o|x—x|?], ¢ >0 (RBF or Gaussian kernel)
K(x,x') = tanh(a+ b-xTx') (MLP kernel).

@ The polynomial and Gaussian verify the Mercer condition, but the
MLP kernel does not.

o With the MLP kernel, the discriminant function is
g(x) = Za?‘y; tanh(a + b - x; x) + 5;.
ieS

It is the transfer function of a neural network with ns = card(S)
hidden units (see chapter on neural networks). B=utc

Compiégne.
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Support Vector Machines Kernel functions

Influence of C

@ The role of parameter C is clearer in an enlarged predictor space, since
perfect separation is often achievable there. (The dimension of H may
be very large and even infinite.)

@ A small value of C will encourage a small value of ||5]|, which in turn
causes g(x) and hence the boundary to be smoother.

@ Both C and the kernel parameters (a, b, d, o, etc.) are usually tuned
by cross-validation.

- ‘l‘JtC‘

Compiégne.
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ST LT VISR R VEY IS Kernel functions

Example

SVM - Radial Kernel in Feature Space

SVM - Degree-4 Polynomial in Feature Space

Training Error: 0.180 Training Error: 0.160
TestEmor:  0.245 : TestEmor:  0.218 fzassd
Bayes Error:  0.210 s Bayes Error:  0.210 TR

Spring 2023 54 / 85
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il
Application in R

x<-matrix(rnorm(200*2) ,ncol=2)
y<-as.factor(c(rep(-1,150),rep(1,50)))
x[1:100,]1<- x[1:100,]+2

x[101:150,]1<- x[101:150,]-2

svmfit<-ksvm(x,y,type="C-svc",kernel="rbfdot",
kpar=1list(sigma=1),C=1)
plot(svmfit,data=x,grid=100)

<r—pmv

Compiégne.
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Kernel functions
Result

SVM classification plot
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Support Vector Machines Kernel functions

Estimation of posterior probabilities

@ The SVM classifier gives us a decision function, but it does not
provide estimates of conditional class probabilities
P(x) =P(Y =4+1| X =x).

@ One approach to estimate these probabilities is to use logistic
regression, with the output g(x) of the SVM classifier as the predictor.
We then have )

P(x) =
(x) 1+ exp[—(a+ b-g(x))]

o To avoid overfitting, it is preferable to estimate the additional
parameters a and b from a validation dataset or using cross-validation.

- Htc
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Overview

© Support Vector Machines

@ SVM as a penalization method
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ST AAVIGRTR VEY IS SVM as a penalization method

Unconstrained formulation
o Let g(x;) = (B, ®(x;)) + So. The problem
1, O
min = + — iy
.o} 2175 ;5

subject to §; > 0 and y;g(x;) > 1—¢&;, i =1,...,nis equivalent to
the unconstrained optimization problem:

n
_ A

gﬂﬁn E [1 *y/g(Xi)]_,_ + §||/8||27
K] v N——

“hinge" loss penalty

where [-]+ denotes the positive part, with A = n/C.

@ Proof: see next slide. - utc__
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ST AAVIGRTR VEY IS SVM as a penalization method

Hinge loss

@ Proof: from & >0 and & > 1 — y;g(x;), we get equivalently
& > max(0,1 — yig(x)) = [1 — yig(x;)] .. Since we minimize &;, we
set & = [1 — y,-g(x,-)]+.
@ The hinge loss can be compared to other loss functions such as:
o Misclassification: /(sign(g(x)) # y)
o Squared error loss: (y — g(x))?
(see next slide)
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SVM a5 2 penalization method
Hinge loss (case y = +1)

loss
0.5 1.0 15 2.0 25
]

0.0
1

\ —— hinge loss

---- quadratic loss

misclassif. loss

-2

Thierry Denceux

g(x)
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Support Vector Regression

Overview

© Support Vector Regression
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Support Vector Regression Loss function

Overview

© Support Vector Regression
@ Loss function
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Support Vector Regression Loss function

From classification to regression

@ SVMs were first developed for classification.

@ As described in the previous chapter, they represent the decision
boundary in terms of a typically small subset of all training examples —
the Support Vectors.

@ To generalize the SV algorithm to regression, we need to find a way of
retaining this feature. This can be achieved using the e-insensitive loss
function

0 if |f(x)—y|<eg,
£69 ~ ¥, = )~y
|f(x) —y| — e otherwise.

=[f(x) =yl =€+
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Support Vector Regression Loss function

e-insensitive loss function

loss

g

—£ +€ y— f(x)

The e-insensitive loss function does not penalize errors below some e,

chosen a priori. The e-insensitive zone is sometimes referred to as the
e-tube o Utc
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Support Vector Regression Loss function

Basic approach

@ The regression algorithm is then developed in close analogy to the
case of classification.

o Again, we estimate linear functions, use a ||3||? regularizer, and rewrite
everything in terms of dot products to generalize to the nonlinear case.
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Support Vector Regression Formalization

Problem formulation

o We search for the linear function f(x) = 87 x + By minimizing the
following criterion:

*HBHZ += erx, ~ yile

regularlzatlon -
loss function

e C is a hyperparameter, which balances training error and model
complexity.
@ To solve this problem, we transform it into an equivalent constrained

optimization problem.

- utc

Eompieane
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Support Vector Regression Formalization

Reformulation as a constrained optimization problem

e We have

£(xi) = yile = [If (xi) — yil — €]+
_ {[f(x,-) —yi—dse =& ) 2y
lyi — f(xi) — el =& if F(x) < yi

o Furthermore, & = 0if f(x;) < y;, and & = 0if f(x;) > y;. We can

thus write
f(xi) —yile =& + &

@ The quantities §I-+ and & are called “slack variables” (they will
become slack variables in the constrained optimization formulation of
the problem)

< utc
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Support Vector Regression Formalization

Representation of the slack variables

v
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Support Vector Regression Formalization

Primal objective function

Using the slack variables, the previous problem can be reformulated as a
quadratic optimization problem:

C n
7H6H2 —> (& +¢&)

B0t —
subject to:
&G >yi—BTxi—Bo—e
& >0
& >B"xi+Bo—yi—e
& >0
fori=1,...,n. - utc__
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Support Vector Regression Formalization

Lagrange function

The Lagrange function is

_ _ 1 C -,
L(ﬁuﬁOaai 704,—}777,- 777,+) = §H/8”2 =+ ;Z(gl +§IJ’_)
i=1

=D & A0 =D ai(e+& +yvi—BTxi — Bo)
=1

=1 j—

S af(e+& —yi+B8Tx+ Bo),

i=1
where o, oF, n7, i are Lagrange multipliers
[ [ .
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Support Vector Regression Formalization

Derivatives of the Lagrange function

@ Setting the derivatives to zero, we obtain:

oL 4 _
875 = ﬂ—Z(a?—ai )X,':O,
=1
oL Ly
_— = a; —a;)=0,
050 ,.:1(' 7
8856 - %_al —n; =0, i=1...,n
L
86£+ _ %fo{jﬂﬁ:o, i=1...n.

@ We use these relations to simplify the expression of the Lagrange
function (see next slide). =utc
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Support Vector Regression Formalization

Simplification of the Lagrange function

i J
~, (C - ~.(C +
+2€; <n—n;—ai>+;fi <n n,—a,)
0 0
—e> (af +a7) = Bod _(af —a7)+ D yilaf —a7)
0
; T
=2 (of —an) [ (0 —ay)g |

i=1 J - utc
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Support Vector Regression Formalization

Dual problem

Lp(aj,af) = > z:(‘)‘;r —a; ) —a; )X x
iJj
n
—e (af +aj +ny o),
i=1
to be maximized subject to
n
Z(a?‘ =0
i=1
C
Ogarg—, I:]., , N,
n
0§a,-+s£, i=1,...,n
n
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Support Vector Regression Solution and interpretation

Support vectors

@ As in the case of SVMs, the dual problem can be solved using any
quadratic programming solver.

—+*

o Let a; ", ", i =1,...,n be the solution.

o The learning vectors x; such that a; * > 0 or o * > 0 are called the
support vectors. They lie outside the tube (or at the border).

@ Let S be the set of support vectors. We have
B = (af*—a;*)x
ies

and

F() = 3o(0F" — a7 "I x + 6

ieS
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Sparsity of the SV expansion

@ We thus have a sparse expansion of /3 in terms of x; (we do not need
all x; to compute 5*).
@ The points inside the tube (i.e., which are not support vectors) do not

contribute to the solution: we could remove any one of them, and still
obtain the same solution.

- ‘l‘JtC‘
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Support Vector Regression Solution and interpretation

Karush-Kuhn-Tucker conditions

@ The solution ai_*,af*, i=1,...,n must satisfy the KKT conditions
a e+ & +yi— B Tx —B5)=0 (20a)
af e+ & —yi+ B Txi+ B5) =0 (20b)

<C - ai_*> =0, <C —a; ) & = (20c)
n n

o Consequences:
o Only examples (x;, y;) with corresponding o; * = C/nor o * = C/n
can lie outside the tube (i.e., & * >0 or & > 0).
o When o * € (0,C/n) or a; * € (0,C/n), we have & = &7 = 0.
The corresponding SVs lie at the border of the tube (see next slide).
< utc_
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ST LT AAVAIGYT S EEICEST Il Solution and interpretation

Interpretation of o and a;

O<a*<C/n
OL+=C/n O a‘—:O - -

-
_.eT

v
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Calculation of Sy

@ (5 can be calculated from (20a) or (20b) for SVs at the border of the
tube as
g = e+yi— B Tx for a; " €(0,C/n)
" lyi—B8Txi—e for af* € (0,C/n)

@ Theoretically, it suffices to use any Lagrange multiplier in (0, C/n).

o If given the choice between several such multipliers in (0, C/n), it is
safer to use one that is not too close to 0 or C/n.

- Htc
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Support Vector Regression Solution and interpretation

Parameter tuning

The solution depends on two parameters, € and C. These play different
roles:

o Parameter € in the loss function specifies the desired accuracy of the
approximation. If we scale our response, then we might consider using
preset values for e.

@ The quantity C is a more traditional regularization parameter. It can
be estimated, for example, by cross-validation.
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Support Vector Regression Solution and interpretation

Nonlinear extension

@ As in the classification case, the complete algorithm can be described
in terms of dot products between the data.

@ This makes it possible to formulate a nonlinear extension using
kernels, replacing dot products x,.ij in X with dot products

(®(x), @(x;)) = KX, %)

in H.

@ Additional kernel parameters may be determined by cross-validation.
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Application in R

library(’kernlab’)

library(’MASS’)

mcycle.data<-data.frame (mcycle)
mcycle.data$accel<-scale(mcycle.data$accel)

t<- seq(min(mcycle.data$times) ,max(mcycle.data$times),0.5)
testdat<-data.frame(times=t)

svmfit<-ksvm(accel”.,data=mcycle.data,scaled=TRUE,type="eps-svr",
kernel="rbfdot",C=100,epsilon=0.1,kpar=list(sigma=1))

yhat<-predict(svmfit,newdata=testdat)
plot(mcycle.data$times,mcycle.data$accel)
lines(t,yhat)

¢r—pmv
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acceleration

-1

-2
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