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Neural networks

@ A class of learning methods that was developed in Al with inspiration
from neuroscience.
@ The central idea is to learn simultaneously
o New predictors (activation of “hidden neurons™) and
o A linear regressor or classifier in the predictor space.
@ The result is a powerful learning method, with widespread applications
in many fields.

@ In recent years, there has been a surge of interest in deep
networks/learning, with applications to computer vision and natural
language processing.

@ There exist many neural network models. In this course we describe
the most widely used multilayer feedforward neural networks:

e Multilayer perceptrons =
o Deep convolutional networks % ﬁ
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Historical perspective

@ Three main phases:
@ Perceptron (1955-1965)
@ Multi-layer neural networks (1985-1995)
© Deep networks (2010-)

@ The history can be summarized by a list of 4 influential papers.

, <
g

ACE - Neural networks e R YT



N
McCulloch-Pitts model

e W. S. McCulloch and W. Pitts. A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical
Biophysics, 5(4):115-133, 1943.

@ Main idea: biological neurons modeled as simple logic gates with
binary outputs.
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McCulloch-Pitts neuron as a logic gate

@ Assume

o The inputs /; take values in {0,1} for j =1,..., N (1 codes for
“TRUE" and 0 for “FALSE")

o The weights W, are all equal to 1.
o If the threshold is T = N, the output is

, 1 if Y X, —N>0
0 otherwise.

It is equal to 1 iff /; =1 for all j: the neuron computes a logical AND.

o If T=1,y=1iff ; =1 for some j: the neuron computes a logical
OR.
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Perceptron

o F. Rosenblatt. The perceptron, a perceiving and recognizing
automaton (Project PARA). Cornell Aeronautical Laboratory, 1957.

@ Main idea: an algorithm to learn the weights of a McCulloch-Pitts
neuron. Implementation in a machine call the “Mark 1 perceptron”.

@ The algorithm worked only for two linearly separable classes and it was
very slow.

Perceptron)|
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Multilayer neural networks

e D. E. Rumelhart, G. E. Hinton and R. J. Williams (1986). Learning
representations by back-propagating errors. Nature, 323
(6088):533-536.

@ Main ideas: train neural networks with (one or two) hidden layers
using an efficient algorithm for computing the gradient of the error
(back-propagation algorithm).
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Deep networks

@ Y. LeCun, Y. Bengio and G. Hinton (2015). Deep learning. Nature,
521:436-444.

@ Main idea: train neural networks with many hidden layers that encode
more and more abstract features.
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Increase of neural network size

Since the introduction of hidden units, artificial neural networks have
doubled in size roughly every 2.4 years.
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Multilayer feedforward neural networks

Overview

@ Multilayer feedforward neural networks
o Hidden units
@ Output units
@ Architecture

o
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Multilayer feedforward neural networks
Definition

e A multilayer feedforward neural network (multilayer perceptron, MLP)
is composed of computational units (neurons) arranged in layers: one
input layer, one or several hidden layers and one output layer

@ Neurons in each layer (expect the input one) are connected to all
neurons in the previous layers through weighted connections.

@ The information flows from the input layer to the output layer.

hidden layer 1 hidden layer 2 hidden layer 3

input layer
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Multilayer feedforward neural networks [EESIEENRTTTS

Overview

@ Multilayer feedforward neural networks
o Hidden units
@ Output units
@ Architecture

o

ACE - Neural networks SRR LD/ i



Multilayer feedforward neural networks [EESIEENRTTTS

Equation of hidden units

@ Each hidden neuron m computes a net input

p
T
Zm = § WmjXj + Wmo = Wy X + Wmo
Jj=1

® Wy, is the connection weight between input unit j and hidden unit m

@ W, is the vector of weights of unit m

@ Wpmo is a bias term (may be seen as the weight of a connection from an
input unit with constant input 1).

@ The output of unit mis
hm = g(zm),

where g is a nonlinear activation function.
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Multilayer feedforward neural networks Hidden units

Sigmoid activation functions

@ The first generation of multi-layer networks used the logistic activation
function

8(2) = N2) = 1= € [0.1]

taking values in [0, 1], or the hyperbolic tangent activation function

ef —e %

g(z) =tanh(z) = e 2N\(2z) — 1 € [-1,1]

@ These activation functions are said to be “sigmoid” (S-shaped).

@ Sigmoid units saturate across most of their domain, and are only
strongly sensitive to their input when z is near 0. This can make
gradient-based learning very difficult. For this reason, their use as
hidden units in feedforward networks is now discouraged.
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Multilayer feedforward neural networks [EESIEENRTTTS

Sigmoid activation functions
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Multilayer feedforward neural networks Hidden units

Rectified linear units

o Rectified linear units (ReLU) use the activation function
g(z) = max(0, z).

@ Rectified linear units are easy to optimize because they are similar to
linear units: the only difference is that a rectified linear unit outputs
zero across half its domain.

@ This makes the derivatives through a rectified linear unit remain large
whenever the unit is active.
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Multilayer feedforward neural networks [EESIEENRTTTS

Rectified linear unit activation functions
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Hidden units
Radial basis function (RBF) units

@ In a radial basis function (RBF) unit, the output is computed as a
function of the distance (typically, Euclidean) between x and the unit's
weight vector wp,:

hm = &(=Vmllx — wml]),
where v, > 0 is a scaling parameter.
e Usually, g is decreasing, g(0) =1 and limg_, g(d) = 0, such as

g(d) = exp(—d?)

@ This kind of unit becomes more active as x becomes closer to weight
vector w,,, which can be seen as a template or prototype.

@ Because it saturates to 0 for most x, it can be difficult to optimize. .-
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Multilayer feedforward neural networks Output units

Overview

@ Multilayer feedforward neural networks
o Hidden units
@ Output units
@ Architecture

o
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Multilayer feedforward neural networks Output units

Output units for regression

@ A neural network can be used for regression or classification.

e For regression, there is only one linear output unit (K = 1). However,
we can easily generalize the model to K > 1 outputs.

@ The k-th output is computed as

M
zi = Z Wimhm + ko = W h + wio

m=1

Yk = Zk

@ The output units are similar to hidden units, except that their
activation function is linear.
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Multilayer feedforward neural networks Output units

Output units for binary classification

@ For binary classification, we usually have one output unit with a
logistic activation function:

M
y=A <Z Winhm + W0> =AwTh+w) €]0,1]
m=1

This output can be made to approximate the conditional probability
P(x) =P(Y = 1|x).

@ When there is no hidden layer, the input-output equation is
y=NANwTx+ w)

It is exactly the binomial logistic regression model.

L5
e
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Multilayer feedforward neural networks Output units

Output units for c-class classification

@ For c-class classification, there are K = ¢ output units with the kth
unit modeling the probability of class k. We use the softmax function

~ eXpl Zk
G = aul(z) = K#
Z£:1 exp(z¢)
with z, = WkTh+ wko and z = (z1,. .., 2K).

@ This is exactly the transformation used in the multinomial logistic
regression model; it produces positive probability estimates that sum
to one.
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Multilayer feedforward neural networks AN

Overview

@ Multilayer feedforward neural networks
o Hidden units
@ Output units
@ Architecture
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CoEHEET
Architecture design

@ A key design consideration for neural networks is determining the
architecture, i.e., the overall structure of the network: how many units
it should have and how these units should be connected to each other.

o In multilayer feedforward networks, groups of units (layers) are
arranged in a chain structure, with each layer being a function of the
layer that precedes it. The vector of outputs from the 1st layer is

1) — Oy (1)
h g (W X 4+ wy’),
My x1 Mixp px1 My x1

the second-layer output vector is

(2 — (2 (2) 4@ (2)
~h , =& (\W ,\h /+WO )7
M2 x1 Mo x My My x1 M

and so on. Here, W()) is the matrix of weights for connections intoif
hidden layer /. =
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Multilayer feedforward neural networks AN

How many layers?

@ It can be shown that neural networks with only one hidden layer of
nonlinear units are universal approximators: they can approximate any
sufficiently smooth (e.g., continuous) function to any desired accuracy.

@ However, the hidden layer may be infeasibly large and may fail to learn
and generalize correctly.

@ In many circumstances, using deeper models can reduce the number of
units required to represent the desired function and can reduce the
amount of generalization error.

@ Empirical results show that deeper models tend to perform better, not
merely because the model is larger.
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Multilayer feedforward neural networks AN

Example
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Number of parameters x10®

This experiment from Goodfellow et al. (2014) shows that increasing the number
of parameters in layers of convolutional networks without increasing their depth is
not nearly as effective at increasing test set performance. We observe that

shallow models in this context overfit at around 20 million parameters while deeph
g

ones can benefit from having over 60 million.
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Overview

© Learning
@ Loss functions

@ Back-propagation

@ Optimization algorithms
@ Weight initialization

@ NNs with R
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Gradient-based learning

@ Designing and training a neural network is not much different from
training any other machine learning model by minimizing a loss (cost,
error) function.

@ The largest difference between the models we have seen so far and
neural networks is that the nonlinearity of a neural network causes
most interesting loss functions to become non-convex.

@ This means that neural networks are usually trained using iterative,
gradient-based optimization algorithms that merely drive the cost
function to a local minimum.

loss Convex loss Nonconvex

H)

N <
e
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Loss function

@ We first need to define a loss function L(y, y).

@ Given a learning set {(x;,y;)}7_;, we then minimize the average loss

JO) = 3" L(F(:6), ).
i=1

where

o 0 denote the vector of all connection weights (the learnable
parameters) and
o f(x;0) the vector of outputs for input vector x.

@ This is an estimate of the expected loss

Ex’yﬁ(f(x; (9), Y) M‘
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Loss function for regression

@ For regression, we often use the sum-of-squares loss function:

L(F(x:0).y) =y — F(x;: )]
K

=) (v — fu(x;0))?
i

e Minimizing J(#) is equivalent to maximizing the conditional likelihood,
assuming a Gaussian error model

Y =f(x;0)+e€, e~N(0,0%k)

(see next slide).

A e =
e
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Sum-of-squares loss and Gaussian error assumption

e Assuming ¢ ~ N (0, 02lk), the conditional likelihood is

16) = TTot | ) x [T e (= ally — fCsiIP)
i=1 i=1

1 n
X exp T 252 Z lyi — f(xi; 9)H2
i=1

L(f(x::0),y:)

@ Maximizing the conditional likelihood is equivalent to minimizing the
average sum-of-squares loss. =

R
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Loss function for classification

@ For classification we use cross-entropy (deviance) loss function:

L(F(x:0),y) = = ylog fi(x; 0),
k=1

where yx = I(y = k). The corresponding classifier is

C(x) =arg max f(x; 0).

o If fi(x;0) is a model of Py(x) =P(Y = k | X = x), then J(0) equals
minus the log-likelihood ¢(6) (see next slide).
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Cross-entropy and conditional likelihood

@ The conditional likelihood is

L(0) = HP(Y/‘ =yi | Xi = x)

— H H fic(xi: 0)”

i=1 k=1

@ The conditional log-likelihood is

00) =" yinfu(xi:6)

i=1 k=1
—L(f(xi:0).y1) R
%)
R
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Relation with logistic regression

e With the logistic (¢ = 2) or softmax (c > 2) activation function and
the cross-entropy error function, the neural network model is exactly a
logistic regression model in which the hidden unit outputs are the
predictors.

@ All the parameters are estimated by maximum likelihood.

@ Training a neural network is equivalent to learning a transformation
from the input space to a feature space, and learning a logistic
regression classifier in the feature space at the same time.

hidden layer 1 hidden layer 2 hidden layer 3

m layer
N
N

input layer

A et
Original Transformed R
features features
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Overview

© Learning
@ Loss functions

@ Back-propagation

@ Optimization algorithms
@ Weight initialization

@ NNs with R
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Principle

@ The vector 8* minimizing J(#) does not have a closed-form expression:
we need to use an iterative optimization algorithm.

@ Most optimization algorithms require to compute the gradient of J(0)
at each step.

o The gradient of J(#) can be easily derived using the chain rule for
differentiation.

@ The corresponding algorithm is called back-propagation (BP).

@ For ease of exposition, we present the BP algorithm in the case of two
hidden layers. Generalization to any number of hidden layers is
straightforward.

e’
v or e
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Propagation equations and loss function

e Propagation equations (see next slide):

zm:Zij><J-+Wmo, hm=g(zm), m=1,....M
J

zq:Zquhm—l—qu, hg=g(z5), q=1,...,Q
m

ZkIZquhq—l—Wko, k=1,...,K
q

j/\k:gk(zl,...,zK):fk(x,H), k:].,...,K
@ Loss function:

J(0) = % > L(F(xi:0). ).
i=1

g
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Notations
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Derivatives w.r.t to the wy,

e We compute the gradient of L£(f(x;6),y).
@ The derivatives w.r.t to the weights w;q can be computed as

OL(f(x;0),y)  OL(f(x;0),y) Oz

OWiq 0z OWiq
N e e~
Ok hq
with B
5 NS OL(F(xi0),y) D5k
=2 oy, 9
1 Yk Zk

@ With the sum-of-squares criterion and linear output units, we have
L(f(x;0),y) = >k — yk)? and Yy = z, s0

3

1

VAN

Sk = 2(Yi — yx) \V

=
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Derivatives w.r.t to the wgpn,

The derivatives w.r.t to the weights wgm can be computed as

OL(f(x;0),y)  OL(f(x;0),y) 0zg

OWgm - Ozq Owgm
—_——————
5q hm

with

Z ) 82k 8h

p (92;( dhy Oz4
~—

Ok Wkq &'(zq)

- g,(zq) Z 5kaq
k
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Derivatives w.r.t to the wpy,;

The derivatives w.r.t to the weights w,,; can be obtained as

OL(f(x;0),y) _ OL(f(x;0),y) Ozm

OWpnj 0zm OWpnj
—_———
Sm M

with

5 = Z O0L(f(x;0),y) 0zg Ohm
q

Oz4 Ohm O0zm
—— ~—

Oq Wom  g’(zm)

Q
H

7’

VAN

'Y
e

=
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Eacipee o)
Back-propagation algorithm

propagation

1@\
N N
O wqm\gqo wkq\ékO\ o
Q O Yk
Zq hq ZK
O O
O

backpropagation
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Eacipee o)
Advantage of back-propagation

e Each gradient evaluation requires O(N) operations, where N is the
number of weights in the network. Consequently, the algorithm can be
applied to large networks.

@ The calculations in back-propagation are local: each hidden unit
passes and receives information only to and from units that share a
connection. Hence, backpropagation can be implemented efficiently on
a parallel architecture computer.

R
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Overview

© Learning
@ Loss functions

@ Back-propagation

@ Optimization algorithms
@ Weight initialization

@ NNs with R
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Batch learning with gradient descent

@ The simplest approach to using gradient information is gradient
descent: we update the weights by making a small step in the
direction of the negative gradient, so that

aJ( ot ))
(t+1) _ p(t) _
0 0 89
OL(f(x;,0), )
— (t) - - ) )
0 ntn Z 00

i=1

Coefficient 7 is called the learning rate.

@ The error function is the average loss over the training set, and so
each step requires that the entire training set be processed in order to
evaluate the gradient. This is called batch learning. s
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Batch gradient descent with line search

The learning rate 7; for batch learning was originally taken to be a
constant (learning is then very slow); it can also be optimized by a line
search, which minimizes the error function at each update.

&,
o
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Quasi-Newton methods

o Faster learning can be achieved using more powerful optimization
algorithms.

@ The Newton-Raphson method cannot be used, because the second
derivative matrix of J (the Hessian) is very large.

@ Quasi-Newton methods are based on approximations of the Hessian.
For instance, a diagonal approximation can be computed in O(N)
time. Other methods like the BFGS algorithm update the Hessian
estimate by analyzing successive gradient vectors.

R
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Stochastic gradient descent

@ Batch learning is not feasible with very large learning sets. Learning
can then be carried out online — processing each observation one at a
time, updating the weights after each learning example, and cycling
through the learning set many times.

@ In this case, the update equation become

p(t+1) — g(t) _ e 8£(f(xtég(t))7)/t)

where (x, yt) is the learning example presented at iteration t.

OL(f(xe,01)).ye) ¢ GEL(F(X.000),Y)
00 00 :

@ Here, can be seen as an estimate o

@ Online training (also called stochastic gradient descent — SGD) allows
the network to handle very large training sets, and also to update the--
weights as new observations come in. A

R
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Optimization algorithms
Minibatch

. . . . (t)
is a high-variance estimate of w.

o QL(F(x.0Y) 1)
o0
@ In practice, we often average the gradient over a randomly selected
subset of v < n learning examples {(xi,,yi,),-- -, (xi,,vi, )} called a
minibatch.

@ The update equation is then

1 < OL(F(x;, 00), ;)
(t+1) —_p(t) _ . = lj» s Vi
o 0 mu Z 00

j=1

@ A minibatch is randomly selected before each weight update.

e’
v or e
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Ozt s s
SGD algorithm with a fixed learning rate

Require: Learning rate n
Require: Initial parameter 6
while stopping criterion not met do
Sample a minibatch {(x;,, ), --.,(Xi,,yi, )} of v examples from the

training set
. . ~ OL(f(xi;,0).yi;)
1
Compute gradient estimate g = = > % 50—

n £uj=1
Update the learning rate n
Apply update: 0 < 6 —ng
end while

e’
v or e

ACE - Neural networks SRy e



Learning rate

@ It is necessary to gradually decrease the learning rate over time. The
decrease should be neither too fast, nor too slow to guarantee
convergence.

@ In practice, it is common to decay the learning rate linearly until some
iteration 7:

t
(1——)7]0—1- - ift<r
Nt = .
nr ift>r1
@ Parameter 7 may be set to the number of iterations required to make
a few hundred passes through the training set.

@ While SGD remains a very popular optimization strategy, learning with
it can sometimes be slow, and several accelerated learning a|g0r|thms
have been proposed.

R
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Ozt s s
The RMSprop algorithm

@ The RMSprop algorithm uses a separate learning rate for each
parameter and automatically adapts these learning rates throughout
the course of learning.

@ Idea: the parameters with smaller partial derivative of the loss should
have a correspondingly larger learning rate.

@ RMSprop adapts the learning rates of all model parameters by scaling
them inversely proportional to the square root of an exponentially
decaying average of historical squared values of the gradient.

@ RMSProp is currently one of the most widely used methods for
training deep neural networks.

R
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Ozt s s
RMSprop algorithm

Require: Global learning rate ¢, decay rate p
Require: Initial parameter 6
Require: Small constant 6, usually 107° used to stabilize division by small
numbers
Initialize accumulation variables r = 0
while stopping criterion not met do
Sample a minibatch {(xi, ¥ ),-- -, (xi,,vi, )} of v examples from the
training set

~ OL(f (xi;,0)),y;.
Compute gradient estimate g = % j-’:l w
Accumulate squared gradient: r < pr + (1 — p)g ® g (multiplication

applied element-wise)

Compute parameter update: Af = _\/56? © g (division and square

root applied element-wise)
Apply update: 0 < 0 + Af
end while

ACE - Neural networks STy e




Overview

© Learning
@ Loss functions

@ Back-propagation

@ Optimization algorithms
@ Weight initialization

@ NNs with R
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Importance of starting values

@ Most learning algorithms are strongly affected by the choice of
initialization. The initial point can determine whether the algorithm
converges at all, as well as the speed of convergence.

@ Typically, we set the biases for each unit to heuristically chosen
constants, and initialize only the weights randomly.

R
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Some heuristics

@ Some heuristics are available for choosing the initial scale of the
weights.

@ One heuristic is to initialize the weights of a fully connected layer with
m inputs and n outputs by sampling each weight from

(5o 38)

@ Other authors suggest using the normalized initialization:

6 6
WUNU<_\/m—|—n’+\/m+n)'

@ It is best to standardize all inputs to have mean zero and standard ==
deviation one, or to belong to [—1,1]. Y

Ry
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SRkl
Shallow NN training using the nnet package

library(’MASS?)
mcycle.data<-data.frame(mcycle,x=scale(mcycle$times))
test.data<-data.frame(x=seq(-2,3,0.01))

library(’nnet’)

nni<- nnet(accel ~ x, data=mcycle.data, size=5, linout = TRUE)
predi<- predict(nnil,newdata=test.data)

nn2<- nnet(accel ~ x, data=mcycle.data, size=5, linout = TRUE)
pred2<- predict(nn2,newdata=test.data)

nn3<- nnet(accel ~ x, data=mcycle.data, size=5, linout = TRUE)
pred3<- predict(nn3,newdata=test.data)

R
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Results
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SRkl
Deep NN training using the keras package

library(keras)

model <- keras_model_sequential()

model %>% layer_dense(units = 30, activation = ’relu’, input_shape = 1) %>%
layer_dense(units = 20, activation = ’relu’) %>%

layer_dense(units = 5, activation = ’relu’) %>

layer_dense(units = 1, activation = ’linear’)

model %>% compile(loss = ’mean_squared_error’, optimizer = optimizer_rmsprop())

history <- model %>} fit(mcycle.data$x, mcycle.data$accel,
epochs = 2000, batch_size = 30)

x=seq(-2,3,0.01)
pred <- predict(model, x)

R
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Training error

plot(history$metrics$loss,type="1",1lwd=3,,xlab="epochs",ylab="1loss")

loss
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NNs with R
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Complexity control

Overview

© Complexity control

Exploring different architectures
@ Regularization

@ Early stopping
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Complexity control

Necessity of complexity control

@ Because of the universal approximation property of neural networks,
the training error can, in principle, be made arbitrarily small by
increasing the number of hidden units.

@ However, a large neural network will be prone to overfitting and will
typically have bad generalization performance.
@ We need to control the complexity of the model. Many approaches
have been proposed. We will review some of these approaches:
© Exploring different architectures
@ Early stopping
© Regularization

© Dropout
© Weight sharing, as implemented in convolutional networks

R
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Overview
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Exploring different architectures
@ Regularization
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°
°

Dropout
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Exploring different architectures
Optimizing the number of hidden units

@ The most basic approach is to explore different architectures.

o If we limit ourselves to shallow networks with one hidden layer, a
simple way to define a family of nested models is to consider networks
with different values M of hidden units.

@ For each network, the generalization error is estimated using a
validation set or using cross-validation, and the best value of M is
selected.

@ However, we have seen that better results may be often be obtained
with deeper architectures. Considering architectures with different
numbers of hidden layer considerably enlarges the search space.

g
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(TN VGRS Exploring different architectures

Example

1 X x M=1 1 M=10 A
x x
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x
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(TN VGRS Exploring different architectures

Sum-of-squares test error as a function of M
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network size, showing the effect of local minima.
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Complexity control Regularization

Overview

© Complexity control

Exploring different architectures
@ Regularization

@ Early stopping
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ey
Weight decay

@ An alternative approach to control the complexity of a neural network
is to choose a relatively large value for M and to add a norm penalty
term (regularizer) to the error function.

@ The simplest regularizer is the quadratic (L), giving a regularized error
J(O) = J(B)+ 1076

@ This regularizer is also known as weight decay. It is similar to ridge
regression. The regularization coefficient X is usually determined by
cross-validation.

@ This regularizer can be interpreted as the negative logarithm of a
zero-mean Gaussian prior distribution over the weight vector 6.

o Other regularizer choices, such as L; (Lasso) correspond to a differept-.
prior (Laplace). 3

R
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(TN NGRSNIIM Regularization

Example 1: classification

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02
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Training Error: 0.160

Thierry Denceux
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Training Error: 0.100
Test Error: 0.259 Test Error: 0.223
Bayes Error:  0.210 Bayes Error:  0.210
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Complexity control Regularization

Example 2: regression

e Model Y = f(X) + ¢ with
F(X) = Naf X) + N(az X)),

X = (X1,X2), a1 = (3,3), a2 = (3, —3), Var(f(X))/ Var(e) = 4.
@ Training set of size 100, test set of size 10,000.

@ Neural networks with weight decay and various numbers of hidden
units.

@ 10 random starting weights for each configutation.
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Results without and with weight decay
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Complexity control Regularization

Influence of the weight decay hyper-parameter

Sum of Sigmoids, 10 Hidden Unit Model
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Complexity control Regularization

Generalization

@ More generally, we can penalize each layer of weights with a different
coefficient.
e For instance, in the case of one hidden layer, we have

M p K M
A 2+ A 2
1 Winj + A2 Wikm
m=1 j=1 k=1 m=1

@ This corresponds to the Gaussian prior

M p K M
pw | Ar,de) ocexp | =A1 ) D> way— A2 D> wi,

m=1 j=1 k=1 m=1

@ This approach has some theoretical advantages (it makes the
regularizer equivariant under linear transformations of the inputs and/'""
outputs), but we now have two (or more) hyperparameters to fix. ==

ACE - Neural networks S e

)




ey
Shallow NN training with weight decay using nnet

library(°MASS?)
mcycle.data<-data.frame(mcycle,x=scale(mcycle$times))
test.data<-data.frame(x=seq(-2,3,0.01))

library(’nnet’)

nnl<- nnet(accel ~ x, data=mcycle.data, size=2, linout = TRUE, decay=0)
predi<- predict(nni,newdata=test.data)

nn2<- nnet(accel ~ x, data=mcycle.data, size=10, linout = TRUE, decay=0)
pred2<- predict(nn2,newdata=test.data)

nn3<- nnet(accel ~ x, data=mcycle.data, size=10, linout = TRUE, decay=1)
pred3<- predict(nn3,newdata=test.data)
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Regularization
Results
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Reeilasiion
Selection of A by 10-fold cross-validation
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ey
Deep NN training with weight decay using keras

library(’keras’)

model <- keras_model_sequential()

model %>%

layer_dense(units = 50, activation = ’relu’, input_shape = 1,
kernel_regularizer = regularizer_12(1=0.1)) %>%
layer_dense(units = 30, activation = ’relu’,
kernel_regularizer = regularizer_12(1=0.1)) %>%
layer_dense(units = 20, activation = ’relu’,
kernel_regularizer = regularizer_12(1=0.1)) %>%
layer_dense(units = 1, activation = ’linear’)

model %>% compile(loss = ’mean_squared_error’,optimizer = optimizer_rmsprop())

history <- model %>}, fit(mcycle.data$x, mcycle.data$accel, epochs = 2000,
batch_size = 30)

pred <- predict(model, x)
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Complexity control Regularization

Results
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(TN NGRS Early stopping

Overview

© Complexity control
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@ Regularization
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arly stopping
Early stopping

@ An alternative to regularization as a way of controlling the effective
complexity of a network is early stopping: we train the model only for
a while, and stop well before we approach a local minimum.
wa

@ Since the weights start at a
highly regularized (linear)
solution, this has the effect of
shrinking the final model toward
a linear model.

=

@ A validation dataset is needed
for determining when to stop,
since we expect the valldatlon
error to start increasing.

g
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Complexity control Early stopping

Example
:E 020 T T 1 1
3 e—e Training set loss
= T .
Ej 0.15 —— Validation set loss |
g
= 0.10 i
B
3
& 0.05 .
w
w
Q
= 0.00 : -
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Time (epochs)

Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or
epochs). The training loss decreases consistently over time, but the
validation loss eventually begins to increase again, forming an asymmetr[‘;(;ww
U-shaped curve. i
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Complexity control Dropout

Overview

© Complexity control

Exploring different architectures
@ Regularization

@ Early stopping
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°
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SICET
Dropout as a substitute of bagging

@ Dropout provides a computationally inexpensive but powerful method
of regularizing a broad family of models.

@ To a first approximation, dropout can be thought of as a method of
making bagging practical for ensembles of very many large neural
networks.

e Bagging involves training multiple models, and evaluating multiple
models on each test example. This seems impractical when each
model is a large neural network, since training and evaluating such
networks is costly in terms of runtime and memory.

@ Dropout provides an inexpensive approximation to training and
evaluating a bagged ensemble of exponentially many neural networks.

)
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SICET
Principles of the dropout method

@ To train with dropout, we use a minibatch-based learning algorithm
that makes small steps, such as SGD.

@ Each time we load an example into a minibatch, we randomly sample
a different binary mask to apply to all of the input and hidden units in
the network. The mask for each unit is sampled independently from all
of the others.

@ The probability of sampling a mask value of one (causing a unit to be
included) is a hyperparameter fixed before training begins. Typically,
an input unit is included with probability 0.8 and a hidden unit is
included with probability 0.5.

@ We then run forward propagation, back-propagation, and the learning
update as usual.

g
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Complexity control Dropout

Example
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Complexity control Dropout

Formal analysis

@ More formally, suppose that a binary mask vector p specifies which
units to include, and J(6, i) defines the average loss of the model
defined by parameters 6 and mask pu.
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Complexity control Dropout

Formal analysis (continued)

@ At each iteration the average update is

“1ooo Rl

@ Then dropout training consists in minimizing I, J(0, ).

@ The expectation contains exponentially many terms but we can obtain
an unbiased estimate of its gradient by sampling values of p.

e’
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SICET
Difference with bagging

Dropout training is not quite the same as bagging:

Bagging Dropout

Models are all independent Models share parameters, each model
inheriting a different subset of param-
eters from the parent neural network

Each model is trained to Only a tiny fraction of the possi-

convergence on its respective ble sub-networks are each trained for

training set a single step; the parameter sharing
causes the remaining sub-networks to
arrive at good settings of the parame-
ters

Beyond these differences, dropout follows the bagging algorithm. For

example, the training set for each sub-network (a minibatch) is a subset 6‘%
the original training set sampled with replacement. =

ey g™
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Complexity control Dropout

Prediction

@ To make a prediction, a bagged ensemble must accumulate votes from
all of its members. In the case of dropout, this is impractical because
there are exponentially many models.

@ A good heuristic is to evaluate the output of one model: the model
with all units, but with the weights going out of each unit / multiplied
by the probability of including unit /. In this way, we capture the right
expected value of the output from each unit. This approach is called
the weight scaling inference rule.

@ Because we usually use an inclusion probability of 1/2, the weight
scaling rule usually amounts to dividing the weights by 2 at the end of
training.

@ There is not yet any theoretical argument for the accuracy of this
approximate inference rule in deep nonlinear networks, but empirically;:

it performs very well. A

=
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Complexity control Dropout

Example: MNIST dataset

Dataset of 60,000 28x28 grayscale images of the 10 digits, along with a
test set of 10,000 images.
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Input/output formatting

library(’keras’)

mnist <- dataset_mnist()
X_train <- mnist$train$x
Y_train <- mnist$train$y
X_test <- mnist$testPx
Y_test <- mnist$test$y

# reshape
x_train <- array_reshape(X_train, c(arow(X_train), 784))
x_test <- array_reshape(X_test, c(nrow(X_test), 784))

# rescale
x_train <- x_train / 255
x_test <- x_test / 255

y_train <- to_categorical(Y_train, 10)
y_test <- to_categorical(Y_test, 10)
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Complexity control Dropout

Model definition and learning

model <- keras_model_sequential()

model %>%

layer_dense(units = 256, activation = ’relu’, input_shape = 784) >/
layer_dropout (rate = 0.4)%>%

layer_dense(units = 128, activation = ’relu’) %>%

layer_dropout(rate = 0.3) %>%

layer_dense(units = 10, activation = ’softmax’)

model %>} compile(

loss = ’categorical_crossentropy’,
optimizer = optimizer_rmsprop(),
metrics = c(’accuracy’))

history <- model %>/ fit( x_train, y_train,
epochs = 50, batch_size = 128, validation_split = 0.2)
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Complexity control Dropout

Learning curves
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Dropout
Results

model %>, evaluate(x_test, y_test)

$loss
0.1159833

$acc
0.982
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Complexity control Weight sharing

Parameter sharing

@ Another way to reduce the number of degrees of freedom in a model is
to force sets of parameters to be equal. This method of regularization
is often referred to as parameter/weight sharing.

@ A significant advantage of parameter sharing over regularization via a
norm penalty is that only a subset of the parameters (the unique set)
need to be stored in memory. In large networks, this can lead to
significant reduction in the memory requirement of the model.

@ This idea is implemented in convolutional neural networks (CNNs).

&,
R
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